Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Perspective

A Comprehensive Review on Current Perspectives of Flavonoids as Antimicrobial Agent

Author(s): Tanya Gupta, Ritu Kataria* and Satish Sardana

Volume 22, Issue 6, 2022

Published on: 16 March, 2022

Page: [425 - 434] Pages: 10

DOI: 10.2174/1568026622666220117104709

Abstract

Flavonoids are the secondary plant metabolites with diversities of pharmacological activities like antioxidant, anticancer, anti-inflammatory, hepatoprotective, free radical scavenging activity and antiviral activities. Flavonoids have also been proved as a major contributor to an antimicrobial phytochemical. Being the major substituent of antibiotics, today flavonoids have attained great attention as there is an increase in the persistence of untreatable microbial infections due to microbial resistance. This review demonstrates the screening, isolation of extracts and derivatization of various flavonoids and their evaluation for antimicrobial potency. Recent advancements of various derivatives of flavonoids having antimicrobial activity have also been discussed in this review. This review helps researchers to get vast knowledge about flavonoids and also gives an idea for the current scenario of flavonoids and their applications as an antimicrobial agent.

Keywords: Flavonoid, Antimicrobial, Molecular docking, Flavone, Flavonone, Infectious diseases.

Next »
Graphical Abstract
[1]
Grange, J.M.; Davey, R.W. Antibacterial properties of propolis (bee glue). J. R. Soc. Med., 1990, 83(3), 159-160.
[http://dx.doi.org/10.1177/014107689008300310] [PMID: 2182860]
[2]
Pattnaik, S.; Subramanyam, V.R.; Kole, C. Antibacterial and antifungal activity of ten essential oils in vitro. Microbios, 1996, 86(349), 237-246.
[PMID: 8893526]
[3]
Hegazi, A.G.; Abd, E.I.; Hady, F.K.; Abd Allah, F.A. Chemical composition of various propolis extracts. Pharmazie, 1982, 61, 1103-1106.
[4]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[5]
Middleton, E., Jr; Chithan, K. The impact of plant flavonoid on mammalian biology: Implications for immunity, inflammation and cancer.In: The flavonoids advances in research since 1986; Harbourne, J.B., Ed.; Chapman and Hall: London, UK, 1993.
[http://dx.doi.org/10.1007/978-1-4899-2911-2_15]
[6]
Harborne, J.B.; Baxter, H. The handbooks of natural flavonoids; John Wiley and Sons: Chichester, UK, 1999, Vol. 1 and 2, .
[7]
Skibola, C.F.; Smith, M.T. Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med., 2000, 29(3-4), 375-383.
[http://dx.doi.org/10.1016/S0891-5849(00)00304-X] [PMID: 11035267]
[8]
Alcaráz, L.E.; Blanco, S.E.; Puig, O.N.; Tomás, F.; Ferretti, F.H. Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. J. Theor. Biol., 2000, 205(2), 231-240.
[http://dx.doi.org/10.1006/jtbi.2000.2062] [PMID: 10873434]
[9]
Verma, B.K.; Kapoor, S.; Kumar, U.; Pandey, S.; Arya, P. Synthesis of new imidazole derivatives as effective antimicrobial agents. Indian J. Pharm. Biol. Res., 2017, 5(1), 1-9.
[http://dx.doi.org/10.30750/ijpbr.5.1.1]
[10]
Jeu, L.; Piacenti, F.J.; Lyakhovetskiy, A.G.; Fung, H.B. Voriconazole. Clin. Ther., 2003, 25(5), 1321-1381.
[http://dx.doi.org/10.1016/S0149-2918(03)80126-1] [PMID: 12867215]
[11]
De Clercq, E. New developments in anti-HIV chemotherapy. Farmaco, 2001, 56(1-2), 3-12.
[http://dx.doi.org/10.1016/S0014-827X(01)01007-2] [PMID: 11347962]
[12]
Poole, K. Overcoming antimicrobial resistance by targeting resistance mechanisms. J. Pharm. Pharmacol., 2001, 53(3), 283-294.
[http://dx.doi.org/10.1211/0022357011775514] [PMID: 11291743]
[13]
Taylor, P.W.; Stapleton, P.D.; Paul Luzio, J. New ways to treat bacterial infections. Drug Discov. Today, 2002, 7(21), 1086-1091.
[http://dx.doi.org/10.1016/S1359-6446(02)02498-4] [PMID: 12546840]
[14]
(a) Silver, L.; Bostian, K. Screening of natural products for antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis., 1990, 9(7), 455-461.
(b) Stotz, G.; Forkmann, G. Oxidation of flavonones to flavones with flower extracts of Antirrhinum majus. Z. Naturforsch. C: Biosci. 36C 1981, 737-741.
(c) Forkmann, G.; Heller, W.; Grisebach, H. Anthocyanin biosynthesis in flowers of Matthiola incana: flavanone 3- and flavonoid 3´hydroxylase. Z. Naturforsch. C: Biosci. 35C 1980, 691-695.
(d) h,L., Heller, W., and Grisebach,H. Conversion of flavonone to flavones, dihydroflavonol and flavonol with an enzyme system from cell cultures of parsley.Z. Naturforsch. C: Biosci. 36C 1981, 742-750.
[http://dx.doi.org/10.1007/BF01964283] [PMID: 2226472]
[15]
Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6), 481-504.
[http://dx.doi.org/10.1016/S0031-9422(00)00235-1] [PMID: 11130659]
[16]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[17]
Bosio, K.; Avanzini, C.; D’Avolio, A.; Ozino, O.; Savoia, D. In vitro activity of propolis against Streptococcus pyogenes. Lett. Appl. Microbiol., 2000, 31(2), 174-177.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00785.x] [PMID: 10972723]
[18]
Zheng, W.F.; Tan, R.X.; Yang, L.; Liu, Z.L. Two flavones from Artemisia giraldii and their antimicrobial activity. Planta Med., 1996, 62(2), 160-162.
[http://dx.doi.org/10.1055/s-2006-957841] [PMID: 8657751]
[19]
Afolayan, A.J.; Meyer, J.J. The antimicrobial activity of 3,5,7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens. J. Ethnopharmacol., 1997, 57(3), 177-181.
[http://dx.doi.org/10.1016/S0378-8741(97)00065-2] [PMID: 9292410]
[20]
Ono, K.; Nakane, H.; Fukushima, M.; Chermann, J.C.; Barré-Sinoussi, F. Inhibition of reverse transcriptase activity by a flavonoid compound, 5,6,7-trihydroxyflavone. Biochem. Biophys. Res. Commun., 1989, 160(3), 982-987.
[http://dx.doi.org/10.1016/S0006-291X(89)80097-X] [PMID: 2471525]
[21]
Fesen, M.R.; Pommier, Y.; Leteurtre, F.; Hiroguchi, S.; Yung, J.; Kohn, K.W. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem. Pharmacol., 1994, 48(3), 595-608.
[http://dx.doi.org/10.1016/0006-2952(94)90291-7] [PMID: 7520698]
[22]
Kim, H.J.; Woo, E.R.; Shin, C.G.; Park, H. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J. Nat. Prod., 1998, 61(1), 145-148.
[http://dx.doi.org/10.1021/np970171q] [PMID: 9461665]
[23]
Li, B.Q.; Fu, T.; Yan, Y.D.; Baylor, N.W.; Ruscetti, F.W.; Kung, H.F. Inhibition of HIV infection by baicalin-a flavonoid compound purified from Chinese herbal medicine. Cell. Mol. Biol. Res., 1993, 39(2), 119-124.
[PMID: 7693133]
[24]
Hu, C.Q.; Chen, K.; Shi, Q.; Kilkuskie, R.E.; Cheng, Y.C.; Lee, K.H. Anti-AIDS agents, 10. Acacetin-7-O-beta-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids. J. Nat. Prod., 1994, 57(1), 42-51.
[http://dx.doi.org/10.1021/np50103a006] [PMID: 8158164]
[25]
Selway, J.W.T. Antiviral activity of flavones and flavans.In: Plant flavonoids in biology and medicine: Biochemical, pharmacological, and structure–activity relationships; Cody, V.; Middleton, E.; Harborne, J.B., Eds.; Alan R. Liss, Inc.: New York, NY, 1986.
[26]
Meyer, J.J.; Afolayan, A.J.; Taylor, M.B.; Erasmus, D. Antiviral activity of galangin isolated from the aerial parts of Helichrysum aureonitens. J. Ethnopharmacol., 1997, 56(2), 165-169.
[http://dx.doi.org/10.1016/S0378-8741(97)01514-6] [PMID: 9174978]
[27]
Amoros, M.; Simões, C.M.; Girre, L.; Sauvager, F.; Cormier, M. Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis. J. Nat. Prod., 1992, 55(12), 1732-1740.
[http://dx.doi.org/10.1021/np50090a003] [PMID: 1338212]
[28]
Ugboko, H.U.; Nwinyi, O.C.; Oranusi, S.U.; Fatoki, T.H.; Omonhinmin, C.A. Antimicrobial importance of medicinal Plants in Nigeria. Science, 2020, 70593.
[http://dx.doi.org/10.1155/2020/7059323]
[29]
Aladesanmi, A.J.; Sofowora, A.; Leary, J.D. Preliminary biological and phytochemical investigation of two Nigerian medicinal plants. Int. J. Crude Drug Res., 1986, 24, 147-153.
[http://dx.doi.org/10.3109/13880208609060892]
[30]
Al-Saleh, F.S.; Gamal El-Din, A.Y.; Abbas, J.A.; Saeed, N.A. Phytochemicaland biological studies of medicinal plants in Bahrain: family Chenopodiaceae. Part 2. Int J Pharmacogn, 1997, 35, 38-42.
[http://dx.doi.org/10.1076/phbi.35.1.38.13266]
[31]
Quarenghi, M.V.; Tereschuk, M.L.; Baigori, M.D.; Abdala, L.R. Antimicrobial activity of flowers from Anthemis cotula. Fitoterapia, 2000, 71(6), 710-712.
[http://dx.doi.org/10.1016/S0367-326X(00)00229-X] [PMID: 11077183]
[32]
Singh, R.K.; Nath, G. Antimicrobial activity of Elaeocarpus sphaericus. Phytother. Res., 1999, 13(5), 448-450.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199908/09)13:5<448:AID-PTR480>3.0.CO;2-6] [PMID: 10441793]
[33]
Torrenegra, R.D.; Ricardo, A.A.; Pedrozo, J.P.; Fuentes, O.C. Flavonoids from Gnaphalium gracile H.B.K. Int. J. Crude Drug Res., 1989, 27, 22-24.
[http://dx.doi.org/10.3109/13880208909053932]
[34]
Palacios, P.; Gutkind, G.; Rondina, R.V.; de Torres, R.; Coussio, J.D. Genus Baccharis. II. Antimicrobial activity of B. crispa and B. notosergila. Planta Med., 1983, 49(2), 128.
[http://dx.doi.org/10.1055/s-2007-969832] [PMID: 6657783]
[35]
Ohemeng, K.A.; Schwender, C.F.; Fu, K.P.; Barrett, J.F. DNA gyrase inhibitory and antibacterial activity of some flavones (1). Bioorg. Med. Chem. Lett., 1993, 3, 225-230.
[http://dx.doi.org/10.1016/S0960-894X(01)80881-7]
[36]
Aljancić, I.; Vajs, V.; Menković, N.; Karadzić, I.; Juranić, N.; Milosavljević, S.; Macura, S. Flavones and sesquiterpene lactones from Achillea atrata subsp. multifida: Antimicrobial activity. J. Nat. Prod., 1999, 62(6), 909-911.
[http://dx.doi.org/10.1021/np980536m] [PMID: 10395518]
[37]
Basile, A.; Giordano, S.; López-Sáez, J.A.; Cobianchi, R.C. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry, 1999, 52(8), 1479-1482.
[http://dx.doi.org/10.1016/S0031-9422(99)00286-1] [PMID: 10647220]
[38]
Basile, A.; Sorbo, S.; Giordano, S.; Ricciardi, L.; Ferrara, S.; Montesano, D.; Castaldo Cobianchi, R.; Vuotto, M.L.; Ferrara, L. Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia, 2000, 71(Suppl. 1), S110-S116.
[http://dx.doi.org/10.1016/S0367-326X(00)00185-4] [PMID: 10930721]
[39]
Sato, Y.; Suzaki, S.; Nishikawa, T.; Kihara, M.; Shibata, H.; Higuti, T. Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 2000, 72(3), 483-488.
[http://dx.doi.org/10.1016/S0378-8741(00)00265-8] [PMID: 10996290]
[40]
Cushnie, T.P.T.; Hamilton, V.E.S.; Lamb, A.J. Assessment of the antibacterial activity of selected flavonoids and consideration of discrepancies between previous reports. Microbiol. Res., 2003, 158(4), 281-289.
[http://dx.doi.org/10.1078/0944-5013-00206] [PMID: 14717448]
[41]
Ma, S.C.; But, P.P.; Ooi, V.E.; He, Y.H.; Lee, S.H.; Lee, S.F.; Lin, R.C. Antiviral amentoflavone from Selaginella sinensis. Biol. Pharm. Bull., 2001, 24(3), 311-312.
[http://dx.doi.org/10.1248/bpb.24.311] [PMID: 11256492]
[42]
Tereschuk, M.L.; Riera, M.V.; Castro, G.R.; Abdala, L.R. Antimicrobial activity of flavonoids from leaves of Tagetes minuta. J. Ethnopharmacol., 1997, 56(3), 227-232.
[http://dx.doi.org/10.1016/S0378-8741(97)00038-X] [PMID: 9201613]
[43]
Dongamanti, A.; Aamate, V.K.; Devulapally, M.G.; Gundu, S.; Kotni, M.K.; Manga, V.; Balasubramanian, S.; Ernala, P. Synthesis, antimicrobial activity and molecular docking of novel tetracyclic scaffolds incorporating a flavonoid framework with medium sized oxygen heterocycles. Bioorg. Med. Chem. Lett., 2015, 25(4), 898-903.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.066] [PMID: 25592711]
[44]
Al-Matani, S.K.; Al-Wahaibi, R.N.S.; Hossain, M.A. Total flavonoids content and antimicrobial activity of crude extract from leaves of Ficus sycomorus native to Sultanate of Oman. Karbala Int. J. Mod. Sci., 2015, (3), 166-171.
[http://dx.doi.org/10.1016/j.kijoms.2015.11.007]
[45]
Rammohan, A.; Bhaskar, B.V.; Venkateswarlu, N.; Rao, V.L.; Gunasekar, D.; Zyryanov, G.V. Isolation of flavonoids from the flowers of Rhynchosia beddomei Baker as prominent antimicrobial agents and molecular docking. Microb. Pathog., 2019, 136, 103667.
[http://dx.doi.org/10.1016/j.micpath.2019.103667] [PMID: 31419459]
[46]
Mohotti, S.; Rajendran, S.; Muhammad, T.; Strömstedt, A.A.; Adhikari, A.; Burman, R.; de Silva, E.D.; Göransson, U.; Hettiarachchi, C.M.; Gunasekera, S. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J. Ethnopharmacol., 2020, 246, 112158.
[http://dx.doi.org/10.1016/j.jep.2019.112158] [PMID: 31421182]
[47]
Omosa, L.K.; Amugune, B.; Ndunda, B.; Milugo, T.K.; Heydenreich, M.; Yenesew, A.; Midiwo, J.O. Antimicrobial flavonoids and diterpenoids from Dodonaea angustifolia. S. Afr. J. Bot., 2014, 91, 58-62.
[http://dx.doi.org/10.1016/j.sajb.2013.11.012]
[48]
Kutluk, I.; Aslan, M.; Orhan, I.E.; Özçelik, B. Antibacterial, antifungal and antiviral bioactivities of selected Helichrysum species. S. Afr. J. Bot., 2018, 119, 252-257.
[http://dx.doi.org/10.1016/j.sajb.2018.09.009]
[49]
Cruz, B.G.; Dos Santos, H.S.; Bandeira, P.N.; Rodrigues, T.H.S.; Matos, M.G.C.; Nascimento, M.F.; de Carvalho, G.G.C.; Braz-Filho, R.; Teixeira, A.M.R.; Tintino, S.R.; Coutinho, H.D.M. Evaluation of antibacterial and enhancement of antibiotic action by the flavonoid kaempferol 7-O-β-D-(6"-O-cumaroyl)-glucopyranoside isolated from Croton piauhiensis müll. Microb. Pathog., 2020, 143, 104144.
[http://dx.doi.org/10.1016/j.micpath.2020.104144] [PMID: 32194182]
[50]
Akhavan, M.; Jahangiri, S.; Shafaghat, A. Studies on the antioxidant and antimicrobial activity and flavonoid derivatives from the fruit of Trigonosciadium brachytaenium (Boiss.) Alava. Ind. Crops Prod., 2015, 63, 114-118.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.023]
[51]
Xu, H.X.; Lee, S.F. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother. Res., 2001, 15(1), 39-43.
[http://dx.doi.org/10.1002/1099-1573(200102)15:1<39:AID-PTR684>3.0.CO;2-R] [PMID: 11180521]
[52]
Resende, F.A.; Nogueira, L.G.; Bauab, T.M.; Vilegas, W.; Varanda, E.A. Antibacterial potential of flavonoids with different hydroxylation patterns. Eclet. Quim.J., 2015, 40(1), 173-179.
[http://dx.doi.org/10.26850/1678-4618eqj.v40.1.2015.p173-179]
[53]
Gabriel, A.F.; Onigbanjo, H.O. Phytochemical and antimicrobial screening of the stem bark extracts of Pterocarpus erinaceus (Poir). Nig. J. Basic Appl. Sci., 2010, 18(1), 1-5.
[http://dx.doi.org/10.4314/njbas.v18i1.56835]
[54]
Taleb-Contini, S.H.; Salvador, M.J.; Watanabe, E.; Ito, I.Y.; Rodrigues de Oliveira, D.C. Antimicrobial activity of flavonoids and steroids isolated from two Chromolaena species. Braz. J. Pharm. Sci., 2003, 39.
[55]
Huang, W.; Zhang, W.J.; Cheng, Y.Q.; Jiang, R.; Wei, W.; Chen, C.J.; Wang, G.; Jiao, R.H.; Tan, R.X.; Ge, H.M. Cytotoxic and antimicrobial flavonoids from Cryptocarya concinna. Planta Med., 2014, 80(11), 925-930.
[http://dx.doi.org/10.1055/s-0034-1368613] [PMID: 25029174]
[56]
Djeussi, D.E.; Sandjo, L.P.; Naumedem, J.A.K.; Omosa, L.K.; Ngadjui, B.T.; Kuete, V. Antibacterial activities of methanol extracts and compounds from Erythrina sigmoidea against gram negative multi drug resistant phenotypes. BMC Complement. Altern. Med., 2015, 15, 453.
[http://dx.doi.org/10.1186/s12906-015-0978-8]
[57]
Tagousop, C.N.; Tamokou, J.D.; Ekom, S.E.; Ngnokam, D.; Voutquenne-Nazabadioko, L. Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement. Altern. Med., 2018, 18(1), 252.
[http://dx.doi.org/10.1186/s12906-018-2321-7] [PMID: 30219066]
[58]
Sabbagh, G.; Berakdar, N. Docking studies of flavonoid compounds as inhibitors of β-ketoacyl acyl carrier protein synthase I (Kas I) of Escherichia coli. J. Mol. Graph. Model., 2015, 61, 214-223.
[http://dx.doi.org/10.1016/j.jmgm.2015.07.005] [PMID: 26292066]
[59]
Sabbagh, G.; Berakdar, N. Molecular docking study of flavonoid compounds as inhibitors of β-ketoacyl acyl carrier proteinsynthase ii (kas ii) of Pseudomonas aeruginosa. Int. J. Pharma Sci., 2015, 8, 52-61.
[60]
Fang, Y.; Lu, Y.; Zang, X.; Wu, T.; Qi, X.; Pan, S.; Xu, X. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors. Sci. Rep., 2016, 6, 23634.
[http://dx.doi.org/10.1038/srep23634] [PMID: 27049530]
[61]
Vijayakumar, B.G.; Ramesh, D.; Joji, A.; Jayachandra Prakasan, J.; Kannan, T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur. J. Pharmacol., 2020, 886, 173448.
[http://dx.doi.org/10.1016/j.ejphar.2020.173448] [PMID: 32768503]
[62]
Cherrak, S.A.; Merzouk, H.; Mokhtari-Soulimane, N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS One, 2020, 15(10), e0240653.
[http://dx.doi.org/10.1371/journal.pone.0240653] [PMID: 33057452]
[63]
Prakash, S.; Elavarasan, N.; Subashini, K.; Kanaga, S.; Dhandapani, R.; Sivanandam, M.; Kumaradhas, P.; Thirunavukkarasu, C.; Sujatha, V. Isolation of hesperetin- A flavonoid from Cordia sebestena flower extract through antioxidant assay guided method and its antibacterial, anticancer effect on cervical cancer via in vitro and in silico molecular docking studies. J. Mol. Struct., 2020., 127751.
[http://dx.doi.org/10.1016/j.molstruc.2020.127751]

© 2024 Bentham Science Publishers | Privacy Policy