Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

A Comprehensive Study of miRNAs in Parkinson’s Disease: Diagnostics and Therapeutic Approaches

Author(s): Saima Owais and Yasir Hasan Siddique*

Volume 22, Issue 3, 2023

Published on: 17 March, 2022

Page: [353 - 380] Pages: 28

DOI: 10.2174/1871527321666220111152756

Price: $65

conference banner
Abstract

Parkinson’s disease (PD) is the second most debilitating neurodegenerative movement disorder. It is characterized by the presence of fibrillar alpha-synuclein amassed in the neurons, known as Lewy bodies. Certain cellular and molecular events are involved, leading to the degeneration of dopaminergic neurons. However, the origin and implication of such events are still uncertain. Nevertheless, the role of microRNAs (miRNAs) as important biomarkers and therapeutic molecules is unquestionable. The most challenging task by far in PD treatment has been its late diagnosis followed by therapeutics. miRNAs are an emerging hope to meet the need of early diagnosis, thereby promising an improved movement symptom and prolonged life of the patients. The continuous efforts in discovering the role of miRNAs could be made possible by the utilisation of various animal models of PD. These models help us understand insights into the mechanism of the disease. Moreover, miRNAs have been surfaced as therapeutically important molecules with distinct delivery systems enhancing their success rate. This review aims at providing an outline of different miRNAs implicated in either PD-associated gene regulation or involved in therapeutics.

Keywords: Parkinson’s disease, alpha-synuclein, lewy bodies, micrornas, animal models, fibrillar alpha-synuclein.

[1]
Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 2002; 14(2): 223-36.
[http://dx.doi.org/10.1176/jnp.14.2.223] [PMID: 11983801]
[2]
Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79(4): 368-76.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[3]
Sherer TB, Chowdhury S, Peabody K, Brooks DW. Overcoming obstacles in Parkinson’s disease. Mov Disord 2012; 27(13): 1606-11.
[http://dx.doi.org/10.1002/mds.25260] [PMID: 23115047]
[4]
Spratt DE, Martinez-Torres RJ, Noh YJ, et al. A molecular explanation for the recessive nature of parkin-linked Parkinson’s disease. Nat Commun 2013; 4: 1983.
[http://dx.doi.org/10.1038/ncomms2983] [PMID: 23770917]
[5]
Wang H. MicroRNAs, Parkinson’s disease, and diabetes mellitus. Int J Mol Sci 2021; 22(6): 2953.
[http://dx.doi.org/10.3390/ijms22062953] [PMID: 33799467]
[6]
Zheng B, Liao Z, Locascio JJ, et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2010; 2(52): 52ra73.
[http://dx.doi.org/10.1126/scitranslmed.3001059] [PMID: 20926834]
[7]
Jodeiri Farshbaf M, Ghaedi K, Megraw TL, et al. Does PGC1α/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative disorders? Neuromolecular Med 2016; 18(1): 1-15.
[http://dx.doi.org/10.1007/s12017-015-8370-x] [PMID: 26611102]
[8]
Li D, Mastaglia FL, Fletcher S, Wilton SD. Progress in the molecular pathogenesis and nucleic acid therapeutics for Parkinson’s disease in the precision medicine era. Med Res Rev 2020; 40(6): 2650-81.
[http://dx.doi.org/10.1002/med.21718] [PMID: 32767426]
[9]
Martinez TN, Greenamyre JT. Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxid Redox Signal 2012; 16(9): 920-34.
[http://dx.doi.org/10.1089/ars.2011.4033] [PMID: 21554057]
[10]
Torok R, Salamon A, Sumegi E, et al. Effect of MPTP on mRNA expression of PGC-1α in mouse brain. Brain Res 2017; 1660: 20-6.
[http://dx.doi.org/10.1016/j.brainres.2017.01.032] [PMID: 28161458]
[11]
Baghi M, Yadegari E, Rostamian Delavar M, et al. MiR-193b deregulation is associated with Parkinson’s disease. J Cell Mol Med 2021; 25(13): 6348-60.
[http://dx.doi.org/10.1111/jcmm.16612] [PMID: 34018309]
[12]
Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24(2): 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[13]
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 2004; 318(1): 121-34.
[http://dx.doi.org/10.1007/s00441-004-0956-9] [PMID: 15338272]
[14]
Hornykiewicz O. Parkinson’s disease and the adaptive capacity of the nigrostriatal dopamine system: possible neurochemical mechanisms. Adv Neurol 1993; 60: 140-7.
[PMID: 8420131]
[15]
Jellinger KA. Lewy body-related alpha-synucleinopathy in the aged human brain. J Neural Transm (Vienna) 2004; 111(10-11): 1219-35.
[http://dx.doi.org/10.1007/s00702-004-0138-7] [PMID: 15480835]
[16]
Saito Y, Ruberu NN, Sawabe M, et al. Lewy body-related alpha-synucleinopathy in aging. J Neuropathol Exp Neurol 2004; 63(7): 742-9.
[http://dx.doi.org/10.1093/jnen/63.7.742] [PMID: 15290899]
[17]
Miñones-Moyano E, Porta S, Escaramís G, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011; 20(15): 3067-78.
[http://dx.doi.org/10.1093/hmg/ddr210] [PMID: 21558425]
[18]
Elbaz A, Bower JH, Maraganore DM, et al. Risk tables for parkinsonism and Parkinson’s disease. J Clin Epidemiol 2002; 55(1): 25-31.
[http://dx.doi.org/10.1016/S0895-4356(01)00425-5] [PMID: 11781119]
[19]
Haaxma CA, Bloem BR, Borm GF, et al. Gender differences in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2007; 78(8): 819-24.
[http://dx.doi.org/10.1136/jnnp.2006.103788] [PMID: 17098842]
[20]
Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: What’s the difference? J Parkinsons Dis 2019; 9(3): 501-15.
[http://dx.doi.org/10.3233/JPD-191683] [PMID: 31282427]
[21]
Tanner CM, Goldman SM. Epidemiology of Parkinson’s disease. Neurol Clin 1996; 14(2): 317-35.
[http://dx.doi.org/10.1016/S0733-8619(05)70259-0] [PMID: 8827174]
[22]
Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet 2004; 363(9423): 1783-93.
[http://dx.doi.org/10.1016/S0140-6736(04)16305-8] [PMID: 15172778]
[23]
Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 2011; 6: 193-222.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130242] [PMID: 21034221]
[24]
Douglas MR, Lewthwaite AJ, Nicholl DJ. Genetics of Parkinson’s disease and parkinsonism. Expert Rev Neurother 2007; 7(6): 657-66.
[http://dx.doi.org/10.1586/14737175.7.6.657] [PMID: 17563249]
[25]
Tan EK, Skipper LM. Pathogenic mutations in Parkinson disease. Hum Mutat 2007; 28(7): 641-53.
[http://dx.doi.org/10.1002/humu.20507] [PMID: 17385668]
[26]
Xiromerisiou G, Dardiotis E, Tsimourtou V, et al. Genetic basis of Parkinson disease. Neurosurg Focus 2010; 28(1): E7.
[http://dx.doi.org/10.3171/2009.10.FOCUS09220] [PMID: 20043722]
[27]
Gorell JM, Johnson CC, Rybicki BA, et al. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 1999; 20(2-3): 239-47.
[PMID: 10385887]
[28]
Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ. The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998; 50(5): 1346-50.
[http://dx.doi.org/10.1212/WNL.50.5.1346] [PMID: 9595985]
[29]
Ball N, Teo WP, Chandra S, Chapman J. Parkinson’s disease and the environment. Front Neurol 2019; 10: 218.
[http://dx.doi.org/10.3389/fneur.2019.00218] [PMID: 30941085]
[30]
Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219(4587): 979-80.
[http://dx.doi.org/10.1126/science.6823561] [PMID: 6823561]
[31]
Chhillar N, Singh NK, Banerjee BD, et al. Organochlorine pesticide levels and risk of Parkinson’s disease in north Indian population. ISRN Neurol 2013; 2013: 371034.
[http://dx.doi.org/10.1155/2013/371034] [PMID: 23936670]
[32]
Kanagaraj S, Hema MS, Gupta MN. Environmental risk factors and Parkinson’s disease-A study report. IJRTE 2018; 7(4): 412-5.
[33]
Kanagaraj N. MicroRNA expressions in the MPTP-induced Parkinson’s disease model with special Reference to miR-124. 2013.
[34]
Shamsuzzama KL, Kumar L, Nazir A. Modulation of alpha-synuclein expression and associated effects by microRNA Let-7 in transgenic C. elegans. Front Mol Neurosci 2017; 10: 328.
[http://dx.doi.org/10.3389/fnmol.2017.00328] [PMID: 29081733]
[35]
Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8(2): 93-103.
[http://dx.doi.org/10.1038/nrg1990] [PMID: 17230196]
[36]
Zhang X, Yang R, Hu BL, et al. Reduced circulating levels of miR-433 and miR-133b Are potential biomarkers for Parkinson’s disease. Front Cell Neurosci 2017; 11: 170.
[http://dx.doi.org/10.3389/fncel.2017.00170] [PMID: 28690499]
[37]
Esquela-Kerscher A. The lin-4 microRNA: The ultimate micromanager. Cell Cycle 2014; 13(7): 1060-1.
[http://dx.doi.org/10.4161/cc.28384] [PMID: 24584060]
[38]
Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci STKE 2007; 2007(367): re1.
[http://dx.doi.org/10.1126/stke.3672007re1] [PMID: 17200520]
[39]
Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003; 9(10): 1274-81.
[http://dx.doi.org/10.1261/rna.5980303] [PMID: 13130141]
[40]
Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 2006; 24(4): 857-64.
[http://dx.doi.org/10.1634/stemcells.2005-0441] [PMID: 16357340]
[41]
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004; 5(3): R13.
[http://dx.doi.org/10.1186/gb-2004-5-3-r13] [PMID: 15003116]
[42]
Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439(7074): 283-9.
[http://dx.doi.org/10.1038/nature04367] [PMID: 16421561]
[43]
Asikainen S, Rudgalvyte M, Heikkinen L, et al. Global microRNA expression profiling of Caenorhabditis elegans Parkinson’s disease models. J Mol Neurosci 2010; 41(1): 210-8.
[http://dx.doi.org/10.1007/s12031-009-9325-1] [PMID: 20091141]
[44]
Sonntag KC. MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Res 2010; 1338: 48-57.
[http://dx.doi.org/10.1016/j.brainres.2010.03.106] [PMID: 20380815]
[45]
Kumar M, Nath S, Prasad HK, Sharma GD, Li Y. MicroRNAs: a new ray of hope for diabetes mellitus. Protein Cell 2012; 3(10): 726-38.
[http://dx.doi.org/10.1007/s13238-012-2055-0] [PMID: 23055040]
[46]
Dimmeler S, Nicotera P. MicroRNAs in age-related diseases. EMBO Mol Med 2013; 5(2): 180-90.
[http://dx.doi.org/10.1002/emmm.201201986] [PMID: 23339066]
[47]
Kocerha J, Xu Y, Prucha MS, Zhao D, Chan AW. microRNA-128a dysregulation in transgenic Huntington’s disease monkeys. Mol Brain 2014; 7: 46.
[http://dx.doi.org/10.1186/1756-6606-7-46] [PMID: 24929669]
[48]
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432(7014): 231-5.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[49]
Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature 2015; 519(7544): 482-5.
[http://dx.doi.org/10.1038/nature14281] [PMID: 25799998]
[50]
Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18(24): 3016-27.
[http://dx.doi.org/10.1101/gad.1262504] [PMID: 15574589]
[51]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[52]
Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303(5654): 95-8.
[http://dx.doi.org/10.1126/science.1090599] [PMID: 14631048]
[53]
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17(24): 3011-6.
[http://dx.doi.org/10.1101/gad.1158803] [PMID: 14681208]
[54]
Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004; 10(2): 185-91.
[http://dx.doi.org/10.1261/rna.5167604] [PMID: 14730017]
[55]
Ghosh S. Micro RNA-biogenesis, mechanism of action and applications-A review. Res J Biotechnol 2011; 1(1): 11-36.
[56]
Okada C, Yamashita E, Lee SJ, et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science 2009; 326(5957): 1275-9.
[http://dx.doi.org/10.1126/science.1178705] [PMID: 19965479]
[57]
Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human Dicer and bacterial RNase III. Cell 2004; 118(1): 57-68.
[http://dx.doi.org/10.1016/j.cell.2004.06.017] [PMID: 15242644]
[58]
Yoda M, Kawamata T, Paroo Z, et al. ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 2010; 17(1): 17-23.
[http://dx.doi.org/10.1038/nsmb.1733] [PMID: 19966796]
[59]
Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115(2): 209-16.
[http://dx.doi.org/10.1016/S0092-8674(03)00801-8] [PMID: 14567918]
[60]
Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 2007; 128(6): 1105-18.
[http://dx.doi.org/10.1016/j.cell.2007.01.038] [PMID: 17382880]
[61]
Bai X, Tang Y, Yu M, et al. Downregulation of blood serum microRNA 29 family in patients with Parkinson’s disease. Sci Rep 2017; 7(1): 5411.
[http://dx.doi.org/10.1038/s41598-017-03887-3] [PMID: 28710399]
[62]
Chen Y, Gao C, Sun Q, et al. MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Front Aging Neurosci 2017; 9: 232.
[http://dx.doi.org/10.3389/fnagi.2017.00232] [PMID: 28785216]
[63]
Dong H, Wang C, Lu S, et al. A panel of four decreased serum microRNAs as a novel biomarker for early Parkinson’s disease. Biomarkers 2016; 21(2): 129-37.
[http://dx.doi.org/10.3109/1354750X.2015.1118544] [PMID: 26631297]
[64]
Chen Y, Lian YJ, Ma YQ, Wu CJ, Zheng YK, Xie NC. LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. Neurotoxicology 2018; 68: 212-21.
[http://dx.doi.org/10.1016/j.neuro.2017.12.001] [PMID: 29217406]
[65]
Schwienbacher C, Foco L, Picard A, et al. Plasma and white blood cells show different miRNA expression profiles in Parkinson’s disease. J Mol Neurosci 2017; 62(2): 244-54.
[http://dx.doi.org/10.1007/s12031-017-0926-9] [PMID: 28540642]
[66]
Burgos K, Malenica I, Metpally R, et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One 2014; 9(5): e94839.
[http://dx.doi.org/10.1371/journal.pone.0094839] [PMID: 24797360]
[67]
Martins M, Rosa A, Guedes LC, et al. Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PLoS One 2011; 6(10): e25443.
[http://dx.doi.org/10.1371/journal.pone.0025443] [PMID: 22003392]
[68]
Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015; 6(35): 37043-53.
[http://dx.doi.org/10.18632/oncotarget.6158] [PMID: 26497684]
[69]
Briggs CE, Wang Y, Kong B, Woo TU, Iyer LK, Sonntag KC. Midbrain dopamine neurons in Parkinson’s disease exhibit a dysregulated miRNA and target-gene network. Brain Res 2015; 1618: 111-21.
[http://dx.doi.org/10.1016/j.brainres.2015.05.021] [PMID: 26047984]
[70]
Tatura R, Kraus T, Giese A, et al. Parkinson’s disease: SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus. Parkinsonism Relat Disord 2016; 33: 115-21.
[http://dx.doi.org/10.1016/j.parkreldis.2016.09.028] [PMID: 27717584]
[71]
Chatterjee P, Roy D. Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson’s disease. Biochem Biophys Res Commun 2017; 484(3): 557-64.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.121] [PMID: 28131841]
[72]
Wang G, van der Walt JM, Mayhew G, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 2008; 82(2): 283-9.
[http://dx.doi.org/10.1016/j.ajhg.2007.09.021] [PMID: 18252210]
[73]
Filatova EV, Alieva AKh, Shadrina MI, Slominsky PA. MicroRNAs: possible role in pathogenesis of Parkinson’s disease. Biochemistry (Mosc) 2012; 77(8): 813-9.
[http://dx.doi.org/10.1134/S0006297912080020] [PMID: 22860903]
[74]
da Silva FC, Iop RD, Vietta GG, et al. microRNAs involved in Parkinson’s disease: A systematic review. Mol Med Rep 2016; 14(5): 4015-22.
[http://dx.doi.org/10.3892/mmr.2016.5759] [PMID: 27666518]
[75]
Shen YF, Zhu ZY, Qian SX, Xu CY, Wang YP. miR-30b protects nigrostriatal dopaminergic neurons from MPP(+)-induced neurotoxicity via SNCA. Brain Behav 2020; 10(4): e01567.
[http://dx.doi.org/10.1002/brb3.1567] [PMID: 32154657]
[76]
Wang Y, Zhang X, Li H, Yu J, Ren X. The role of miRNA-29 family in cancer. Eur J Cell Biol 2013; 92(3): 123-8.
[http://dx.doi.org/10.1016/j.ejcb.2012.11.004] [PMID: 23357522]
[77]
Yan B, Guo Q, Fu FJ, et al. The role of miR-29b in cancer: regulation, function, and signaling. OncoTargets Ther 2015; 8: 539-48.
[PMID: 25767398]
[78]
Kole AJ, Swahari V, Hammond SM, Deshmukh M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev 2011; 25(2): 125-30.
[http://dx.doi.org/10.1101/gad.1975411] [PMID: 21245165]
[79]
Ugalde AP, Ramsay AJ, de la Rosa J, et al. Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J 2011; 30(11): 2219-32.
[http://dx.doi.org/10.1038/emboj.2011.124] [PMID: 21522133]
[80]
Botta-Orfila T, Morató X, Compta Y, et al. Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J Neurosci Res 2014; 92(8): 1071-7.
[http://dx.doi.org/10.1002/jnr.23377] [PMID: 24648008]
[81]
Ma W, Li Y, Wang C, Xu F, Wang M, Liu Y. Serum miR-221 serves as a biomarker for Parkinson’s disease. Cell Biochem Funct 2016; 34(7): 511-5.
[http://dx.doi.org/10.1002/cbf.3224] [PMID: 27748571]
[82]
Margis R, Margis R, Rieder CR. Identification of blood microRNAs associated to Parkinsonĭs disease. J Biotechnol 2011; 152(3): 96-101.
[http://dx.doi.org/10.1016/j.jbiotec.2011.01.023] [PMID: 21295623]
[83]
Roshan R, Shridhar S, Sarangdhar MA, et al. Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA 2014; 20(8): 1287-97.
[http://dx.doi.org/10.1261/rna.044008.113] [PMID: 24958907]
[84]
Cao L, Zhang Y, Zhang S, et al. MicroRNA-29b alleviates oxygen and glucose deprivation/reperfusion-induced injury via inhibition of the p53-dependent apoptosis pathway in N2a neuroblastoma cells. Exp Ther Med 2018; 15(1): 67-74.
[PMID: 29399057]
[85]
Lyu G, Guan Y, Zhang C, et al. TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat Commun 2018; 9(1): 2560.
[http://dx.doi.org/10.1038/s41467-018-04994-z] [PMID: 29967491]
[86]
Morita S, Horii T, Kimura M, Ochiya T, Tajima S, Hatada I. miR-29 represses the activities of DNA methyltransferases and DNA demethylases. Int J Mol Sci 2013; 14(7): 14647-58.
[http://dx.doi.org/10.3390/ijms140714647] [PMID: 23857059]
[87]
Goh SY, Chao YX, Dheen ST, Tan EK, Tay SS. Role of microRNAs in Parkinson’s disease. Int J Mol Sci 2019; 20(22): 5649.
[http://dx.doi.org/10.3390/ijms20225649] [PMID: 31718095]
[88]
Li L, Liu H, Song H, et al. Let-7d microRNA attenuates 6-OHDA-induced injury by targeting caspase-3 in MN9D cells. J Mol Neurosci 2017; 63(3-4): 403-11.
[http://dx.doi.org/10.1007/s12031-017-0994-x] [PMID: 29082467]
[89]
Wang S, Tang Y, Cui H, et al. Let-7/miR-98 regulate Fas and Fas- mediated apoptosis. Genes Immun 2011; 12(2): 149-54.
[http://dx.doi.org/10.1038/gene.2010.53] [PMID: 21228813]
[90]
Jiang S, Yan W, Wang SE, Baltimore D. Let-7 suppresses B cell activation through restricting the availability of necessary nutrients. Cell Metab 2018; 27(2): 393-403.e4.
[http://dx.doi.org/10.1016/j.cmet.2017.12.007] [PMID: 29337138]
[91]
Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J 2011; 30(10): 1977-89.
[http://dx.doi.org/10.1038/emboj.2011.94] [PMID: 21468030]
[92]
Sinigaglia K, Wiatrek D, Khan A, et al. ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep. Biochim Biophys Acta Gene Regul Mech 2019; 1862(3): 356-69.
[http://dx.doi.org/10.1016/j.bbagrm.2018.10.011] [PMID: 30391332]
[93]
Benhamed M, Herbig U, Ye T, Dejean A, Bischof O. Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 2012; 14(3): 266-75.
[http://dx.doi.org/10.1038/ncb2443] [PMID: 22366686]
[94]
Rom S, Dykstra H, Zuluaga-Ramirez V, Reichenbach NL, Persidsky Y. miR-98 and let-7g* protect the blood-brain barrier under neuroinflammatory conditions. J Cereb Blood Flow Metab 2015; 35(12): 1957-65.
[http://dx.doi.org/10.1038/jcbfm.2015.154] [PMID: 26126865]
[95]
Cardo LF, Coto E, Ribacoba R, et al. MiRNA profile in the substantia nigra of Parkinson’s disease and healthy subjects. J Mol Neurosci 2014; 54(4): 830-6.
[http://dx.doi.org/10.1007/s12031-014-0428-y] [PMID: 25284245]
[96]
Nair VD, Ge Y. Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson’s disease striatum. Neurosci Lett 2016; 629: 99-104.
[http://dx.doi.org/10.1016/j.neulet.2016.06.061] [PMID: 27369327]
[97]
Lin X, Wang R, Li R, Tao T, Zhang D, Qi Y. Diagnostic performance of miR-485-3p in patients with parkinson’s disease and its relationship with neuroinflammation. Neuromolecular Med 2021. [Online ahead of print]
[http://dx.doi.org/10.1007/s12017-021-08676-w]
[98]
Wang J, Li HY, Wang HS, Su ZB. MicroRNA-485 modulates the TGF-β/ Smads signaling pathway in chronic asthmatic mice by targeting Smurf2. Cell Physiol Biochem 2018; 51(2): 692-710.
[http://dx.doi.org/10.1159/000495327] [PMID: 30463065]
[99]
Chen Z, Zhang Z, Zhang D, Li H, Sun Z. Hydrogen sulfide protects against TNF-α induced neuronal cell apoptosis through miR-485-5p/TRADD signaling. Biochem Biophys Res Commun 2016; 478(3): 1304-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.116] [PMID: 27562714]
[100]
Horst CH, Schlemmer F, de Aguiar Montenegro N, et al. Signature of aberrantly expressed microRNAs in the striatum of rotenone-induced Parkinsonian rats. Neurochem Res 2018; 43(11): 2132-40.
[http://dx.doi.org/10.1007/s11064-018-2638-0] [PMID: 30267378]
[101]
Dorval V, Mandemakers W, Jolivette F, et al. Gene and MicroRNA transcriptome analysis of Parkinson’s related LRRK2 mouse models. PLoS One 2014; 9(1): e85510.
[http://dx.doi.org/10.1371/journal.pone.0085510] [PMID: 24427314]
[102]
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015; 85(2): 257-73.
[http://dx.doi.org/10.1016/j.neuron.2014.12.007] [PMID: 25611507]
[103]
He Y, Liu H, Jiang L, Rui B, Mei J, Xiao H. miR-26 induces apoptosis and inhibits autophagy in non-small cell lung cancer cells by suppressing TGF-β1-JNK signaling pathway. Front Pharmacol 2019; 9: 1509.
[http://dx.doi.org/10.3389/fphar.2018.01509] [PMID: 30687089]
[104]
Alim MA, Hossain MS, Arima K, et al. Tubulin seeds alpha-synuclein fibril formation. J Biol Chem 2002; 277(3): 2112-7.
[http://dx.doi.org/10.1074/jbc.M102981200] [PMID: 11698390]
[105]
Totterdell S, Meredith GE. Localization of alpha-synuclein to identified fibers and synapses in the normal mouse brain. Neuroscience 2005; 135(3): 907-13.
[http://dx.doi.org/10.1016/j.neuroscience.2005.06.047] [PMID: 16112475]
[106]
Maroteaux L, Scheller RH. The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Brain Res Mol Brain Res 1991; 11(3-4): 335-43.
[http://dx.doi.org/10.1016/0169-328X(91)90043-W] [PMID: 1661825]
[107]
Uéda K, Fukushima H, Masliah E, et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 1993; 90(23): 11282-6.
[http://dx.doi.org/10.1073/pnas.90.23.11282] [PMID: 8248242]
[108]
George JM. The synucleins. Genome Biol 2002; 3(1): S3002.
[PMID: 11806835]
[109]
Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 2005; 123(3): 383-96.
[http://dx.doi.org/10.1016/j.cell.2005.09.028] [PMID: 16269331]
[110]
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997; 388(6645): 839-40.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[111]
Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 2000; 97(2): 571-6.
[http://dx.doi.org/10.1073/pnas.97.2.571] [PMID: 10639120]
[112]
Charvin D, Medori R, Hauser RA, Rascol O. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev Drug Discov 2018; 17(11): 804-22.
[http://dx.doi.org/10.1038/nrd.2018.136] [PMID: 30262889]
[113]
Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H. Dityrosine cross-linking promotes formation of stable alpha -synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 2000; 275(24): 18344-9.
[http://dx.doi.org/10.1074/jbc.M000206200] [PMID: 10747881]
[114]
Zhao L, Wang Z. MicroRNAs: Game Changers in the Regulation of α-Synuclein in Parkinson’s Disease. Parkinsons Dis 2019; 2019: 1743183.
[http://dx.doi.org/10.1155/2019/1743183] [PMID: 31191899]
[115]
Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 2013; 14(1): 38-48.
[http://dx.doi.org/10.1038/nrn3406] [PMID: 23254192]
[116]
Oueslati A, Paleologou KE, Schneider BL, Aebischer P, Lashuel HA. Mimicking phosphorylation at serine 87 inhibits the aggregation of human α-synuclein and protects against its toxicity in a rat model of Parkinson’s disease. J Neurosci 2012; 32(5): 1536-44.
[http://dx.doi.org/10.1523/JNEUROSCI.3784-11.2012] [PMID: 22302797]
[117]
Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 2003; 278(27): 25009-13.
[http://dx.doi.org/10.1074/jbc.M300227200] [PMID: 12719433]
[118]
Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004; 305(5688): 1292-5.
[http://dx.doi.org/10.1126/science.1101738] [PMID: 15333840]
[119]
Spencer B, Potkar R, Trejo M, et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 2009; 29(43): 13578-88.
[http://dx.doi.org/10.1523/JNEUROSCI.4390-09.2009] [PMID: 19864570]
[120]
Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ. Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 2004; 279(24): 25497-502.
[http://dx.doi.org/10.1074/jbc.M400255200] [PMID: 15044495]
[121]
Crews L, Spencer B, Desplats P, et al. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 2010; 5(2): e9313.
[http://dx.doi.org/10.1371/journal.pone.0009313] [PMID: 20174468]
[122]
Lee HJ, Khoshaghideh F, Patel S, Lee SJ. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 2004; 24(8): 1888-96.
[http://dx.doi.org/10.1523/JNEUROSCI.3809-03.2004] [PMID: 14985429]
[123]
Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 2008; 283(35): 23542-56.
[http://dx.doi.org/10.1074/jbc.M801992200] [PMID: 18566453]
[124]
Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA. Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 2010; 285(18): 13621-9.
[http://dx.doi.org/10.1074/jbc.M109.074617] [PMID: 20200163]
[125]
Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L. Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS One 2009; 4(5): e5515.
[http://dx.doi.org/10.1371/journal.pone.0005515] [PMID: 19436756]
[126]
Robert G, Jacquel A, Auberger P. Chaperone-mediated autophagy and its emerging role in hematological malignancies. Cells 2019; 8(10): 1260.
[http://dx.doi.org/10.3390/cells8101260] [PMID: 31623164]
[127]
Xu CY, Kang WY, Chen YM, et al. DJ-1 inhibits α-synuclein aggregation by regulating chaperone-mediated autophagy. Front Aging Neurosci 2017; 9: 308.
[http://dx.doi.org/10.3389/fnagi.2017.00308] [PMID: 29021755]
[128]
Crotzer VL, Blum JS. Autophagy and intracellular surveillance: Modulating MHC class II antigen presentation with stress. Proc Natl Acad Sci USA 2005; 102(22): 7779-80.
[http://dx.doi.org/10.1073/pnas.0503088102] [PMID: 15911750]
[129]
Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 2008; 131(Pt 8): 1969-78.
[http://dx.doi.org/10.1093/brain/awm318] [PMID: 18187492]
[130]
Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432(7020): 1032-6.
[http://dx.doi.org/10.1038/nature03029] [PMID: 15525940]
[131]
Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095): 885-9.
[http://dx.doi.org/10.1038/nature04724] [PMID: 16625204]
[132]
Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441(7095): 880-4.
[http://dx.doi.org/10.1038/nature04723] [PMID: 16625205]
[133]
Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA 2006; 103(15): 5805-10.
[http://dx.doi.org/10.1073/pnas.0507436103] [PMID: 16585521]
[134]
Bardien S, Lesage S, Brice A, Carr J. Genetic characteristics of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson’s disease. Parkinsonism Relat Disord 2011; 17(7): 501-8.
[http://dx.doi.org/10.1016/j.parkreldis.2010.11.008] [PMID: 21641266]
[135]
Mortiboys H, Johansen KK, Aasly JO, Bandmann O. Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2. Neurology 2010; 75(22): 2017-20.
[http://dx.doi.org/10.1212/WNL.0b013e3181ff9685] [PMID: 21115957]
[136]
Delcambre S, Ghelfi J, Ouzren N, et al. Mitochondrial mechanisms of LRRK2 G2019S penetrance. Front Neurol 2020; 11: 881.
[http://dx.doi.org/10.3389/fneur.2020.00881] [PMID: 32982917]
[137]
Sanders LH, Laganière J, Cooper O, et al. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction. Neurobiol Dis 2014; 62: 381-6.
[http://dx.doi.org/10.1016/j.nbd.2013.10.013] [PMID: 24148854]
[138]
Schapansky J, Khasnavis S, DeAndrade MP, et al. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons. Neurobiol Dis 2018; 111: 26-35.
[http://dx.doi.org/10.1016/j.nbd.2017.12.005] [PMID: 29246723]
[139]
Korecka JA, Thomas R, Christensen DP, et al. Mitochondrial clearance and maturation of autophagosomes are compromised in LRRK2 G2019S familial Parkinson’s disease patient fibroblasts. Hum Mol Genet 2019; 28(19): 3232-43.
[http://dx.doi.org/10.1093/hmg/ddz126] [PMID: 31261377]
[140]
Singh F, Ganley IG. Parkinson’s disease and mitophagy: an emerging role for LRRK2. Biochem Soc Trans 2021; 49(2): 551-62.
[http://dx.doi.org/10.1042/BST20190236] [PMID: 33769432]
[141]
Rideout HJ, Stefanis L. The neurobiology of LRRK2 and its role in the pathogenesis of Parkinson’s disease. Neurochem Res 2014; 39(3): 576-92.
[http://dx.doi.org/10.1007/s11064-013-1073-5] [PMID: 23729298]
[142]
Li JQ, Tan L, Yu JT. The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener 2014; 9: 47.
[http://dx.doi.org/10.1186/1750-1326-9-47] [PMID: 25391693]
[143]
Shimura H, Hattori N, Kubo Si, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25(3): 302-5.
[http://dx.doi.org/10.1038/77060] [PMID: 10888878]
[144]
Tanaka K, Suzuki T, Chiba T, Shimura H, Hattori N, Mizuno Y. Parkin is linked to the ubiquitin pathway. J Mol Med (Berl) 2001; 79(9): 482-94.
[http://dx.doi.org/10.1007/s001090100242] [PMID: 11692161]
[145]
Periquet M, Latouche M, Lohmann E, et al. Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 2003; 126(Pt 6): 1271-8.
[http://dx.doi.org/10.1093/brain/awg136] [PMID: 12764050]
[146]
Sriram SR, Li X, Ko HS, et al. Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum Mol Genet 2005; 14(17): 2571-86.
[http://dx.doi.org/10.1093/hmg/ddi292] [PMID: 16049031]
[147]
Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392(6676): 605-8.
[http://dx.doi.org/10.1038/33416] [PMID: 9560156]
[148]
Lücking CB, Dürr A, Bonifati V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 2000; 342(21): 1560-7.
[http://dx.doi.org/10.1056/NEJM200005253422103] [PMID: 10824074]
[149]
Kamienieva I, Duszyński J, Szczepanowska J. Multitasking guardian of mitochondrial quality: Parkin function and Parkinson’s disease. Transl Neurodegener 2021; 10(1): 5.
[http://dx.doi.org/10.1186/s40035-020-00229-8] [PMID: 33468256]
[150]
Petrucelli L, O’Farrell C, Lockhart PJ, et al. Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 2002; 36(6): 1007-19.
[http://dx.doi.org/10.1016/S0896-6273(02)01125-X] [PMID: 12495618]
[151]
Tsai YC, Fishman PS, Thakor NV, Oyler GA. Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem 2003; 278(24): 22044-55.
[http://dx.doi.org/10.1074/jbc.M212235200] [PMID: 12676955]
[152]
Mata IF, Lockhart PJ, Farrer MJ. Parkin genetics: one model for Parkinson’s disease. Hum Mol Genet 2004; 13(Spec No 1): R127-33.
[http://dx.doi.org/10.1093/hmg/ddh089] [PMID: 14976155]
[153]
Abou-Sleiman PM, Healy DG, Quinn N, Lees AJ, Wood NW. The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 2003; 54(3): 283-6.
[http://dx.doi.org/10.1002/ana.10675] [PMID: 12953260]
[154]
Kilarski LL, Pearson JP, Newsway V, et al. Systematic review and UK-based study of PARK2 (parkin), PINK1, PARK7 (DJ-1) and LRRK2 in early-onset Parkinson’s disease. Mov Disord 2012; 27(12): 1522-9.
[http://dx.doi.org/10.1002/mds.25132] [PMID: 22956510]
[155]
Billia F, Hauck L, Grothe D, et al. Parkinson-susceptibility gene DJ-1/PARK7 protects the murine heart from oxidative damage in vivo. Proc Natl Acad Sci USA 2013; 110(15): 6085-90.
[http://dx.doi.org/10.1073/pnas.1303444110] [PMID: 23530187]
[156]
Hayashi T, Ishimori C, Takahashi-Niki K, et al. DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem Biophys Res Commun 2009; 390(3): 667-72.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.025] [PMID: 19822128]
[157]
Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005; 14(14): 2063-73.
[http://dx.doi.org/10.1093/hmg/ddi211] [PMID: 15944198]
[158]
Heo JY, Park JH, Kim SJ, et al. DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex I assembly. PLoS One 2012; 7(3): e32629.
[http://dx.doi.org/10.1371/journal.pone.0032629] [PMID: 22403686]
[159]
Aryal B, Lee Y. Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Rep 2019; 52(4): 250-8.
[http://dx.doi.org/10.5483/BMBRep.2019.52.4.204] [PMID: 30545438]
[160]
Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet 2009; 373(9680): 2055-66.
[http://dx.doi.org/10.1016/S0140-6736(09)60492-X] [PMID: 19524782]
[161]
Fleming SM, Chesselet MF. Behavioral phenotypes and pharmacology in genetic mouse models of Parkinsonism. Behav Pharmacol 2006; 17(5-6): 383-91.
[http://dx.doi.org/10.1097/00008877-200609000-00004] [PMID: 16940759]
[162]
Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 1978; 38(11 Pt 1): 3751-7.
[163]
Påhlman S, Hoehner JC, Nånberg E, et al. Differentiation and survival influences of growth factors in human neuroblastoma. Eur J Cancer 1995; 31A(4): 453-8.
[http://dx.doi.org/10.1016/0959-8049(95)00033-F] [PMID: 7576944]
[164]
Encinas M, Iglesias M, Liu Y, et al. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 2000; 75(3): 991-1003.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0750991.x] [PMID: 10936180]
[165]
Esper RM, Pankonin MS, Loeb JA. Neuregulins: versatile growth and differentiation factors in nervous system development and human disease. Brain Res Brain Res Rev 2006; 51(2): 161-75.
[http://dx.doi.org/10.1016/j.brainresrev.2005.11.006] [PMID: 16412517]
[166]
Gerecke KM, Wyss JM, Carroll SL. Neuregulin-1beta induces neurite extension and arborization in cultured hippocampal neurons. Mol Cell Neurosci 2004; 27(4): 379-93.
[http://dx.doi.org/10.1016/j.mcn.2004.08.001] [PMID: 15555917]
[167]
Moore TB, Sidell N, Chow VJ, et al. Differentiating effects of 1,25-dihydroxycholecalciferol (D3) on LA-N-5 human neuroblastoma cells and its synergy with retinoic acid. J Pediatr Hematol Oncol 1995; 17(4): 311-7.
[http://dx.doi.org/10.1097/00043426-199511000-00006] [PMID: 7583386]
[168]
Sarkanen JR, Nykky J, Siikanen J, Selinummi J, Ylikomi T, Jalonen TO. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells. J Neurochem 2007; 102(6): 1941-52.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04676.x] [PMID: 17540009]
[169]
Reddy CD, Patti R, Guttapalli A, et al. Anticancer effects of the novel 1alpha, 25-dihydroxyvitamin D3 hybrid analog QW1624F2-2 in human neuroblastoma. J Cell Biochem 2006; 97(1): 198-206.
[http://dx.doi.org/10.1002/jcb.20629] [PMID: 16200638]
[170]
Agholme L, Lindström T, Kågedal K, Marcusson J, Hallbeck M. An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 2010; 20(4): 1069-82.
[http://dx.doi.org/10.3233/JAD-2010-091363] [PMID: 20413890]
[171]
Kume T, Kawato Y, Osakada F, et al. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype. Neurosci Lett 2008; 443(3): 199-203.
[http://dx.doi.org/10.1016/j.neulet.2008.07.079] [PMID: 18691633]
[172]
Guarnieri S, Pilla R, Morabito C, et al. Extracellular guanosine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells. Int J Dev Neurosci 2009; 27(2): 135-47.
[http://dx.doi.org/10.1016/j.ijdevneu.2008.11.007] [PMID: 19111604]
[173]
Mollereau C, Zajac JM, Roumy M. Staurosporine differentiation of NPFF2 receptor-transfected SH-SY5Y neuroblastoma cells induces selectivity of NPFF activity towards opioid receptors. Peptides 2007; 28(5): 1125-8.
[http://dx.doi.org/10.1016/j.peptides.2007.03.001] [PMID: 17418451]
[174]
Xie HR, Hu LS, Li GY. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J (Engl) 2010; 123(8): 1086-92.
[PMID: 20497720]
[175]
Xicoy H, Wieringa B, Martens GJ. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener 2017; 12(1): 10.
[http://dx.doi.org/10.1186/s13024-017-0149-0] [PMID: 28118852]
[176]
Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA. Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res 1989; 49(1): 219-25.
[PMID: 2535691]
[177]
Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM. Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 2009; 106(31): 13052-7.
[http://dx.doi.org/10.1073/pnas.0906277106] [PMID: 19628698]
[178]
Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 2007; 39(8): 1033-7.
[http://dx.doi.org/10.1038/ng2079] [PMID: 17643101]
[179]
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465(7301): 1033-8.
[http://dx.doi.org/10.1038/nature09144] [PMID: 20577206]
[180]
Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147(2): 358-69.
[http://dx.doi.org/10.1016/j.cell.2011.09.028] [PMID: 22000014]
[181]
Karreth FA, Tay Y, Perna D, et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 2011; 147(2): 382-95.
[http://dx.doi.org/10.1016/j.cell.2011.09.032] [PMID: 22000016]
[182]
Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147(2): 344-57.
[http://dx.doi.org/10.1016/j.cell.2011.09.029] [PMID: 22000013]
[183]
Sumazin P, Yang X, Chiu HS, et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 2011; 147(2): 370-81.
[http://dx.doi.org/10.1016/j.cell.2011.09.041] [PMID: 22000015]
[184]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[185]
Wang ZH, Zhang JL, Duan YL, Zhang QS, Li GF, Zheng DL. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed Pharmacother 2015; 74: 252-6.
[http://dx.doi.org/10.1016/j.biopha.2015.08.025] [PMID: 26349993]
[186]
Rott R, Szargel R, Haskin J, et al. Monoubiquitylation of alpha-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells. J Biol Chem 2008; 283(6): 3316-28.
[http://dx.doi.org/10.1074/jbc.M704809200] [PMID: 18070888]
[187]
Jiang J, Xiong R, Lu J, Wang X, Gu X. MicroRNA-203a-3p regulates the apoptosis of MPP+ Induced SH-SY5Y cells by targeting A-synuclein. J Biomater Tissue Eng 2020; 10(6): 838-44.
[http://dx.doi.org/10.1166/jbt.2020.2320]
[188]
Alvarez-Erviti L, Seow Y, Schapira AH, Rodriguez-Oroz MC, Obeso JA, Cooper JM. Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson’s disease. Cell Death Dis 2013; 4(3): e545.
[http://dx.doi.org/10.1038/cddis.2013.73] [PMID: 23492776]
[189]
Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 2010; 67(12): 1464-72.
[http://dx.doi.org/10.1001/archneurol.2010.198] [PMID: 20697033]
[190]
Xilouri M, Brekk OR, Polissidis A, Chrysanthou-Piterou M, Kloukina I, Stefanis L. Impairment of chaperone-mediated autophagy induces dopaminergic neurodegeneration in rats. Autophagy 2016; 12(11): 2230-47.
[http://dx.doi.org/10.1080/15548627.2016.1214777] [PMID: 27541985]
[191]
Su C, Yang X, Lou J. Geniposide reduces α-synuclein by blocking microRNA-21/lysosome-associated membrane protein 2A interaction in Parkinson disease models. Brain Res 2016; 1644: 98-106.
[http://dx.doi.org/10.1016/j.brainres.2016.05.011] [PMID: 27173998]
[192]
Li G, Yang H, Zhu D, Huang H, Liu G, Lun P. Targeted suppression of chaperone-mediated autophagy by miR-320a promotes α-synuclein aggregation. Int J Mol Sci 2014; 15(9): 15845-57.
[http://dx.doi.org/10.3390/ijms150915845] [PMID: 25207598]
[193]
Zhang Z, Cheng Y. miR-16-1 promotes the aberrant α-synuclein accumulation in parkinson disease via targeting heat shock protein 70. ScientificWorldJournal 2014; 2014: 938348.
[PMID: 25054189]
[194]
Piao Y, Kim HG, Oh MS, Pak YK. Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP(+)-induced mitochondrial dysfunctions in neuronal cells. Biochim Biophys Acta 2012; 1820(5): 577-85.
[http://dx.doi.org/10.1016/j.bbagen.2011.08.007] [PMID: 21856379]
[195]
Gaweda-Walerych K, Safranow K, Maruszak A, et al. Mitochondrial transcription factor A variants and the risk of Parkinson’s disease. Neurosci Lett 2010; 469(1): 24-9.
[http://dx.doi.org/10.1016/j.neulet.2009.11.037] [PMID: 19925850]
[196]
Huang Y, Huang C, Yun W. Peripheral BDNF/TrkB protein expression is decreased in Parkinson’s disease but not in Essential tremor. J Clin Neurosci 2019; 63: 176-81.
[http://dx.doi.org/10.1016/j.jocn.2019.01.017] [PMID: 30723034]
[197]
Cheng A, Wan R, Yang JL, et al. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun 2012; 3: 1250.
[http://dx.doi.org/10.1038/ncomms2238] [PMID: 23212379]
[198]
Xia DY, Huang X, Bi CF, Mao LL, Peng LJ, Qian HR. PGC-1α or FNDC5 is involved in modulating the effects of Aβ1-42 oligomers on suppressing the expression of BDNF, a beneficial factor for inhibiting neuronal apoptosis, Aβ deposition and cognitive decline of APP/PS1 Tg mice. Front Aging Neurosci 2017; 9: 65.
[http://dx.doi.org/10.3389/fnagi.2017.00065] [PMID: 28377712]
[199]
Hashemi MS, Ghaedi K, Salamian A, et al. Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience 2013; 231: 296-304.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.041] [PMID: 23219938]
[200]
de Oliveira Bristot VJ, de Bem Alves AC, Cardoso LR, da Luz Scheffer D, Aguiar AS Jr. The role of PGC-1α/UCP2 signaling in the beneficial effects of physical exercise on the brain. Front Neurosci 2019; 13: 292.
[http://dx.doi.org/10.3389/fnins.2019.00292] [PMID: 30983964]
[201]
Yang X, Zhang M, Wei M, Wang A, Deng Y, Cao H. MicroRNA-216a inhibits neuronal apoptosis in a cellular Parkinson’s disease model by targeting Bax. Metab Brain Dis 2020; 35(4): 627-35.
[http://dx.doi.org/10.1007/s11011-020-00546-x] [PMID: 32140823]
[202]
Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 1973; 33(11): 2643-52.
[PMID: 4748425]
[203]
Joshi S, Guleria R, Pan J, DiPette D, Singh US. Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells. Oncogene 2006; 25(2): 240-7.
[http://dx.doi.org/10.1038/sj.onc.1209027] [PMID: 16158052]
[204]
Ba F, Pang PK, Benishin CG. The establishment of a reliable cytotoxic system with SK-N-SH neuroblastoma cell culture. J Neurosci Methods 2003; 123(1): 11-22.
[http://dx.doi.org/10.1016/S0165-0270(02)00324-2] [PMID: 12581845]
[205]
Zhou S, Zhang D, Guo J, Zhang J, Chen Y. Knockdown of SNHG14 alleviates MPP+-induced injury in the cell model of Parkinson’s disease by targeting the miR-214-3p/KLF4 axis. Front Neurosci 2020; 14: 930.
[http://dx.doi.org/10.3389/fnins.2020.00930] [PMID: 33071725]
[206]
Zhou S, Zhang D, Guo J, Chen Z, Chen Y, Zhang J. Deficiency of NEAT1 prevented MPP+-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis. Brain Res 2021; 1750: 147156.
[http://dx.doi.org/10.1016/j.brainres.2020.147156] [PMID: 33069733]
[207]
Saba R, Störchel PH, Aksoy-Aksel A, et al. Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 2012; 32(3): 619-32.
[http://dx.doi.org/10.1128/MCB.05896-11] [PMID: 22144581]
[208]
Moon JM, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J Cereb Blood Flow Metab 2013; 33(12): 1976-82.
[http://dx.doi.org/10.1038/jcbfm.2013.157] [PMID: 24002437]
[209]
Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 2002; 3(9): 663-72.
[http://dx.doi.org/10.1038/nrm906] [PMID: 12209126]
[210]
Peng J, Andersen JK. The role of c-Jun N-terminal kinase (JNK) in Parkinson’s disease. IUBMB Life 2003; 55(4-5): 267-71.
[http://dx.doi.org/10.1080/1521654031000121666] [PMID: 12880208]
[211]
Karunakaran S, Ravindranath V. Activation of p38 MAPK in the substantia nigra leads to nuclear translocation of NF-kappaB in MPTP-treated mice: implication in Parkinson’s disease. J Neurochem 2009; 109(6): 1791-9.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06112.x] [PMID: 19457134]
[212]
Liu Y, Song Y, Zhu X. MicroRNA-181a Regulates Apoptosis and Autophagy Process in Parkinson’s Disease by Inhibiting p38 Mitogen-Activated Protein Kinase (MAPK)/c-Jun N-Terminal Kinases (JNK) Signaling Pathways. Med Sci Monit 2017; 23: 1597-606.
[http://dx.doi.org/10.12659/MSM.900218] [PMID: 28365714]
[213]
Nelson PT, Soma LA, Lavi E. Microglia in diseases of the central nervous system. Ann Med 2002; 34(7-8): 491-500.
[http://dx.doi.org/10.1080/078538902321117698] [PMID: 12553488]
[214]
Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altern Anim Exp 2009; 26(2): 83-94.
[http://dx.doi.org/10.14573/altex.2009.2.83] [PMID: 19565166]
[215]
Wu DC, Ré DB, Nagai M, Ischiropoulos H, Przedborski S. The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci USA 2006; 103(32): 12132-7.
[http://dx.doi.org/10.1073/pnas.0603670103] [PMID: 16877542]
[216]
Häusler KG, Prinz M, Nolte C, et al. Interferon-gamma differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages. Eur J Neurosci 2002; 16(11): 2113-22.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02287.x] [PMID: 12473079]
[217]
de Jong EK, de Haas AH, Brouwer N, et al. Expression of CXCL4 in microglia in vitro and in vivo and its possible signaling through CXCR3. J Neurochem 2008; 105(5): 1726-36.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05267.x] [PMID: 18248618]
[218]
Horvath RJ, Nutile-McMenemy N, Alkaitis MS, Deleo JA. Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. J Neurochem 2008; 107(2): 557-69.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05633.x] [PMID: 18717813]
[219]
Yao L, Ye Y, Mao H, et al. MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson’s disease. J Neuroinflammation 2018; 15(1): 13.
[http://dx.doi.org/10.1186/s12974-018-1053-4] [PMID: 29329581]
[220]
Sun Q, Wang S, Chen J, et al. MicroRNA-190 alleviates neuronal damage and inhibits neuroinflammation via Nlrp3 in MPTP-induced Parkinson’s disease mouse model. J Cell Physiol 2019; 234(12): 23379-87.
[http://dx.doi.org/10.1002/jcp.28907] [PMID: 31232472]
[221]
Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36(1): 59-74.
[http://dx.doi.org/10.1099/0022-1317-36-1-59] [PMID: 886304]
[222]
Louis N, Evelegh C, Graham FL. Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 1997; 233(2): 423-9.
[http://dx.doi.org/10.1006/viro.1997.8597] [PMID: 9217065]
[223]
Lin YC, Boone M, Meuris L, et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun 2014; 5: 4767.
[http://dx.doi.org/10.1038/ncomms5767] [PMID: 25182477]
[224]
Schwarz H, Zhang Y, Zhan C, et al. Small-scale bioreactor supports high density HEK293 cell perfusion culture for the production of recombinant Erythropoietin. J Biotechnol 2020; 309: 44-52.
[http://dx.doi.org/10.1016/j.jbiotec.2019.12.017] [PMID: 31891733]
[225]
Shaw G, Morse S, Ararat M, Graham FL. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 2002; 16(8): 869-71.
[http://dx.doi.org/10.1096/fj.01-0995fje] [PMID: 11967234]
[226]
Kaplan MP, Chin SS, Fliegner KH, Liem RK. Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci 1990; 10(8): 2735-48.
[http://dx.doi.org/10.1523/JNEUROSCI.10-08-02735.1990] [PMID: 2201753]
[227]
Shaw G, Weber K. Differential expression of neurofilament triplet proteins in brain development. Nature 1982; 298(5871): 277-9.
[http://dx.doi.org/10.1038/298277a0] [PMID: 7045694]
[228]
Dautzenberg FM, Higelin J, Teichert U. Functional characterization of corticotropin-releasing factor type 1 receptor endogenously expressed in human embryonic kidney 293 cells. Eur J Pharmacol 2000; 390(1-2): 51-9.
[http://dx.doi.org/10.1016/S0014-2999(99)00915-2] [PMID: 10708706]
[229]
Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997; 390(6655): 88-91.
[http://dx.doi.org/10.1038/36362] [PMID: 9363896]
[230]
van Koppen C, Meyer zu Heringdorf M, Laser KT, et al. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J Biol Chem 1996; 271(4): 2082-7.
[http://dx.doi.org/10.1074/jbc.271.4.2082] [PMID: 8567663]
[231]
Schachter JB, Sromek SM, Nicholas RA, Harden TK. HEK293 human embryonic kidney cells endogenously express the P2Y1 and P2Y2 receptors. Neuropharmacology 1997; 36(9): 1181-7.
[http://dx.doi.org/10.1016/S0028-3908(97)00138-X] [PMID: 9364473]
[232]
Lin K, Sadée W, Quillan JM. Rapid measurements of intracellular calcium using a fluorescence plate reader. Biotechniques 1999; 26(2): 318-322, 324-326.
[http://dx.doi.org/10.2144/99262rr02] [PMID: 10023544]
[233]
Doxakis E. Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 2010; 285(17): 12726-34.
[http://dx.doi.org/10.1074/jbc.M109.086827] [PMID: 20106983]
[234]
Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP(+)-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci 2014; 8: 182.
[http://dx.doi.org/10.3389/fncel.2014.00182] [PMID: 25071443]
[235]
Lim W, Song G. Identification of novel regulatory genes in development of the avian reproductive tracts. PLoS One 2014; 9(4): e96175.
[http://dx.doi.org/10.1371/journal.pone.0096175] [PMID: 24763497]
[236]
Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science 1998; 282(5396): 2028-33.
[http://dx.doi.org/10.1126/science.282.5396.2028] [PMID: 9851919]
[237]
Sulston J, Dew M, Brenner S. Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 1975; 163(2): 215-26.
[http://dx.doi.org/10.1002/cne.901630207] [PMID: 240872]
[238]
Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: A new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics 2018; 210(2): 445-61.
[http://dx.doi.org/10.1534/genetics.118.301307] [PMID: 30120140]
[239]
Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell 2005; 8(3): 321-30.
[http://dx.doi.org/10.1016/j.devcel.2004.12.019] [PMID: 15737928]
[240]
Tehrani N, Del Rosario J, Dominguez M, Kalb R, Mano I. The insulin/IGF signaling regulators cytohesin/GRP-1 and PIP5K/PPK-1 modulate susceptibility to excitotoxicity in C. elegans. PLoS One 2014; 9(11): e113060.
[http://dx.doi.org/10.1371/journal.pone.0113060] [PMID: 25422944]
[241]
Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000; 1(2): 120-9.
[http://dx.doi.org/10.1038/35040009] [PMID: 11253364]
[242]
Aballay A, Ausubel FM. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA 2001; 98(5): 2735-9.
[http://dx.doi.org/10.1073/pnas.041613098] [PMID: 11226309]
[243]
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27(48): 6245-51.
[http://dx.doi.org/10.1038/onc.2008.301] [PMID: 18931691]
[244]
Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 2001; 11(6): 1114-25.
[http://dx.doi.org/10.1101/gr.169101] [PMID: 11381037]
[245]
Lim KL, Ng CH. Genetic models of Parkinson disease. Biochim Biophys Acta 2009; 1792(7): 604-15.
[http://dx.doi.org/10.1016/j.bbadis.2008.10.005] [PMID: 19000757]
[246]
Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron 2010; 66(5): 646-61.
[http://dx.doi.org/10.1016/j.neuron.2010.04.034] [PMID: 20547124]
[247]
Lu B, Vogel H. Drosophila models of neurodegenerative diseases. Annu Rev Pathol 2009; 4: 315-42.
[http://dx.doi.org/10.1146/annurev.pathol.3.121806.151529] [PMID: 18842101]
[248]
Ambegaokar SS, Roy B, Jackson GR. Neurodegenerative models in Drosophila: polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol Dis 2010; 40(1): 29-39.
[http://dx.doi.org/10.1016/j.nbd.2010.05.026] [PMID: 20561920]
[249]
Hirth F. Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets 2010; 9(4): 504-23.
[http://dx.doi.org/10.2174/187152710791556104] [PMID: 20522007]
[250]
Botella JA, Bayersdorfer F, Gmeiner F, Schneuwly S. Modelling Parkinson’s disease in Drosophila. Neuromolecular Med 2009; 11(4): 268-80.
[http://dx.doi.org/10.1007/s12017-009-8098-6] [PMID: 19855946]
[251]
Park J, Kim Y, Chung J. Mitochondrial dysfunction and Parkinson’s disease genes: insights from Drosophila. Dis Model Mech 2009; 2(7-8): 336-40.
[http://dx.doi.org/10.1242/dmm.003178] [PMID: 19553694]
[252]
Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118(2): 401-15.
[http://dx.doi.org/10.1242/dev.118.2.401] [PMID: 8223268]
[253]
Muñoz-Soriano V, Paricio N. Drosophila models of Parkinson’s disease: discovering relevant pathways and novel therapeutic strategies. Parkinsons Dis 2011; 2011: 520640.
[http://dx.doi.org/10.4061/2011/520640] [PMID: 21512585]
[254]
Kong Y, Liang X, Liu L, et al. High throughput sequencing identifies microRNAs mediating α-synuclein toxicity by targeting neuroactive-ligand receptor interaction pathway in early stage of Drosophila Parkinson’s disease model. PLoS One 2015; 10(9): e0137432.
[http://dx.doi.org/10.1371/journal.pone.0137432] [PMID: 26361355]
[255]
Strazisar M, Cammaerts S, van der Ven K, et al. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets. Mol Psychiatry 2015; 20(4): 472-81.
[http://dx.doi.org/10.1038/mp.2014.53] [PMID: 24888363]
[256]
Jiang Y, Liu J, Chen L, et al. Serum secreted miR-137-containing exosomes affects oxidative stress of neurons by regulating OXR1 in Parkinson’s disease. Brain Res 2019; 1722: 146331.
[http://dx.doi.org/10.1016/j.brainres.2019.146331] [PMID: 31301273]
[257]
Verma P, Augustine GJ, Ammar MR, Tashiro A, Cohen SM. A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nat Neurosci 2015; 18(3): 379-85.
[http://dx.doi.org/10.1038/nn.3935] [PMID: 25643297]
[258]
Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003; 39(6): 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[259]
Schober A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 2004; 318(1): 215-24.
[http://dx.doi.org/10.1007/s00441-004-0938-y] [PMID: 15503155]
[260]
Betarbet R, Sherer TB, Greenamyre JT. Animal models of Parkinson’s disease. BioEssays 2002; 24(4): 308-18.
[http://dx.doi.org/10.1002/bies.10067] [PMID: 11948617]
[261]
Zhou Y, Lu M, Du RH, et al. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol Neurodegener 2016; 11: 28.
[http://dx.doi.org/10.1186/s13024-016-0094-3] [PMID: 27084336]
[262]
Levy OA, Malagelada C, Greene LA. Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 2009; 14(4): 478-500.
[http://dx.doi.org/10.1007/s10495-008-0309-3] [PMID: 19165601]
[263]
Kaur B, Prakash A. Ceftriaxone attenuates glutamate-mediated neuro-inflammation and restores BDNF in MPTP model of Parkinson’s disease in rats. Pathophysiology 2017; 24(2): 71-9.
[http://dx.doi.org/10.1016/j.pathophys.2017.02.001] [PMID: 28245954]
[264]
Nuber S, Tadros D, Fields J, et al. Environmental neurotoxic challenge of conditional alpha-synuclein transgenic mice predicts a dopaminergic olfactory-striatal interplay in early PD. Acta Neuropathol 2014; 127(4): 477-94.
[http://dx.doi.org/10.1007/s00401-014-1255-5] [PMID: 24509835]
[265]
Li D, Yang H, Ma J, Luo S, Chen S, Gu Q. MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson’s disease by targeting Nlrp3. Hum Cell 2018; 31(2): 106-15.
[http://dx.doi.org/10.1007/s13577-017-0187-5] [PMID: 29274035]
[266]
Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 2001; 21(24): 9549-60.
[http://dx.doi.org/10.1523/JNEUROSCI.21-24-09549.2001] [PMID: 11739566]
[267]
Jiang H, Wu YC, Nakamura M, et al. Parkinson’s disease genetic mutations increase cell susceptibility to stress: mutant alpha-synuclein enhances H2O2 and Sin-1-induced cell death. Neurobiol Aging 2007; 28(11): 1709-17.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.07.017] [PMID: 16978743]
[268]
Junn E, Mouradian MM. Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci Lett 2002; 320(3): 146-50.
[http://dx.doi.org/10.1016/S0304-3940(02)00016-2] [PMID: 11852183]
[269]
Kim J, Inoue K, Ishii J, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science 2007; 317(5842): 1220-4.
[http://dx.doi.org/10.1126/science.1140481] [PMID: 17761882]
[270]
Hwang DY, Ardayfio P, Kang UJ, Semina EV, Kim KS. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 2003; 114(2): 123-31.
[http://dx.doi.org/10.1016/S0169-328X(03)00162-1] [PMID: 12829322]
[271]
Martinat C, Bacci JJ, Leete T, et al. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci USA 2006; 103(8): 2874-9.
[http://dx.doi.org/10.1073/pnas.0511153103] [PMID: 16477036]
[272]
Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 2003; 100(7): 4245-50.
[http://dx.doi.org/10.1073/pnas.0230529100] [PMID: 12655058]
[273]
Ma L, Wei L, Wu F, Hu Z, Liu Z, Yuan W. Advances with microRNAs in Parkinson’s disease research. Drug Des Devel Ther 2013; 7: 1103-13.
[PMID: 24109179]
[274]
Sarkar S, Chigurupati S, Raymick J, et al. Neuroprotective effect of the chemical chaperone, trehalose in a chronic MPTP-induced Parkinson’s disease mouse model. Neurotoxicology 2014; 44: 250-62.
[http://dx.doi.org/10.1016/j.neuro.2014.07.006] [PMID: 25064079]
[275]
Rosas-Hernandez H, Chigurupati S, Raymick J, et al. Identification of altered microRNAs in serum of a mouse model of Parkinson’s disease. Neurosci Lett 2018; 687: 1-9.
[http://dx.doi.org/10.1016/j.neulet.2018.07.022] [PMID: 30025832]
[276]
Wang H, Ye Y, Zhu Z, et al. MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson’s disease by targeting to Bim. Brain Pathol 2016; 26(2): 167-76.
[http://dx.doi.org/10.1111/bpa.12267] [PMID: 25976060]
[277]
Mishima T, Mizuguchi Y, Kawahigashi Y, Takizawa T, Takizawa T. RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS. Brain Res 2007; 1131(1): 37-43.
[http://dx.doi.org/10.1016/j.brainres.2006.11.035] [PMID: 17182009]
[278]
Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease. J Control Release 2016; 235: 291-305.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.005] [PMID: 27269730]
[279]
Sun Y, Li Q, Gui H, et al. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res 2013; 23(11): 1270-83.
[http://dx.doi.org/10.1038/cr.2013.116] [PMID: 23979021]
[280]
Chen L, Gan L, Zhou HY, Liang JH. Protective effects of miR-19b in Parkinson’s disease by inhibiting the activation of iNOS through negative regulation of p38 signaling pathways. Int J Clin Exp 2019; 12(5): 4735-44.
[281]
Xiong R, Wang Z, Zhao Z, et al. MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol Aging 2014; 35(3): 705-14.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.027] [PMID: 24269020]
[282]
Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB. The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 1991; 36(2-3): 219-28.
[http://dx.doi.org/10.1016/0165-0270(91)90048-5] [PMID: 2062117]
[283]
Olsson M, Nikkhah G, Bentlage C, Björklund A. Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 1995; 15(5 Pt 2): 3863-75.
[http://dx.doi.org/10.1523/JNEUROSCI.15-05-03863.1995] [PMID: 7751951]
[284]
Lindner MD, Plone MA, Francis JM, Emerich DF. Validation of a rodent model of Parkinson’s Disease: evidence of a therapeutic window for oral Sinemet. Brain Res Bull 1996; 39(6): 367-72.
[http://dx.doi.org/10.1016/0361-9230(96)00027-5] [PMID: 9138746]
[285]
Rozas G, Guerra MJ, Labandeira-García JL. An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism. Brain Res Brain Res Protoc 1997; 2(1): 75-84.
[http://dx.doi.org/10.1016/S1385-299X(97)00034-2] [PMID: 9438075]
[286]
Cenci MA, Lee CS, Björklund A. L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 1998; 10(8): 2694-706.
[http://dx.doi.org/10.1046/j.1460-9568.1998.00285.x] [PMID: 9767399]
[287]
Lee CS, Cenci MA, Schulzer M, Björklund A. Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain 2000; 123(Pt 7): 1365-79.
[http://dx.doi.org/10.1093/brain/123.7.1365] [PMID: 10869049]
[288]
Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 2000; 39(5): 777-87.
[http://dx.doi.org/10.1016/S0028-3908(00)00005-8] [PMID: 10699444]
[289]
Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 2002; 15(1): 120-32.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01843.x] [PMID: 11860512]
[290]
Wu DM, Wang S, Wen X, et al. Inhibition of microRNA-200a upregulates the expression of striatal dopamine receptor D2 to repress apoptosis of striatum via the cAMP/PKA signaling pathway in rats with Parkinson’s disease. Cell Physiol Biochem 2018; 51(4): 1600-15.
[http://dx.doi.org/10.1159/000495649] [PMID: 30497067]
[291]
Ma X, Zhang H, Yin H, et al. Up-regulated microRNA-218-5p ameliorates the damage of dopaminergic neurons in rats with Parkinson’s disease via suppression of LASP1. Brain Res Bull 2021; 166: 92-101.
[http://dx.doi.org/10.1016/j.brainresbull.2020.10.019] [PMID: 33144090]
[292]
Lungu G, Stoica G, Ambrus A. MicroRNA profiling and the role of microRNA-132 in neurodegeneration using a rat model. Neurosci Lett 2013; 553: 153-8.
[http://dx.doi.org/10.1016/j.neulet.2013.08.001] [PMID: 23973300]
[293]
Sardiello M, Palmieri M, di Ronza A, et al. A gene network regulating lysosomal biogenesis and function. Science 2009; 325(5939): 473-7.
[http://dx.doi.org/10.1126/science.1174447] [PMID: 19556463]
[294]
Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011; 332(6036): 1429-33.
[http://dx.doi.org/10.1126/science.1204592] [PMID: 21617040]
[295]
Peña-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J 2011; 30(16): 3242-58.
[http://dx.doi.org/10.1038/emboj.2011.257] [PMID: 21804531]
[296]
Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31(5): 1095-108.
[http://dx.doi.org/10.1038/emboj.2012.32] [PMID: 22343943]
[297]
Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Björklund A. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci USA 2013; 110(19): E1817-26.
[http://dx.doi.org/10.1073/pnas.1305623110] [PMID: 23610405]
[298]
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson’s disease. Pharmacol Ther 2021; 227: 107873.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107873] [PMID: 33915178]
[299]
Titze-de-Almeida R, Titze-de-Almeida SS. miR-7 replacement therapy in Parkinson’s disease. Curr Gene Ther 2018; 18(3): 143-53.
[http://dx.doi.org/10.2174/1566523218666180430121323] [PMID: 29714132]
[300]
Kumar S, Mapa K, Maiti S. Understanding the effect of locked nucleic acid and 2′-O-methyl modification on the hybridization thermodynamics of a miRNA-mRNA pair in the presence and absence of AfPiwi protein. Biochemistry 2014; 53(10): 1607-15.
[http://dx.doi.org/10.1021/bi401677d] [PMID: 24564489]
[301]
Leggio L, Vivarelli S, L’Episcopo F, et al. MicroRNAs in Parkinson’s disease: From pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci 2017; 18(12): 2698.
[http://dx.doi.org/10.3390/ijms18122698] [PMID: 29236052]
[302]
Pickard MR, Chari DM. Robust uptake of magnetic nanoparticles (MNPs) by central nervous system (CNS) microglia: implications for particle uptake in mixed neural cell populations. Int J Mol Sci 2010; 11(3): 967-81.
[http://dx.doi.org/10.3390/ijms11030967] [PMID: 20479995]
[303]
Titze-de-Almeida SS, Soto-Sánchez C, Fernandez E, Koprich JB, Brotchie JM, Titze-de-Almeida R. The promise and challenges of developing miRNA-based therapeutics for Parkinson’s disease. Cells 2020; 9(4): 841.
[http://dx.doi.org/10.3390/cells9040841] [PMID: 32244357]
[304]
Keeler AM, ElMallah MK, Flotte TR. Gene therapy 2017: Progress and future directions. Clin Transl Sci 2017; 10(4): 242-8.
[http://dx.doi.org/10.1111/cts.12466] [PMID: 28383804]
[305]
Myoung SS, Kasinski AL. Strategies for safe and targeted delivery of microRNA therapeutics. MicroRNAs in Diseases and Disorders 2019; 386-415.
[306]
Yang N. An overview of viral and nonviral delivery systems for microRNA. Int J Pharm Investig 2015; 5(4): 179-81.
[http://dx.doi.org/10.4103/2230-973X.167646] [PMID: 26682187]
[307]
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current status of microRNA-based therapeutic approaches in neurodegenerative disorders. Cells 2020; 9(7): 1698.
[http://dx.doi.org/10.3390/cells9071698] [PMID: 32679881]
[308]
Wen MM. Getting miRNA therapeutics into the target cells for neurodegenerative diseases: A mini-review. Front Mol Neurosci 2016; 9: 129.
[http://dx.doi.org/10.3389/fnmol.2016.00129] [PMID: 27920668]
[309]
Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11: 5381-414.
[http://dx.doi.org/10.2147/IJN.S117210] [PMID: 27799765]
[310]
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016; 6(4): 287-96.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[311]
Yang J, Luo S, Zhang J, et al. Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson’s disease. Neurobiol Dis 2021; 148: 105218.
[http://dx.doi.org/10.1016/j.nbd.2020.105218] [PMID: 33296726]
[312]
Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 2015; 81: 128-41.
[http://dx.doi.org/10.1016/j.addr.2014.05.009] [PMID: 24859533]
[313]
Cosco D, Cilurzo F, Maiuolo J, et al. Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma. Sci Rep 2015; 5: 17579.
[http://dx.doi.org/10.1038/srep17579] [PMID: 26620594]
[314]
Saraiva C, Talhada D, Rai A, et al. MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS One 2018; 13(3): e0193609.
[http://dx.doi.org/10.1371/journal.pone.0193609] [PMID: 29494665]
[315]
Lee HJ, Namgung R, Kim WJ, Kim JI, Park IK. Targeted delivery of microRNA-145 to metastatic breast cancer by peptide conjugated branched PEI gene carrier. Macromol Res 2013; 21(11): 1201-9.
[http://dx.doi.org/10.1007/s13233-013-1161-z]
[316]
Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 2011; 71(15): 5214-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4645] [PMID: 21690566]
[317]
Liu Q, Li RT, Qian HQ, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials 2013; 34(29): 7191-203.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.004] [PMID: 23806972]
[318]
Chiou GY, Cherng JY, Hsu HS, et al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J Control Release 2012; 159(2): 240-50.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.014] [PMID: 22285547]
[319]
Yang YP, Chien Y, Chiou GY, et al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 2012; 33(5): 1462-76.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.071] [PMID: 22098779]
[320]
Höbel S, Aigner A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013; 5(5): 484-501.
[http://dx.doi.org/10.1002/wnan.1228] [PMID: 23720168]
[321]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[322]
Wong SY, Pelet JM, Putnam D. Polymer systems for gene delivery-past, present, and future. Prog Polym Sci 2007; 32(8-9): 799-837.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.007]
[323]
Serrano MC, Pagani R, Vallet-Regí M, et al. In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using L929 mouse fibroblasts. Biomaterials 2004; 25(25): 5603-11.
[http://dx.doi.org/10.1016/j.biomaterials.2004.01.037] [PMID: 15159076]
[324]
Sekhon BS, Kamboj SR. Inorganic nanomedicine-part 1. Nanomedicine 2010; 6(4): 516-22.
[http://dx.doi.org/10.1016/j.nano.2010.04.004] [PMID: 20417313]
[325]
Sekhon BS, Kamboj SR. Inorganic nanomedicine-part 2. Nanomedicine 2010; 6(5): 612-8.
[http://dx.doi.org/10.1016/j.nano.2010.04.003] [PMID: 20417314]
[326]
Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release 2019; 313: 80-95.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.007] [PMID: 31622695]
[327]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[328]
Dey SK, Jaffrey SR. RIBOTACs: Small molecules target RNA for degradation. Cell Chem Biol 2019; 26(8): 1047-9.
[http://dx.doi.org/10.1016/j.chembiol.2019.07.015] [PMID: 31419417]
[329]
Gabr MT, Brogi S. MicroRNA-based multitarget approach for Alzheimer’s disease: Discovery of the first-in-class dual inhibitor of acetylcholinesterase and microRNA-15b biogenesis. J Med Chem 2020; 63(17): 9695-704.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00756] [PMID: 32787143]
[330]
Abdelrahman SA, Gabr MT. Emerging small-molecule therapeutic approaches for Alzheimer’s disease and Parkinson’s disease based on targeting microRNAs. Neural Regen Res 2022; 17(2): 336-7.
[http://dx.doi.org/10.4103/1673-5374.317977] [PMID: 34269206]
[331]
Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007; 68(5): 384-6.
[http://dx.doi.org/10.1212/01.wnl.0000247740.47667.03] [PMID: 17082464]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy