Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

A Comprehensive Review on Therapeutic Potentials of Natural Cyclic Peptides

Author(s): Renu Saharan, Suresh Kumar*, Sukhbir Lal Khokra, Sunil Singh, Abhishek Tiwari, Varsha Tiwari, Biswa Mohan Sahoo and Manish Kumar

Volume 18, Issue 5, 2022

Published on: 02 March, 2022

Page: [441 - 449] Pages: 9

DOI: 10.2174/1573401318666220114153509

Price: $65

Abstract

Cyclic peptides have emerged as a promising class of organic compounds that possess polypeptide chains with a cyclic ring structure. There is a circular sequence of bonds in which the ring structure is formed via linkage between one end of the peptide bond and the other end with an amide bond or any other chemically stable bonds like ether, thioether, lactone, and disulfide. Generally, the cyclic peptides are isolated from natural resources like invertebrate animals, micro-organisms of marine habitats, and higher plants. These cyclic peptides possess unique structures with diverse pharmacological activities. Nowadays, cyclic peptides possess superior therapeutic value due to several reasons such as greater resistance to enzymatic degradation (in vivo) and higher bio-availability. Some of these cyclic peptides are rich in leucine, proline, while some have other amino acids as their major constituents. Numerous novel cyclic peptides isolated from natural sources are successfully developed as bioactive products. Recently, cyclic peptides derived from natural resources have attracted attention for exploring their numerous beneficial effects. Moreover, it is reported that natural cyclic peptides exhibit various therapeutic activities like an anthelmintic, ACE inhibitor, anti-tumor, microtubule inhibitor, anti-fungal, antimalarial, and platelet aggregation inhibiting activity. In this review, various cyclic peptides are reported with structures and biological activities that are isolated from various natural sources. The natural cyclic peptides possess a wide spectrum of biological activities and can become a drug of the future for replacing the existing drugs which develop resistance.

Keywords: Cyclic peptides, therapeutic potential, bio-availability, anti-tumor, anthelmintic and anti-viral, platelet aggregation, inhibiting activity.

Graphical Abstract
[1]
Abdalla MA, Matasyoh JC. Endophytes as producers of peptides: An overview about the recently discovered peptides from endophytic microbes. Nat Prod Bioprospect 2014; 4(5): 257-70.
[http://dx.doi.org/10.1007/s13659-014-0038-y] [PMID: 25205333]
[2]
Abdalla MA. Medicinal significance of naturally occurring cyclotetrapeptides. J Nat Med 2016; 70(4): 708-20.
[http://dx.doi.org/10.1007/s11418-016-1001-5] [PMID: 27300506]
[3]
Abdalla MA. Three new cyclotetrapeptides isolated from Streptomyces sp. 447. Nat Prod Res 2017; 31(9): 1014-21.
[http://dx.doi.org/10.1080/14786419.2016.1263849] [PMID: 27936924]
[4]
Edman P. Chemistry of amino acids and peptides. Annu Rev Biochem 1959; 28: 69-96.
[http://dx.doi.org/10.1146/annurev.bi.28.070159.000441] [PMID: 13819343]
[5]
Horton DA, Bourne GT, Smythe ML. Exploring privileged structures: The combinatorial synthesis of cyclic peptides. J Comput Aided Mol Des 2002; 16(5-6): 415-30.
[http://dx.doi.org/10.1023/A:1020863921840] [PMID: 12489688]
[6]
Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J Am Chem Soc 2006; 128(8): 2510-1.
[http://dx.doi.org/10.1021/ja0563455] [PMID: 16492015]
[7]
Zorzi A, Deyle K, Heinis C. Cyclic peptide therapeutics: Past, present and future. Curr Opin Chem Biol 2017; 38: 24-9.
[http://dx.doi.org/10.1016/j.cbpa.2017.02.006] [PMID: 28249193]
[8]
Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem 2004; 73: 953-90.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073940] [PMID: 15189164]
[9]
Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des 2013; 81(1): 136-47.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[10]
Fang WY, Dahiya R, Qin HL, Mourya R, Maharaj S. Natural proline-rich Cyclopolypeptides from marine organisms: chemistry, synthetic methodologies and biological status. Mar Drugs 2016; 14(11): 1-14.
[http://dx.doi.org/10.3390/md14110194] [PMID: 27792168]
[11]
Dahiya R, Pathak D, Himaja M, Bhatt S. First total synthesis and biological screening of hymenamide E. Acta Pharm 2006; 56(4): 399-415.
[PMID: 19839133]
[12]
Dahiya R, Singh S, Sharma A, Chennupati SV, Maharaj S. First total synthesis and biological screening of a proline-rich cyclopeptide from a Caribbean marine sponge. Mar Drugs 2016; 14(12): 1-14.
[http://dx.doi.org/10.3390/md14120228] [PMID: 27983681]
[13]
Chan WR, Tinto WF, Manchand PS, Todaro LJ. Stereo structures of Geodiamolides A and B, novel cyclodepsipeptides from the marine sponge Geodia sp. J Org Chem 1987; 52(14): 3091-3.
[http://dx.doi.org/10.1021/jo00390a023]
[14]
Frankmölle WP, Larsen LK, Caplan FR, et al. Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. I. Isolation and biological properties. J Antibiot (Tokyo) 1992; 45(9): 1451-7.
[http://dx.doi.org/10.7164/antibiotics.45.1451] [PMID: 1429231]
[15]
Agatsuma T, Sakai Y, Mizukami T, Saitoh Y. GE3, a novel hexadepsipeptide antitumor antibiotic produced by Streptomyces sp. II. Structure determination. J Antibiot (Tokyo) 1997; 50(8): 704-8.
[http://dx.doi.org/10.7164/antibiotics.50.704] [PMID: 9315088]
[16]
Kimura J, Takada Y, Inayoshi T, et al. Kulokekahilide-1, a cytotoxic depsipeptide from the cephalaspidean mollusk Philinopsis speciosa. J Org Chem 2002; 67(6): 1760-7.
[http://dx.doi.org/10.1021/jo010176z] [PMID: 11895390]
[17]
Alassane W, Yanjun Z, Christelle C, et al. Isolation and structure of Cyclosenegalins A and B, novel cyclopeptides from the seeds of Annona senegalensis. J Chem Soc 2002; 23: 2712-8.
[18]
Dahiya R, Kumar A, Gupta R. Synthesis, cytotoxic and antimicrobial screening of a proline-rich cyclopolypeptide. Chem Pharm Bull (Tokyo) 2009; 57(2): 214-7.
[http://dx.doi.org/10.1248/cpb.57.214] [PMID: 19182416]
[19]
Kobayashi S, Kobayashi J, Yazaki R, Ueno M. Toward the total synthesis of onchidin, a cytotoxic cyclic depsipeptide from a mollusc. Chem Asian J 2007; 2(1): 135-44.
[http://dx.doi.org/10.1002/asia.200600232] [PMID: 17441146]
[20]
Wélé A, Zhang Y, Brouard JP, Pousset JL, Bodo B. Two cyclopeptides from the seeds of Annona cherimola. Phytochemistry 2005; 66(19): 2376-80.
[http://dx.doi.org/10.1016/j.phytochem.2005.06.011] [PMID: 16040066]
[21]
Yahara S, Shigeyama C, Nohara T. OkudaKaori H, Yasuhara T. Structures of anti-ACE and renin peptides from Lycii radicis cortex. Tetrahedron Lett 1989; 30(44): 6041-2.
[http://dx.doi.org/10.1016/S0040-4039(01)93849-3]
[22]
Koiso Y, Li Y, Iwasaki S, et al. Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. J Antibiot (Tokyo) 1994; 47(7): 765-73.
[http://dx.doi.org/10.7164/antibiotics.47.765] [PMID: 8071121]
[23]
Chiba H, Agematu H, Sakai K, Dobashi K, Yoshioka T. Rhodopeptins, novel cyclic tetrapeptides with antifungal activities from Rhodococcus sp. III. Synthetic study of rhodopeptins. J Antibiot (Tokyo) 1999; 52(8): 710-20.
[http://dx.doi.org/10.7164/antibiotics.52.710] [PMID: 10580384]
[24]
Chiba H, Agematu H, Kaneto R, et al. Rhodopeptins (Mer-N1033), novel cyclic tetrapeptides with antifungal activity from Rhodococcussp. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 1999; 52(8): 695-9.
[http://dx.doi.org/10.7164/antibiotics.52.695] [PMID: 10580382]
[25]
Dmitrenok A, Iwashita T, Nakajima T, Sakamoto B, Namikoshi M, Nagai H. New cyclic depsipeptides from the green alga Bryopsis sp., application of a carboxypeptidase hydrolysis reaction to the structure determination. Tetrahedron 2006; 62: 1301-8.
[http://dx.doi.org/10.1016/j.tet.2005.10.079]
[26]
Hamann MT, Otto CS, Scheuer PJ, Dunbar DC. Kahalalides: Bioactive peptides from a marine mollusk Elysia rufescens and its algal diet Bryopsis sp.(1). J Org Chem 1996; 61(19): 6594-600.
[http://dx.doi.org/10.1021/jo960877+] [PMID: 11667527]
[27]
Carine B, Alain B, Florine C, Catherine G. Isolation, structure and synthesis of mahafacyclin-B, a cyclic heptapeptide from the Latex of Jatropha mahafalensis. J Chem Soc 2001; 1: 2098-103.
[28]
Carine B, Alain B, Isabelle C, Catherine G. Mahafacyclin A,a cyclic heptapeptide from Jatropha mahafalensis, exhibiting β-bulge conformation. Tetrahedron Lett 2000; 41(3): 325-9.
[http://dx.doi.org/10.1016/S0040-4039(99)02084-5]
[29]
Hsieh PW, Chang FR, Wu CC, et al. Selective inhibition of collagen-induced platelet aggregation by a cyclic peptide from Drymaria diandra. Helvetica 2004; 87(1): 57-66.
[http://dx.doi.org/10.1002/hlca.200490017]
[30]
Bewley CA, Debitus C, Faulkner J. Microsclerodermins A and B, anti-fungal cyclic peptides from the lithistid sponge Microscleroderma sp. J Am Chem Soc 1994; 116: 7631-6.
[http://dx.doi.org/10.1021/ja00096a020]
[31]
Burgen ASV, Roberts GCK, Feeney J. Binding of flexible ligands to macromolecules. Nature 1975; 253(5494): 753-5.
[http://dx.doi.org/10.1038/253753a0] [PMID: 1113874]
[32]
Dahiya R, Gautam H. Synthetic and pharmacological studies on a natural cyclopeptide from Gypsophila arabica. J Med Plants Res 2010; 4(19): 1960-6.
[http://dx.doi.org/10.5897/JMPR10.525]
[33]
Dahiya R, Gautam H. Total synthesis and antimicrobial activity of a natural cycloheptapeptide of marine origin. Mar Drugs 2010; 8(8): 2384-94.
[http://dx.doi.org/10.3390/md8082384] [PMID: 20948913]
[34]
Dahiya R, Gautam H. Toward the synthesis and biological screening of a cyclotetrapeptide from marine bacteria. Mar Drugs 2010; 9(1): 71-81.
[http://dx.doi.org/10.3390/md9010071] [PMID: 21339947]
[35]
Dahiya R, Kumar S, Khokra SL, et al. Toward the synthesis and improved biopotential of an N-methylated analog of a proline-rich cyclic tetrapeptide from marine bacteria. Mar Drugs 2018; 16(9): 1-14.
[http://dx.doi.org/10.3390/md16090305] [PMID: 30200225]
[36]
Driggers EM, Hale SP, Lee J, Terrett NK. The exploration of macrocycles for drug discovery--an underexploited structural class. Nat Rev Drug Discov 2008; 7(7): 608-24.
[http://dx.doi.org/10.1038/nrd2590] [PMID: 18591981]
[37]
Ehrmann M, Clausen T. Proteolysis as a regulatory mechanism. Annu Rev Genet 2004; 38: 709-24.
[http://dx.doi.org/10.1146/annurev.genet.38.072902.093416] [PMID: 15568990]
[38]
Kang HK, Choi MC, Seo CH, Park Y. Therapeutic properties and biological benefits of marine-derived anticancer peptides. Int J Mol Sci 2018; 19(3): 919.
[http://dx.doi.org/10.3390/ijms19030919] [PMID: 29558431]
[39]
Kobayashi J, Inaba K, Tsuda M. Tauroacidins A and B, new bromopyrrole alkaloids with tyrosine kinase inhibitory activity from sponge Hymeniacidon sp. Tetrahedron 1997; 53: 16679-82.
[http://dx.doi.org/10.1016/S0040-4020(97)10097-7]
[40]
Kumar S, Dahiya R, Khokra SL, Mourya R, Chennupati SV, Maharaj S. Total synthesis and pharmacological investigation of Cordyheptapeptide-A. Molecules 2017; 22(6): 1-14.
[http://dx.doi.org/10.3390/molecules22060682] [PMID: 28554994]
[41]
Neefjes J, Ovaa H. A peptide’s perspective on antigen presentation to the immune system. Nat Chem Biol 2013; 9(12): 769-75.
[http://dx.doi.org/10.1038/nchembio.1391] [PMID: 24231618]
[42]
Pontiroli AE. Peptide hormones: Review of current and emerging uses by nasal delivery. Adv Drug Deliv Rev 1998; 29(1-2): 81-7.
[http://dx.doi.org/10.1016/S0169-409X(97)00062-8] [PMID: 10837581]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy