Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

The Influence of Kidneys Ion Transport Inhibitors on the Pharmacokinetic and Tumor Uptake Behaviors of a HER2-targeted Small Size Radiolabeled Peptide

Author(s): Nasrin Abbasi Gharibkandi, Sajjad Molavipordanjani, Alireza Mardanshahi and Seyed Jalal Hosseinimehr*

Volume 23, Issue 1, 2022

Published on: 14 February, 2022

Page: [82 - 87] Pages: 6

DOI: 10.2174/1389200223666220113101004

Price: $65

Abstract

Background: HER2 over-expression plays a crucial role in the cancer treatment protocol. This study evaluates the effectiveness of organic anion and cation transport inhibitors and substrate on the tumor uptake of 99mTc- HYNIC-(Ser)3-LTVPWY radiotracer in SKOV-3 tumor-bearing nude mice.

Methods: Before the injection of the radiolabeled peptide, SKOV-3 tumor-bearing nude mice were treated with furosemide, cimetidine, para-amino hippuric acid, and saline. The inhibition effects of the organic anion and cation transport inhibitors were compared with the control group. In both treatment and control groups, the tumor and renal accumulation of radiopeptide in mice bearing SKOV-3 tumors were assessed in biodistribution and SPECT imaging studies.

Results: The biodistribution and imaging results suggested that all treated groups showed a higher tumor and higher normal tissue radioactivity compared to the control group. According to the tumor imaging study, the furosemidetreated group had slightly better tumor uptake and a higher tumor to muscle uptake ratio than other treatment groups.

Conclusion: Administration of furosemide (an OAT inhibitor) increased radioactivity accumulation in the kidneys and blood and improved tumor radioactivity uptake. PAH (an anion transporter substrate) and cimetidine (an OCT inhibitor) have a minor effect on the accumulation of radioactivity in the kidneys and the acquired images.

Keywords: Kidney transport inhibitors, 99mTc-HYNIC-(Ser)3-LTVPWY, radiolabeled peptide, HER2, tumor imaging, tumor targeting, cation transport inhibitors, anion transport inhibitors.

« Previous
Graphical Abstract
[1]
Hynes, N.E.; Stern, D.F. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta, 1994, 1198(2-3), 165-184.
[http://dx.doi.org/10.1016/0304-419x(94)90012-4] [PMID: 7819273]
[2]
Seidenfeld, J.; Samsom, D.J.; Rothenberg, B.M.; Bonnell, C.J.; Ziegler, K.M.; Aronson, N. HER2 testing to manage patients with breast cancer or other solid tumors. Evid. Rep. Technol. Assess. (Full. Rep), 2008, (172), 1-362.
[PMID: 19408965]
[3]
Lal, P.; Salazar, P.A.; Hudis, C.A.; Ladanyi, M.; Chen, B. HER-2 testing in breast cancer using immunohistochemical analysis and fluorescence in situ hybridization: A single-institution experience of 2,279 cases and comparison of dual-color and single-color scoring. Am. J. Clin. Pathol., 2004, 121(5), 631-636.
[http://dx.doi.org/10.1309/VE7862V2646BR6EX] [PMID: 15151202]
[4]
Park, J.W.; Neve, R.M.; Szollosi, J.; Benz, C.C. Unraveling the biologic and clinical complexities of HER2. Clin. Breast Cancer, 2008, 8(5), 392-401.
[http://dx.doi.org/10.3816/CBC.2008.n.047] [PMID: 18952552]
[5]
Pegram, M.D.; Miles, D.; Tsui, C.K.; Zong, Y. HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors. Clin. Cancer Res., 2020, 26(4), 775-786.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1976] [PMID: 31582515]
[6]
Ulaner, G.A.; Hyman, D.M.; Ross, D.S.; Corben, A.; Chandarlapaty, S.; Goldfarb, S.; McArthur, H.; Erinjeri, J.P.; Solomon, S.B.; Kolb, H.; Lyashchenko, S.K.; Lewis, J.S.; Carrasquillo, J.A. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-trastuzumab PET/CT. J. Nucl. Med., 2016, 57(10), 1523-1528.
[http://dx.doi.org/10.2967/jnumed.115.172031] [PMID: 27151988]
[7]
McLarty, K.; Cornelissen, B.; Cai, Z.; Scollard, D.A.; Costantini, D.L.; Done, S.J.; Reilly, R.M. Micro-SPECT/CT with 111In-DTPA-pertuzumab sensitively detects trastuzumab-mediated HER2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts. J. Nucl. Med., 2009, 50(8), 1340-1348.
[http://dx.doi.org/10.2967/jnumed.109.062224] [PMID: 19617342]
[8]
Sörensen, J.; Velikyan, I.; Sandberg, D.; Wennborg, A.; Feldwisch, J.; Tolmachev, V.; Orlova, A.; Sandström, M.; Lubberink, M.; Olofsson, H.; Carlsson, J.; Lindman, H. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics, 2016, 6(2), 262-271.
[http://dx.doi.org/10.7150/thno.13502] [PMID: 26877784]
[9]
Keyaerts, M.; Xavier, C.; Heemskerk, J.; Devoogdt, N.; Everaert, H.; Ackaert, C.; Vanhoeij, M.; Duhoux, F.P.; Gevaert, T.; Simon, P.; Schallier, D.; Fontaine, C.; Vaneycken, I.; Vanhove, C.; De Greve, J.; Lamote, J.; Caveliers, V.; Lahoutte, T. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med., 2016, 57(1), 27-33.
[http://dx.doi.org/10.2967/jnumed.115.162024] [PMID: 26449837]
[10]
Sabahnoo, H.; Noaparast, Z.; Abedi, S.M.; Hosseinimehr, S.J. New small 99mTc-labeled peptides for HER2 receptor imaging. Eur. J. Med. Chem., 2017, 127, 1012-1024.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.011] [PMID: 27842890]
[11]
Khodadust, F. Corrigendum to “An improved (99m)Tc-HYNIC-(Ser)(3)-LTVSPWY peptide with EDDA/tricine as co-ligands for targeting and imaging of HER2 overexpression tumor”. Eur. J. Med. Chem., 2018, 157, 782.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.029] [PMID: 30142614]
[12]
Biabani Ardakani, J.; Talebpour Amiri, F.; Khorramimoghaddam, A.; Abbasi, A.; Molavipordanjani, S.; Hosseinimehr, S.J. Preclinical pharmacokinetic, biodistribution, radiation dosimetry, and toxicity studies of 99mTc-HYNIC-(Ser)3-LTVPWY: A novel HER2-targeted peptide radiotracer. Regul. Toxicol. Pharmacol., 2020, 112104591
[http://dx.doi.org/10.1016/j.yrtph.2020.104591] [PMID: 32006673]
[13]
Torabizadeh, S.A.; Hosseinimehr, S.J. The influence of co-ligands on improving tumor targeting of 99mTc-HYNIC conjugated peptides. Mini Rev. Med. Chem., 2017, 17(2), 86-94.
[http://dx.doi.org/10.2174/1389557516666160808122335] [PMID: 27515713]
[14]
Tolmachev, V.; Tran, T.A.; Rosik, D.; Sjöberg, A.; Abrahmsén, L.; Orlova, A. Tumor targeting using affibody molecules: Interplay of affinity, target expression level, and binding site composition. J. Nucl. Med., 2012, 53(6), 953-960.
[http://dx.doi.org/10.2967/jnumed.111.101527] [PMID: 22586147]
[15]
Akizawa, H.; Uehara, T.; Arano, Y. Renal uptake and metabolism of radiopharmaceuticals derived from peptides and proteins. Adv. Drug Deliv. Rev., 2008, 60(12), 1319-1328.
[http://dx.doi.org/10.1016/j.addr.2008.04.005] [PMID: 18508156]
[16]
Shahsavari, S.; Shaghaghi, Z.; Abedi, S.M.; Hosseinimehr, S.J. Evaluation of 99mTc-HYNIC-(ser)3-LTVPWY peptide for glioblastoma imaging. Int. J. Radiat. Biol., 2020, 96(4), 502-509.
[http://dx.doi.org/10.1080/09553002.2020.1704906] [PMID: 31829777]
[17]
Avan, Z The potential usefulness of (99m)Tc-HYNIC-(Ser)(3)- LTVPWY peptide for predicting HER2 status alteration after chemotherapy in ovarian tumor-bearing mice. Cancer Biother. Radiopharm., 2020. Online ahead of print.
[http://dx.doi.org/10.1089/cbr.2020.4004] [PMID: 32898439]
[18]
Vegt, E.; de Jong, M.; Wetzels, J.F.; Masereeuw, R.; Melis, M.; Oyen, W.J.; Gotthardt, M.; Boerman, O.C. Renal toxicity of radiolabeled peptides and antibody fragments: Mechanisms, impact on radionuclide therapy, and strategies for prevention. J. Nucl. Med., 2010, 51(7), 1049-1058.
[http://dx.doi.org/10.2967/jnumed.110.075101] [PMID: 20554737]
[19]
Otani, N.; Ouchi, M.; Hayashi, K.; Jutabha, P.; Anzai, N. Roles of organic anion transporters (OATs) in renal proximal tubules and their localization. Anat. Sci. Int., 2017, 92(2), 200-206.
[http://dx.doi.org/10.1007/s12565-016-0369-3] [PMID: 27614971]
[20]
Severin, M.J.; Hazelhoff, M.H.; Bulacio, R.P.; Mamprin, M.E.; Brandoni, A.; Torres, A.M. Impact of the induced organic anion transporter 1 (Oat1) renal expression by furosemide on the pharmacokinetics of organic anions. Nephrology (Carlton), 2017, 22(8), 642-648.
[http://dx.doi.org/10.1111/nep.12838] [PMID: 27282888]
[21]
Habu, Y.; Yano, I.; Takeuchi, A.; Saito, H.; Okuda, M.; Fukatsu, A.; Inui, K. Decreased activity of basolateral organic ion transports in hyperuricemic rat kidney: Roles of organic ion transporters, rOAT1, rOAT3 and rOCT2. Biochem. Pharmacol., 2003, 66(6), 1107-1114.
[http://dx.doi.org/10.1016/S0006-2952(03)00466-0] [PMID: 12963498]
[22]
Trejtnar, F.; Laznicek, M.; Laznickova, A.; Mather, S.J. Pharmacokinetics and renal handling of 99mTc-labeled peptides. J. Nucl. Med., 2000, 41(1), 177-182.
[PMID: 10647621]
[23]
Altai, M.; Garousi, J.; Rinne, S.S.; Schulga, A.; Deyev, S.; Vorobyeva, A. On the prevention of kidney uptake of radiolabeled DARPins. EJNMMI Res., 2020, 10(1), 7.
[http://dx.doi.org/10.1186/s13550-020-0599-1] [PMID: 32020413]
[24]
Zhu, Y.; Meng, Q.; Wang, C.; Liu, Q.; Sun, H.; Kaku, T.; Liu, K. Organic anion transporters involved in the excretion of bestatin in the kidney. Peptides, 2012, 33(2), 265-271.
[http://dx.doi.org/10.1016/j.peptides.2012.01.007] [PMID: 22273603]
[25]
Stahl, A.R.; Wagner, B.; Poethko, T.; Perutka, M.; Wester, H.J.; Essler, M.; Heemann, U.; Schwaiger, M.; Lutz, J. Renal accumulation of [111In]DOTATOC in rats: Influence of inhibitors of the organic ion transport and diuretics. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(12), 2129-2134.
[http://dx.doi.org/10.1007/s00259-007-0519-x] [PMID: 17694308]
[26]
Xiong, C.; Yin, D.; Li, J.; Huang, Q.; Ravoori, M.K.; Kundra, V.; Zhu, H.; Yang, Z.; Lu, Y.; Li, C. Metformin reduces renal uptake of radiotracers and protects kidneys from radiation-induced damage. Mol. Pharm., 2019, 16(2), 808-815.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01091] [PMID: 30608713]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy