Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Research Article

Effects of Coupled-/soluble-Copper, Generating from Copper-doped Titanium Dioxide Nanotubes on Cell Response

Author(s): Pengyu Gao, Xiao Luo, Benli Yin, Zhisha Jiao, JunJi Piao, Ansha Zhao and Ping Yang*

Volume 17, Issue 2, 2023

Published on: 12 April, 2022

Page: [150 - 158] Pages: 9

DOI: 10.2174/1872210516666220114120412

Price: $65

Abstract

Background: Endothelialization in vitro is a very common method for surface modification of cardiovascular materials. However, mature endothelial cells are not suitable because of the difficulty in obtaining and immunogenicity.

Methods: In this patent work, we determined the appropriate amount of copper by constructing a copper- loaded titanium dioxide nanotube array that can catalyze the release of nitric oxide, compared the effects of coupled-/soluble-copper on stem cells, and then induced stem cells to differentiate into endothelial cells.

Results: The results showed that it had a strong promotion effect on the differentiation of stem cells into endothelial cells, which might be used for endothelialization in vitro.

Conclusion: SEM and EDS results prove that a high content of copper ions are indeed doped onto the surface of nanotubes with small amounts of Cu release. The release of NO confirms that the release of several samples within a period of time is within the physiological concentration.

Keywords: Copper, nanotubes, nitric oxide, stem cell, cell response, cardiovascular.

[1]
Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994; 331(8): 489-95.
[http://dx.doi.org/10.1056/NEJM199408253310801] [PMID: 8041413]
[2]
Juan Torrado MD. Restenosis, stent thrombosis, and bleeding complications: Navigating between scyllaandcharybdis - ScienceDirect. J Am Coll Cardiol 2018; 71(15): 1676-95.
[http://dx.doi.org/10.1016/j.jacc.2018.02.023] [PMID: 29650125]
[3]
Dinulovic I, Furrer R, Handschin C. Plasticity of the muscle stem cell microenvironment. Stem Cell Microenvironments and Beyond 2017; 141-69.
[http://dx.doi.org/10.1007/978-3-319-69194-7_8]
[4]
Wan J, Wang L, Huang Y, et al. Using GRGDSPC peptides to improve re-endothelialization of decellularized pancreatic scaffolds. Artif Organs 2020; 44(4): E172-80.
[http://dx.doi.org/10.1111/aor.13602] [PMID: 31736099]
[5]
Zhang B, Yao R, Hu C, et al. Epigallocatechin gallate mediated sandwich-like coating for mimicking endothelium with sustained therapeutic nitric oxide generation and heparin release. Biomaterials 2021; 269: 120418.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120418] [PMID: 33143876]
[6]
Bryan NS, Lefer DJ. Update on gaseous signaling molecules nitric oxide and hydrogen sulfide: Strategies to capture their functional activity for human therapeutics. Mol Pharmacol 2019; 96(1): 109-14.
[http://dx.doi.org/10.1124/mol.118.113910] [PMID: 31061006]
[7]
Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017; 70(1): 1-25.
[http://dx.doi.org/10.1016/j.jacc.2017.04.052] [PMID: 28527533]
[8]
Wickramarachchi D, Steeno G, You Z, Shaik S, Lepsy C, Xue L. Fit-for-purpose validation and establishment of assay acceptance and reporting criteria of dendritic cell activation assay contributing to the assessment of immunogenicity risk. AAPS J 2020; 22(5): 114.
[http://dx.doi.org/10.1208/s12248-020-00491-8] [PMID: 32839919]
[9]
Maccarrone M, Bari M, Lorenzon T, Bisogno T, Di Marzo V, Finazzi-Agrò A. Anandamide uptake by human endothelial cells and its regulation by nitric oxide. J Biol Chem 2000; 275(18): 13484-92.
[http://dx.doi.org/10.1074/jbc.275.18.13484] [PMID: 10788462]
[10]
Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333(6174): 664-6.
[http://dx.doi.org/10.1038/333664a0] [PMID: 3131684]
[11]
Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399(6736): 601-5.
[http://dx.doi.org/10.1038/21224] [PMID: 10376603]
[12]
Bryan NS, Lefer DJ. Correction to “Update on gaseous signaling molecules nitric oxide and hydrogen sulfide: Strategies to capture their functional activity for human therapeutics”. Mol Pharmacol 2019; 96(2): 127-7.
[http://dx.doi.org/10.1124/mol.118.113910err] [PMID: 31235636]
[13]
Valodkar M, Jadeja RN, Thounaojam MC, et al. Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells. Mater Chem Phys 2011; 128(1-2): 83-9.
[http://dx.doi.org/10.1016/j.matchemphys.2011.02.039]
[14]
Miroslava Pavelková. Biological role of copper as an essential trace element in the human organism. Ceska A Slovenska Farmacie Casopis Ceske Farmaceuticke Spolecnosti A Slovenske Farmaceuticke Spolecnosti 2019; 54(1): 117-22.
[15]
Jiang L, Yao H, Luo X, et al. Copper-mediated synergistic catalytic titanium dioxide nanofilm with nitric oxide generation and antiprotein fouling for enhanced hemocompatibility and inflammatory modulation. Appl Mater Today 2020; (10): 1663-9.
[http://dx.doi.org/10.1016/j.apmt.2020.100663]
[16]
Cacciotti and Ilaria. Bivalent cationic ions doped bioactive glasses: The influence of magnesium, zinc, strontium and copper on the physical and biological properties. J Mater Sci 2017; 52(15): 8812-31.
[http://dx.doi.org/10.1007/s10853-017-1010-0]
[17]
Böhme GA, Bon C, Lemaire M, et al. Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc Natl Acad Sci USA 1993; 90(19): 9191-4.
[http://dx.doi.org/10.1073/pnas.90.19.9191] [PMID: 7692445]
[18]
Luo R, Liu Y, Yao H, et al. Copper-incorporated collagen/catechol film for in situ generation of nitric oxide. ACS Biomater Sci Eng 2015; 1(9): 771-9.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00131] [PMID: 33445254]
[19]
Izumi Y, Zorumski CF. Nitric oxide and long-term synaptic depression in the rat hippocampus. Neuroreport 1993; 4(9): 1131-4.
[PMID: 8219040]
[20]
Pant J, Goudie MJ, Hopkins SP, Brisbois EJ, Handa H. Tunable nitric oxide release from S-nitroso-N-acetylpenicillamine via catalytic copper nanoparticles for biomedical applications. ACS Appl Mater Interfaces 2017; 9(18): 15254-64.
[http://dx.doi.org/10.1021/acsami.7b01408] [PMID: 28409633]
[21]
Zhang X, Zhang Y, Yates MZ. Hydroxyapatite nanocrystal deposited titanium dioxide nanotubes loaded with antibiotics for combining biocompatibility and antibacterial properties. MRS Adv 2018; 1-7.
[http://dx.doi.org/10.1557/adv.2018.114]
[22]
Luo X, Yang P, Zhao A, et al. The self-organized differentiation from MSCs into SMCs with manipulated micro/Nano two-scale arrays on TiO2 surfaces for biomimetic construction of vascular endothelial substratum. Mater Sci Eng C 2020; 116(116): 111179.
[http://dx.doi.org/10.1016/j.msec.2020.111179] [PMID: 32806264]
[23]
Ho C-C, Ding S-J. Structure, properties and applications of mussel-inspired polydopamine. J Biomed Nanotechnol 2014; 10(10): 3063-84.
[http://dx.doi.org/10.1166/jbn.2014.1888] [PMID: 25992429]
[24]
Petters RM, Lucy MC. Rhodamine 123 as a cytoplasmic stain for mammalian zygotes. Theriogenology 1987; 28(5): 639-46.
[http://dx.doi.org/10.1016/0093-691X(87)90280-9] [PMID: 16726346]
[25]
Xu J, Liu X, Jiang Y, et al. MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. J Cell Mol Med 2008; 12(6A): 2395-406.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00266.x] [PMID: 18266967]
[26]
Fan W, Crawford R, Xiao Y. The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization. Differentiation 2011; 81(3): 181-91.
[http://dx.doi.org/10.1016/j.diff.2010.12.003] [PMID: 21236558]
[27]
Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ. Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 2005; 19(7): 1118-27.
[http://dx.doi.org/10.1038/sj.leu.2403796] [PMID: 15902288]
[28]
Kanaji S, Fahs SA, Shi Q, Haberichter SL, Montgomery RR. Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis. J Thromb Haemost 2012; 10(8): 1646-52.
[http://dx.doi.org/10.1111/j.1538-7836.2012.04797.x] [PMID: 22642380]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy