Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Medicinal Chemist’s Perspective Towards Structure Activity Relationship of Heterocycle Based Anticancer Agents

Author(s): Bhupender Nehra, Bijo Mathew and Pooja A. Chawla*

Volume 22, Issue 6, 2022

Published on: 11 January, 2022

Page: [493 - 528] Pages: 36

DOI: 10.2174/1568026622666220111142617

Price: $65

conference banner
Abstract

Aim: This paper aims to describe the structure activity relationship of heterocyclic derivatives with multi-targeted anticancer activity.

Objectives: With the following goals in mind, this review tries to describe significant recent advances in the medicinal chemistry of heterocycle-based compounds: (1) To shed light on recent literature focused on heterocyclic derivatives' anticancer potential; (2) To discuss recent advances in the medicinal chemistry of heterocyclic derivatives, as well as their biological implications for cancer eradication; (3) To summarise the comprehensive correlation of structure activity relationship (SAR) with pharmacological outcomes in cancer therapy.

Background: Cancer remains one of the major serious health issues in the world today. Cancer is a complex disease in which improperly altered cells proliferate at an uncontrolled, rapid, and severe rate. Variables such as poor dietary habits, high stress, age, and smoking, can all contribute to the development of cancer. Cancer can affect almost any organ or tissue, although the brain, breast, liver, and colon are the most frequently affected organs. For several years, surgical operations and irradiation have been in use along with chemotherapy as a primary treatment of cancer, but still, effective treatment of cancer remains a huge challenge. Chemotherapy is now considered one of the most effective strategies to eradicate cancer, although it has been shown to have a number of cytotoxic and unfavourable effects on normal cells. Despite all of these cancer treatments, there are several other targets for anticancer drugs. Cancer can be effectively eradicated by focusing on these targets, including cell-specific and receptor-specific targets such as tyrosine kinase receptors (TKIs). Heterocyclic scaffolds also have a variety of applications in drug development and are a common moiety in the pharmaceutical, agrochemical, and textile industries.

Methods: The association between structural activity relationship data of many powerful compounds and their anticancer potential in vitro and in vivo has been studied. SAR of powerful heterocyclic compounds can also be generated using molecular docking simulations, as reported in literature.

Conclusion: Heterocycles have a wide range of applications, from natural compounds to synthesised derivatives with powerful anticancer properties. To avoid cytotoxicity or unfavourable effects on normal mammalian cells due to a lack of selectivity towards the target site, as well as to reduce the occurrence of drug resistance, safer anticancer lead compounds with higher potency and lower cytotoxicity are needed. This review emphasizes on design and development of heterocyclic lead compounds with promising anticancer potential.

Keywords: Heterocycles, Anticancer, SAR, Cytotoxicity, Docking studies, Mammalian cells.

« Previous
Graphical Abstract
[1]
Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; Hamadeh, R.R.; Moore, A.; Werdecker, A.; Gessner, B.D.; Te Ao, B.; McMahon, B.; Karimkhani, C.; Yu, C.; Cooke, G.S.; Schwebel, D.C.; Carpenter, D.O.; Pereira, D.M.; Nash, D.; Kazi, D.S.; De Leo, D.; Plass, D.; Ukwaja, K.N.; Thurston, G.D.; Yun Jin, K.; Simard, E.P.; Mills, E.; Park, E.K.; Catalá-López, F.; deVeber, G.; Gotay, C.; Khan, G.; Hosgood, H.D., III; Santos, I.S.; Leasher, J.L.; Singh, J.; Leigh, J.; Jonas, J.B.; Sanabria, J.; Beardsley, J.; Jacobsen, K.H.; Takahashi, K.; Franklin, R.C.; Ronfani, L.; Montico, M.; Naldi, L.; Tonelli, M.; Geleijnse, J.; Petzold, M.; Shrime, M.G.; Younis, M.; Yonemoto, N.; Breitborde, N.; Yip, P.; Pourmalek, F.; Lotufo, P.A.; Esteghamati, A.; Hankey, G.J.; Ali, R.; Lunevicius, R.; Malekzadeh, R.; Dellavalle, R.; Weintraub, R.; Lucas, R.; Hay, R.; Rojas-Rueda, D.; Westerman, R.; Sepanlou, S.G.; Nolte, S.; Patten, S.; Weichenthal, S.; Abera, S.F.; Fereshtehnejad, S.M.; Shiue, I.; Driscoll, T.; Vasankari, T.; Alsharif, U.; Rahimi-Movaghar, V.; Vlassov, V.V.; Marcenes, W.S.; Mekonnen, W.; Melaku, Y.A.; Yano, Y.; Artaman, A.; Campos, I.; MacLachlan, J.; Mueller, U.; Kim, D.; Trillini, M.; Eshrati, B.; Williams, H.C.; Shibuya, K.; Dandona, R.; Murthy, K.; Cowie, B.; Amare, A.T.; Antonio, C.A.; Castañeda-Orjuela, C.; van Gool, C.H.; Violante, F.; Oh, I.H.; Deribe, K.; Soreide, K.; Knibbs, L.; Kereselidze, M.; Green, M.; Cardenas, R.; Roy, N.; Tillmann, T.; Li, Y.; Krueger, H.; Monasta, L.; Dey, S.; Sheikhbahaei, S.; Hafezi-Nejad, N.; Kumar, G.A.; Sreeramareddy, C.T.; Dandona, L.; Wang, H.; Vollset, S.E.; Mokdad, A.; Salomon, J.A.; Lozano, R.; Vos, T.; Forouzanfar, M.; Lopez, A.; Murray, C.; Naghavi, M. Global Burden of Disease Cancer Collaboration. The global burden of cancer 2013. JAMA Oncol., 2015, 1(4), 505-527.
[http://dx.doi.org/10.1001/jamaoncol.2015.0735] [PMID: 26181261]
[2]
Roy, P.; Saikia, B. Cancer and cure: a critical analysis. Indian J. Cancer, 2016, 53, 441-442.
[3]
Cooper, G.M. The Development and Causes of Cancer.The Cell: A Molecular Approach, 2; Sunderland, MA: Sinauer Associates, 2000. Available form: https://www.ncbi.nlm.nih.gov/books/NBK 9963/
[4]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[5]
Waris, G.; Ahsan, H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinog., 2006, 5, 14.
[http://dx.doi.org/10.1186/1477-3163-5-14] [PMID: 16689993]
[6]
Kumar Singh, P.; Silakari, O. In silico guided development of imine-based inhibitors for resistance-deriving kinases. J. Biomol. Struct. Dyn., 2019, 37(10), 2593-2599.
[http://dx.doi.org/10.1080/07391102.2018.1491893] [PMID: 30047303]
[7]
Singh, P.K.; Chaudhari, D.; Jain, S.; Silakari, O. Structure based designing of triazolopyrimidone-based reversible inhibitors for kinases involved in NSCLC. Bioorg. Med. Chem. Lett., 2019, 29(13), 1565-1571.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.004] [PMID: 31078412]
[8]
Lemmon, M.A.; Schlessinger, J.; Ferguson, K.M. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol., 2014, 6(4), a020768.
[http://dx.doi.org/10.1101/cshperspect.a020768] [PMID: 24691965]
[9]
Guan, H.; Du, Y.; Ning, Y.; Cao, X. A brief perspective of drug resistance toward EGFR inhibitors: the crystal structures of EGFRs and their variants. Future Med. Chem., 2017, 9(7), 693-704.
[http://dx.doi.org/10.4155/fmc-2016-0222] [PMID: 28504890]
[10]
Shan, Y.; Eastwood, M.P.; Zhang, X.; Kim, E.T.; Arkhipov, A.; Dror, R.O.; Jumper, J.; Kuriyan, J.; Shaw, D.E. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell, 2012, 149(4), 860-870.
[http://dx.doi.org/10.1016/j.cell.2012.02.063] [PMID: 22579287]
[11]
Crivelli, J.J.; Földes, J.; Kim, P.S.; Wares, J.R. A mathematical model for cell cycle-specific cancer virotherapy. J. Biol. Dyn., 2012, 6(Suppl. 1), 104-120.
[http://dx.doi.org/10.1080/17513758.2011.613486] [PMID: 22873678]
[12]
Panjwani, B.; Singh, V.; Rani, A.; Mohan, V. Optimum multi-drug regime for compartment model of tumour: cell-cycle-specific dynamics in the presence of resistance. J. Pharmacokinet. Pharmacodyn., 2021, 48(4), 543-562.
[http://dx.doi.org/10.1007/s10928-021-09749-w] [PMID: 33751365]
[13]
Yano, S.; Takehara, K.; Tazawa, H.; Kishimoto, H.; Urata, Y.; Kagawa, S.; Fujiwara, T.; Hoffman, R.M. Cell-cycle-dependent drug-resistant quiescent cancer cells induce tumor angiogenesis after chemotherapy as visualized by real-time FUCCI imaging. Cell Cycle, 2017, 16(5), 406-414.
[http://dx.doi.org/10.1080/15384101.2016.1220461] [PMID: 27715464]
[14]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[15]
Arafa, E.; Wani, A. Abstract B41: Thymoquinone induces-cell cycle non-specific-cell death in cisplatin-resistant ovarian cancer cell through up-regulation of PTEN expression. Clin. Cancer Res., 2012, 18, B41-B41.
[http://dx.doi.org/10.1158/1078-0432.MECHRES-B41]
[16]
Begna, K.; Abdelatif, A.; Schwager, S.; Hanson, C.; Pardanani, A.; Tefferi, A. Busulfan for the treatment of myeloproliferative neoplasms: the Mayo Clinic experience. Blood Cancer J., 2016, 6, e427-e427.
[http://dx.doi.org/10.1038/bcj.2016.34] [PMID: 27232929]
[17]
Wells, A. EGF receptor. Int. J. Biochem. Cell Biol., 1999, 31(6), 637-643.
[http://dx.doi.org/10.1016/S1357-2725(99)00015-1] [PMID: 10404636]
[18]
Nasser, A.A.; Eissa, I.H.; Oun, M.R.; El-Zahabi, M.A.; Taghour, M.S.; Belal, A.; Saleh, A.M.; Mehany, A.B.M.; Luesch, H.; Mostafa, A.E.; Afifi, W.M.; Rocca, J.R.; Mahdy, H.A. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFRWT and EGFRT790M. Org. Biomol. Chem., 2020, 18(38), 7608-7634.
[http://dx.doi.org/10.1039/D0OB01557A] [PMID: 32959865]
[19]
Traxler, P.; Furet, P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol. Ther., 1999, 82(2-3), 195-206.
[http://dx.doi.org/10.1016/S0163-7258(98)00044-8] [PMID: 10454197]
[20]
Olayioye, M.A.; Neve, R.M.; Lane, H.A.; Hynes, N.E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J., 2000, 19(13), 3159-3167.
[http://dx.doi.org/10.1093/emboj/19.13.3159] [PMID: 10880430]
[21]
Sedlacek, H.H. Kinase inhibitors in cancer therapy: a look ahead. Drugs, 2000, 59(3), 435-476.
[http://dx.doi.org/10.2165/00003495-200059030-00004] [PMID: 10776829]
[22]
Schwartz, P.A.; Murray, B.W. Protein kinase biochemistry and drug discovery. Bioorg. Chem., 2011, 39(5-6), 192-210.
[http://dx.doi.org/10.1016/j.bioorg.2011.07.004] [PMID: 21872901]
[23]
Liu, Y.; Zhang, Y.; Feng, G.; Niu, Q.; Xu, S.; Yan, Y.; Li, S.; Jing, M. Comparison of effectiveness and adverse effects of gefitinib, erlotinib and icotinib among patients with non-small cell lung cancer: A network meta-analysis. Exp. Ther. Med., 2017, 14(5), 4017-4032.
[http://dx.doi.org/10.3892/etm.2017.5094] [PMID: 29104622]
[24]
Scaltriti, M.; Baselga, J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin. Cancer Res., 2006, 12(18), 5268-5272.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1554] [PMID: 17000658]
[25]
Bhatia, P.; Sharma, V.; Alam, O.; Manaithiya, A.; Alam, P. Kahksha.; Alam, M.T.; Imran, M. Novel quinazoline-based EGFR kinase inhibitors: a review focussing on SAR and molecular docking studies (2015-2019). Eur. J. Med. Chem., 2020, 204, 112640.
[http://dx.doi.org/10.1016/j.ejmech.2020.112640] [PMID: 32739648]
[26]
Liang, S.K.; Hsieh, M.S.; Lee, M.R.; Keng, L.T.; Ko, J.C.; Shih, J.Y. Real-world experience of afatinib as a first-line therapy for advanced EGFR mutation-positive lung adenocarcinoma. Oncotarget, 2017, 8(52), 90430-90443.
[http://dx.doi.org/10.18632/oncotarget.19563] [PMID: 29163842]
[27]
Kim, D.W.; Garon, E.B.; Jatoi, A.; Keefe, D.M.; Lacouture, M.E.; Sonis, S.; Gernhardt, D.; Wang, T.; Giri, N.; Doherty, J.P.; Nadanaciva, S.; O’Connell, J.; Sbar, E.; Cho, B.C. Impact of a planned dose interruption of dacomitinib in the treatment of advanced non-small-cell lung cancer (ARCHER 1042). Lung Cancer, 2017, 106, 76-82.
[http://dx.doi.org/10.1016/j.lungcan.2017.01.021] [PMID: 28285698]
[28]
Carlisle, J.W.; Ramalingam, S.S. Role of osimertinib in the treatment of EGFR-mutation positive non-small-cell lung cancer. Future Oncol., 2019, 15(8), 805-816.
[http://dx.doi.org/10.2217/fon-2018-0626] [PMID: 30657347]
[29]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[30]
Gupta, P.; Gupta, J.K. Synthesis of bioactive imidazoles: a review. Chem. Sci. J., 2015, 6.
[http://dx.doi.org/10.4172/2150-3494.100091]
[31]
Saini, M.S.; Kumar, A.; Dwivedi, J.; Singh, R. A review biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res., 2013, 4, 66-77.
[32]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: a review. Int. J. Pharm. Sci. Res., 2012, 3, 2947-2954.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.3(9).2947-54]
[33]
Archna, S.; Pathania, S.; Chawla, P.A. Thiophene-based derivatives as anticancer agents: An overview on decade’s work. Bioorg. Chem., 2020, 101, 104026.
[http://dx.doi.org/10.1016/j.bioorg.2020.104026] [PMID: 32599369]
[34]
Dipankar, B.; Hirakmoy, C.; Asish, B.; Abhijit, C. 2 - Pyrazoline: A pharmacologically active moiety. Int. Res. J. Pharm. Appl. Sci., 2011, 1, 68-80.
[35]
Verma, A.; Joshi, S.; Singh, D. Imidazole: Having versatile biological activities. J. Chem., 2013, 2013, 329412.
[http://dx.doi.org/10.1155/2013/329412]
[36]
Chopra, P.; Sahu, J. Biological significance of imidazole-based analogues in new drug development. Curr. Drug Discov. Technol., 2019, 16.
[http://dx.doi.org/10.2174/1570163816666190320123340] [PMID: 30894111]
[37]
Shaaban, M.R.; Mayhoub, A.S.; Farag, A.M. Recent advances in the therapeutic applications of pyrazolines. Expert Opin. Ther. Pat., 2012, 22, 253.
[http://dx.doi.org/10.1517/13543776.2012.667403]
[38]
Ganesh, A. Biological activities of some pyrazoline derivatives. Int. J. Pharma Bio Sci., 2013, 4, 727-733.
[39]
Wang, H.H.; Qiu, K.M.; Cui, H.E.; Yang, Y.S.; Yin-Luo, M.; Xing, M.; Qiu, X.Y.; Bai, L.F.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorg. Med. Chem., 2013, 21(2), 448-455.
[http://dx.doi.org/10.1016/j.bmc.2012.11.020] [PMID: 23245802]
[40]
Awadallah, F.M.; Piazza, G.A.; Gary, B.D.; Keeton, A.B.; Canzoneri, J.C. Synthesis of some dihydropyrimidine-based compounds bearing pyrazoline moiety and evaluation of their antiproliferative activity. Eur. J. Med. Chem., 2013, 70, 273-279.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.003] [PMID: 24161704]
[41]
Amin, K.M.; Eissa, A.A.M.; Abou-Seri, S.M.; Awadallah, F.M.; Hassan, G.S. Synthesis and biological evaluation of novel coumarin-pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur. J. Med. Chem., 2013, 60, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.004] [PMID: 23291120]
[42]
Özdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z.A.; Revial, G.; Güven, K. Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 403-409.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.001] [PMID: 17125888]
[43]
Karthikeyan, M.S.; Holla, B.S.; Kumari, N.S. Synthesis and antimicrobial studies on novel chloro-fluorine containing hydroxy pyrazolines. Eur. J. Med. Chem., 2007, 42(1), 30-36.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.011] [PMID: 17007964]
[44]
Özdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z.A.; Revial, G.; Demirci, F.; Işcan, G. Preparation of some pyrazoline derivatives and evaluation of their antifungal activities. J. Enzyme Inhib. Med. Chem., 2010, 25(4), 565-571.
[http://dx.doi.org/10.3109/14756360903373368] [PMID: 20205628]
[45]
Hassan, S.Y. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules, 2013, 18(3), 2683-2711.
[http://dx.doi.org/10.3390/molecules18032683] [PMID: 23449067]
[46]
Ali, M.A.; Shaharyar, M.; Siddiqui, A.A. Synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(2), 268-275.
[http://dx.doi.org/10.1016/j.ejmech.2006.08.004] [PMID: 17007966]
[47]
Joshi, S.D.; Dixit, S.R.; Kirankumar, M.N.; Aminabhavi, T.M.; Raju, K.V.S.N.; Narayan, R.; Lherbet, C.; Yang, K.S. Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Eur. J. Med. Chem., 2016, 107, 133-152.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.047] [PMID: 26580979]
[48]
Fioravanti, R.; Bolasco, A.; Manna, F.; Rossi, F.; Orallo, F.; Ortuso, F.; Alcaro, S.; Cirilli, R. Synthesis and biological evaluation of N-substituted-3,5-diphenyl-2-pyrazoline derivatives as cyclooxygenase (COX-2) inhibitors. Eur. J. Med. Chem., 2010, 45(12), 6135-6138.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.005] [PMID: 20974503]
[49]
Chandra, T.; Garg, N.; Lata, S.; Saxena, K.K.; Kumar, A. Synthesis of substituted acridinyl pyrazoline derivatives and their evaluation for anti-inflammatory activity. Eur. J. Med. Chem., 2010, 45(5), 1772-1776.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.009] [PMID: 20149499]
[50]
Ozdemir, Z.; Kandilci, H.B.; Gumusel, B.; Calis, U.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-thienyl)pyrazoline derivatives. Arch. Pharm. (Weinheim), 2008, 341(11), 701-707.
[http://dx.doi.org/10.1002/ardp.200800068] [PMID: 18816586]
[51]
Maddheshiya, A.; Chawla, P. Synthesis and evaluation of 2-(substituted phenyl)-4, 5-diphenyl-1H-imidazole derivatives as anticonvulsant agents. Indian J. Heterocycl. Chem., 2018, 28, 423-432.
[52]
Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2¢'-hydroxy naphthalen-1¢'-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett., 2005, 15(22), 5030-5034.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.040] [PMID: 16168645]
[53]
Kaplancikli, Z.A.; Özdemir, A.; Turan-Zitouni, G.; Altintop, M.D.; Can, Ö.D. New pyrazoline derivatives and their antidepressant activity. Eur. J. Med. Chem., 2010, 45(9), 4383-4387.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.011] [PMID: 20587366]
[54]
Kaplancikli, Z.A.; Turan-Zitouni, G.; Özdemir, A.; Can, O.; Chevallet, P. Synthesis and antinociceptive activities of some pyrazoline derivatives. Eur. J. Med. Chem., 2009, 44(6), 2606-2610.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.002] [PMID: 18922604]
[55]
Özkay, Ü.D.; Can, Ö.D.; Kaplancikli, Z.A. Antinociceptive activities of some triazole and pyrazoline moieties-bearing compounds. Med. Chem. Res., 2011, 21, 1056-1061.
[http://dx.doi.org/10.1007/s00044-011-9619-z]
[56]
Acharya, B.N.; Saraswat, D.; Tiwari, M.; Shrivastava, A.K.; Ghorpade, R.; Bapna, S.; Kaushik, M.P. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. Eur. J. Med. Chem., 2010, 45(2), 430-438.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.023] [PMID: 19926176]
[57]
Wanare, G.; Aher, R.; Kawathekar, N.; Ranjan, R.; Kaushik, N.K.; Sahal, D. Synthesis of novel alpha-pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(15), 4675-4678.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.069] [PMID: 20576433]
[58]
Abid, M.; Bhat, A.R.; Athar, F.; Azam, A. Synthesis, spectral studies and antiamoebic activity of new 1-N-substituted thiocarbamoyl-3-phenyl-2-pyrazolines. Eur. J. Med. Chem., 2009, 44(1), 417-425.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.032] [PMID: 18068873]
[59]
Bhat, A.R.; Athar, F.; Azam, A. Bis-pyrazolines: Synthesis, characterization and antiamoebic activity as inhibitors of growth of Entamoeba histolytica. Eur. J. Med. Chem., 2009, 44(1), 426-431.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.005] [PMID: 18187238]
[60]
Gökhan-Kelekçi, N.; Koyunoğlu, S.; Yabanoğlu, S.; Yelekçi, K.; Özgen, O.; Uçar, G.; Erol, K.; Kendi, E.; Yeşilada, A. New pyrazoline bearing 4(3H)-quinazolinone inhibitors of monoamine oxidase: synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity. Bioorg. Med. Chem., 2009, 17(2), 675-689.
[http://dx.doi.org/10.1016/j.bmc.2008.11.068] [PMID: 19091581]
[61]
Karuppasamy, M.; Mahapatra, M.; Yabanoglu, S.; Ucar, G.; Sinha, B.N.; Basu, A.; Mishra, N.; Sharon, A.; Kulandaivelu, U.; Jayaprakash, V. Development of selective and reversible pyrazoline based MAO-A inhibitors: Synthesis, biological evaluation and docking studies. Bioorg. Med. Chem., 2010, 18(5), 1875-1881.
[http://dx.doi.org/10.1016/j.bmc.2010.01.043] [PMID: 20149663]
[62]
Ovais, S.; Pushpalatha, H.; Reddy, G.B.; Rathore, P.; Bashir, R.; Yaseen, S.; Dheyaa, A.; Yaseen, R.; Tanwar, O.; Akthar, M.; Samim, M.; Javed, K. Synthesis and biological evaluation of some new pyrazoline substituted benzenesulfonylurea/thiourea derivatives as anti-hyperglycaemic agents and aldose reductase inhibitors. Eur. J. Med. Chem., 2014, 80, 209-217.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.046] [PMID: 24780598]
[63]
Altintop, M.D.; Özdemir, A.; Kaplancikli, Z.A.; Turan-Zitouni, G.; Temel, H.E.; Çiftçi, G.A. Synthesis and biological evaluation of some pyrazoline derivatives bearing a dithiocarbamate moiety as new cholinesterase inhibitors. Arch. Pharm. (Weinheim), 2013, 346(3), 189-199.
[http://dx.doi.org/10.1002/ardp.201200384] [PMID: 23389781]
[64]
Mishra, N.; Sasmal, D. Additional acetyl cholinesterase inhibitory property of diaryl pyrazoline derivatives. Bioorg. Med. Chem. Lett., 2013, 23(3), 702-705.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.100] [PMID: 23276831]
[65]
Lv, P.C.; Li, D.D.; Li, Q.S.; Lu, X.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(18), 5374-5377.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.010] [PMID: 21802290]
[66]
Lange, J.H.M.; van Stuivenberg, H.H.; Veerman, W.; Wals, H.C.; Stork, B.; Coolen, H.K.A.C.; McCreary, A.C.; Adolfs, T.J.P.; Kruse, C.G. Novel 3,4-diarylpyrazolines as potent cannabinoid CB1 receptor antagonists with lower lipophilicity. Bioorg. Med. Chem. Lett., 2005, 15(21), 4794-4798.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.054] [PMID: 16140010]
[67]
Lange, J.H.M.; Attali, A.; van der Neut, M.A.W.; Wals, H.C.; Mulder, A.; Zilaout, H.; Duursma, A.; van Aken, H.H.M.; van Vliet, B.J. Two distinct classes of novel pyrazolinecarboxamides as potent cannabinoid CB1 receptor agonists. Bioorg. Med. Chem. Lett., 2010, 20(17), 4992-4998.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.056] [PMID: 20688519]
[68]
Khloya, P.; Ceruso, M.; Ram, S.; Supuran, C.T.; Sharma, P.K. Sulfonamide bearing pyrazolylpyrazolines as potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII. Bioorg. Med. Chem. Lett., 2015, 25(16), 3208-3212.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.096] [PMID: 26105196]
[69]
Çelik, G.; Arslan, T.; Şentürk, M.; Ekinci, D. Synthesis and characterization of some new pyrazolines and their inhibitory potencies against carbonic anhydrases. Arch. Pharm. (Weinheim), 2020, 353(3), e1900292.
[http://dx.doi.org/10.1002/ardp.201900292] [PMID: 31922298]
[70]
Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-containing heterocycles as anticancer agents: An overview. Anticancer. Agents Med. Chem., 2020, 20(18), 2150-2168.
[http://dx.doi.org/10.2174/1871520620666200705214917] [PMID: 32628593]
[71]
Kumar, D.; Jain, S.K. A comprehensive review of n-heterocycles as cytotoxic agents. Curr. Med. Chem., 2016, 23(38), 4338-4394.
[http://dx.doi.org/10.2174/0929867323666160809093930] [PMID: 27516198]
[72]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[73]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[74]
Kim, B.S.; Shin, S.Y.; Ahn, S.; Koh, D.; Lee, Y.H.; Lim, Y. Biological evaluation of 2-pyrazolinyl-1-carbothioamide derivatives against HCT116 human colorectal cancer cell lines and elucidation on QSAR and molecular binding modes. Bioorg. Med. Chem., 2017, 25(20), 5423-5432.
[http://dx.doi.org/10.1016/j.bmc.2017.07.062] [PMID: 28811071]
[75]
Moreno, L.M.; Quiroga, J.; Abonia, R.; Ramírez-Prada, J.; Insuasty, B. Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents. Molecules, 2018, 23(8), 1956.
[http://dx.doi.org/10.3390/molecules23081956] [PMID: 30082588]
[76]
Ahmed, N.M.; Youns, M.; Soltan, M.K.; Said, A.M. Design, synthesis, molecular modelling, and biological evaluation of novel substituted pyrimidine derivatives as potential anticancer agents for hepatocellular carcinoma. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1110-1120.
[http://dx.doi.org/10.1080/14756366.2019.1612889] [PMID: 31117890]
[77]
Stefanes, N.M.; Toigo, J.; Maioral, M.F.; Jacques, A.V.; Chiaradia-Delatorre, L.D.; Perondi, D.M.; Ribeiro, A.A.B.; Bigolin, Á.; Pirath, I.M.S.; Duarte, B.F.; Nunes, R.J.; Santos-Silva, M.C. Synthesis of novel pyrazoline derivatives and the evaluation of death mechanisms involved in their antileukemic activity. Bioorg. Med. Chem., 2019, 27(2), 375-382.
[http://dx.doi.org/10.1016/j.bmc.2018.12.012] [PMID: 30579801]
[78]
Amr, A.E.E.; El-Naggar, M.; Al-Omar, M.A.; Elsayed, E.A.; Abdalla, M.M. In vitro and in vivo anti-breast cancer activities of some synthesized pyrazolinyl-estran-17-one candidates. Molecules, 2018, 23(7), 1572.
[http://dx.doi.org/10.3390/molecules23071572] [PMID: 29958453]
[79]
Abd-Rabou, A.A.; Abdel-Wahab, B.F.; Bekheit, M.S. Synthesis, molecular docking, and evaluation of novel bivalent pyrazolinyl-1,2,3-triazoles as potential VEGFR TK inhibitors and anti-cancer agents. Chem. Pap., 2018, 72, 2225-2237.
[http://dx.doi.org/10.1007/s11696-018-0451-5]
[80]
Chen, S.; Wu, H.A.; Li, J.; Pei, J.; Zhao, L. Synthesis and biological evaluation of hydrazone and pyrazoline derivatives derived from androstenedione. Res. Chem. Intermed., 2018, 44, 7029-7046.
[http://dx.doi.org/10.1007/s11164-018-3539-1]
[81]
Chen, K.; Zhang, Y.L.; Fan, J.; Ma, X.; Qin, Y.J.; Zhu, H.L. Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evaluation. Eur. J. Med. Chem., 2018, 156, 722-737.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.044] [PMID: 30041136]
[82]
Li, H.L.; Su, M.M.; Xu, Y.J.; Xu, C.; Yang, Y.S.; Zhu, H.L. Design and biological evaluation of novel triaryl pyrazoline derivatives with dioxane moiety for selective BRAFV600E inhibition. Eur. J. Med. Chem., 2018, 155, 725-735.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.043] [PMID: 29940463]
[83]
Xu, W.; Pan, Y.; Wang, H.; Li, H.; Peng, Q.; Wei, D.; Chen, C.; Zheng, J. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents in HepG-2 cell line. Molecules, 2017, 22(3), 467.
[http://dx.doi.org/10.3390/molecules22030467] [PMID: 28300751]
[84]
Wang, H.; Zheng, J.; Xu, W.; Chen, C.; Wei, D.; Ni, W.; Pan, Y. A new series of cytotoxic pyrazoline derivatives as potential anticancer agents that induce cell cycle arrest and apoptosis. Molecules, 2017, 22(10), 1635.
[http://dx.doi.org/10.3390/molecules22101635] [PMID: 28961210]
[85]
Gürdere, M.B.; Gümüş, O.; Yaglioglu, A.S.; Budak, Y.; Ceylan, M. Synthesis and anticancer activities of 1,4-phenylene-bis-N-acetyl- and N-phenylpyrazoline derivatives. Res. Chem. Intermed., 2016, 43, 1277-1289.
[http://dx.doi.org/10.1007/s11164-016-2697-2]
[86]
Ahmad, P.; Woo, H.; Jun, K.Y.; Kadi, A.A.; Abdel-Aziz, H.A.; Kwon, Y.; Rahman, A.F.M.M. Design, synthesis, topoisomerase I & II inhibitory activity, antiproliferative activity, and structure-activity relationship study of pyrazoline derivatives: An ATP-competitive human topoisomerase IIα catalytic inhibitor. Bioorg. Med. Chem., 2016, 24(8), 1898-1908.
[http://dx.doi.org/10.1016/j.bmc.2016.03.017] [PMID: 26988802]
[87]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[88]
Qin, Y.J.; Li, Y.J.; Jiang, A.Q.; Yang, M.R.; Zhu, Q.Z.; Dong, H.; Zhu, H.L. Design, synthesis and biological evaluation of novel pyrazoline-containing derivatives as potential tubulin assembling inhibitors. Eur. J. Med. Chem., 2015, 94, 447-457.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.058] [PMID: 25828827]
[89]
Hussaini, S.M.A.; Yedla, P.; Babu, K.S.; Shaik, T.B.; Chityal, G.K.; Kamal, A. Synthesis and biological evaluation of 1,2,3-triazole tethered pyrazoline and chalcone derivatives. Chem. Biol. Drug Des., 2016, 88(1), 97-109.
[http://dx.doi.org/10.1111/cbdd.12738] [PMID: 26854643]
[90]
Karabacak, M.; Altıntop, M.D.; İbrahim Çiftçi, H.; Koga, R.; Otsuka, M.; Fujita, M.; Özdemir, A. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents. Molecules, 2015, 20(10), 19066-19084.
[http://dx.doi.org/10.3390/molecules201019066] [PMID: 26492233]
[91]
Hu, Y.; Li, N.; Zhang, J.; Wang, Y.; Chen, L.; Sun, J. Artemisinin-indole and artemisinin-imidazole hybrids: Synthesis, cytotoxic evaluation and reversal effects on multidrug resistance in MCF-7/ADR cells. Bioorg. Med. Chem. Lett., 2019, 29(9), 1138-1142.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.021] [PMID: 30837097]
[92]
Xiao, Z.; Lei, F.; Chen, X.; Wang, X.; Cao, L.; Ye, K.; Zhu, W.; Xu, S. Design, synthesis, and antitumor evaluation of quinoline-imidazole derivatives. Arch. Pharm. (Weinheim), 2018, 351(6), e1700407.
[http://dx.doi.org/10.1002/ardp.201700407] [PMID: 29732607]
[93]
Guda, R.; Kumar, G.; Korra, R.; Balaji, S.; Dayakar, G.; Palabindela, R.; Myadaraveni, P.; Yellu, N.R.; Kasula, M. EGFR, HER2 target based molecular docking analysis, in vitro screening of 2, 4, 5-trisubstituted imidazole derivatives as potential anti-oxidant and cytotoxic agents. J. Photochem. Photobiol. B, 2017, 176, 69-80.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.09.010] [PMID: 28964888]
[94]
Zhang, M.; Ding, Y.; Qin, H. One-pot synthesis of substituted pyrrole-imidazole derivatives with anticancer activity. Mol. Divers., 2020, 24(4), 1179-1184.
[http://dx.doi.org/10.1007/s11030-019-09920-z] [PMID: 31494841]
[95]
Mantu, D.; Antoci, V.; Moldoveanu, C.; Zbancioc, G.; Mangalagiu, I.I. Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity. J. Enzyme Inhib. Med. Chem., 2016, 31(sup2), 96-103.
[http://dx.doi.org/10.1080/14756366.2016.1190711] [PMID: 27250919]
[96]
Silva-Ortiz, A.V.; Bratoeff, E.; Ramírez-Apan, T.; Heuze, Y.; Soriano, J.; Moreno, I.; Bravo, M.; Bautista, L.; Cabeza, M. Synthesis of new derivatives of 21-imidazolyl-16-dehydropregneno-lone as inhibitors of 5α-reductase 2 and with cytotoxic activity in cancer cells. Bioorg. Med. Chem., 2017, 25(5), 1600-1607.
[http://dx.doi.org/10.1016/j.bmc.2017.01.018] [PMID: 28174065]
[97]
Kalra, S.; Joshi, G.; Kumar, M.; Arora, S.; Kaur, H.; Singh, S.; Munshi, A.; Kumar, R. Anticancer potential of some imidazole and fused imidazole derivatives: Exploring the mechanism via epidermal growth factor receptor (EGFR) inhibition. RSC Med. Chem., 2020, 11(8), 923-939.
[http://dx.doi.org/10.1039/D0MD00146E] [PMID: 33479688]
[98]
Tao, X.X.; Duan, Y.T.; Chen, L.W.; Tang, D.J.; Yang, M.R.; Wang, P.F.; Xu, C.; Zhu, H.L. Design, synthesis and biological evaluation of pyrazolyl-nitroimidazole derivatives as potential EGFR/HER-2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(2), 677-683.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.040] [PMID: 26652482]
[99]
Gaber, A.A.; Bayoumi, A.H.; El-Morsy, A.M.; Sherbiny, F.F.; Mehany, A.B.M.; Eissa, I.H. Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFRWT and EGFRT790M inhibitors and apoptosis inducers. Bioorg. Chem., 2018, 80, 375-395.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.017] [PMID: 29986185]
[100]
Zhang, D.; Yan, Y.; Jin, G.; Liu, B.; Ma, X.; Han, D.; Jia, X. Synthesis and antitumor evaluation of novel 4-anilino-7,8-dihydropyrido[4,3-d]pyrimidine-6(5H)-carboxylate derivatives as potential EGFR inhibitors. Arch. Pharm. (Weinheim), 2018, 351(9), e1800110.
[http://dx.doi.org/10.1002/ardp.201800110] [PMID: 30048007]
[101]
Xie, Z.; Wu, K.; Wang, Y.; Pan, Y.; Chen, B.; Cheng, D.; Pan, S.; Guo, T.; Du, X.; Fang, L.; Wang, X.; Ye, F. Discovery of 4,6-pyrimidinediamine derivatives as novel dual EGFR/FGFR inhibitors aimed EGFR/FGFR1-positive NSCLC. Eur. J. Med. Chem., 2020, 187, 111943.
[http://dx.doi.org/10.1016/j.ejmech.2019.111943] [PMID: 31846829]
[102]
Jing, T.; Miao, X.; Jiang, F.; Guo, M.; Xing, L.; Zhang, J.; Zuo, D.; Lei, H.; Zhai, X. Discovery and optimization of tetrahydropyrido[4,3-d]pyrimidine derivatives as novel ATX and EGFR dual inhibitors. Bioorg. Med. Chem., 2018, 26(8), 1784-1796.
[http://dx.doi.org/10.1016/j.bmc.2018.02.023] [PMID: 29496411]
[103]
Elmetwally, S.A.; Saied, K.F.; Eissa, I.H.; Elkaeed, E.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem., 2019, 88, 102944.
[http://dx.doi.org/10.1016/j.bioorg.2019.102944] [PMID: 31051400]
[104]
Hao, Y.; Lyu, J.; Qu, R.; Tong, Y.; Sun, D.; Feng, F.; Tong, L.; Yang, T.; Zhao, Z.; Zhu, L.; Ding, J.; Xu, Y.; Xie, H.; Li, H. Design, synthesis, and biological evaluation of pyrimido [4, 5-d] pyrimidine-2, 4 (1 h, 3 h)-diones as potent and selective epidermal growth factor receptor (EGFR) inhibitors against l858r/t790m resistance mutation. J. Med. Chem., 2018, 61(13), 5609-5622.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00346] [PMID: 29906114]
[105]
Liang, D.; Su, Z.; Tian, W.; Li, J.; Li, Z.; Wang, C.; Li, D.; Hou, H. Synthesis and screening of novel anthraquinone-quinazoline multitarget hybrids as promising anticancer candidates. Future Med. Chem., 2020, 12(2), 111-126.
[http://dx.doi.org/10.4155/fmc-2019-0230] [PMID: 31718309]
[106]
Zhang, Y.; Chen, L.; Li, X.; Gao, L.; Hao, Y.; Li, B.; Yan, Y. Novel 4-arylaminoquinazolines bearing N,N-diethyl(aminoethyl) amino moiety with antitumour activity as EGFRwt-TK inhibitor. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1668-1677.
[http://dx.doi.org/10.1080/14756366.2019.1667341] [PMID: 31530043]
[107]
Le, Y.; Gan, Y.; Fu, Y.; Liu, J.; Li, W.; Zou, X.; Zhou, Z.; Wang, Z.; Ouyang, G.; Yan, L. Design, synthesis and in vitro biological evaluation of quinazolinone derivatives as EGFR inhibitors for antitumor treatment. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 555-564.
[http://dx.doi.org/10.1080/14756366.2020.1715389] [PMID: 31967481]
[108]
Alsaid, M.S.; Al-Mishari, A.A.; Soliman, A.M.; Ragab, F.A.; Ghorab, M.M. Discovery of Benzo[g]quinazolin benzenesulfonamide derivatives as dual EGFR/HER2 inhibitors. Eur. J. Med. Chem., 2017, 141, 84-91.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.061] [PMID: 29028534]
[109]
Ghorab, M.M.; Alsaid, M.S.; Soliman, A.M.; Al-Mishari, A.A. Benzo[g]quinazolin-based scaffold derivatives as dual EGFR/HER2 inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 67-73.
[http://dx.doi.org/10.1080/14756366.2017.1389922] [PMID: 29098904]
[110]
Ghorab, M.M.; Alsaid, M.S.; Soliman, A.M. Dual EGFR/HER2 inhibitors and apoptosis inducers: New benzo[g]quinazoline derivatives bearing benzenesulfonamide as anticancer and radiosensitizers. Bioorg. Chem., 2018, 80, 611-620.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.015] [PMID: 30041137]
[111]
Soliman, A.M.; Alqahtani, A.S.; Ghorab, M. Novel sulphonamide benzoquinazolinones as dual EGFR/HER2 inhibitors, apoptosis inducers and radiosensitizers. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1030-1040.
[http://dx.doi.org/10.1080/14756366.2019.1609469] [PMID: 31074303]
[112]
Zhang, B.; Liu, Z.; Xia, S.; Liu, Q.; Gou, S. Design, synthesis and biological evaluation of sulfamoylphenyl-quinazoline derivatives as potential EGFR/CAIX dual inhibitors. Eur. J. Med. Chem., 2021, 216, 113300.
[http://dx.doi.org/10.1016/j.ejmech.2021.113300] [PMID: 33640672]
[113]
Qin, X.; Yang, L.; Liu, P.; Yang, L.; Chen, L.; Hu, L.; Jiang, M. Design, synthesis and biological evaluation of 2,3-dihydro-[1,4]dioxino[2,3-f]quinazoline derivatives as EGFR inhibitors. Bioorg. Chem., 2021, 110, 104743.
[http://dx.doi.org/10.1016/j.bioorg.2021.104743] [PMID: 33714020]
[114]
Dhawan, S.; Kerru, N.; Awolade, P.; Singh-Pillay, A.; Saha, S.T.; Kaur, M.; Jonnalagadda, S.B.; Singh, P. Synthesis, computational studies and antiproliferative activities of coumarin-tagged 1,3,4-oxadiazole conjugates against MDA-MB-231 and MCF-7 human breast cancer cells. Bioorg. Med. Chem., 2018, 26(21), 5612-5623.
[http://dx.doi.org/10.1016/j.bmc.2018.10.006] [PMID: 30360952]
[115]
Sairam, K.V.; Gurupadayya, B.M.; Vishwanathan, B.I.; Chandan, R.S.; Nagesha, D.K. Cytotoxicity studies of coumarin analogs: design, synthesis and biological activity. RSC Advances, 2016, 6, 98816-98828.
[http://dx.doi.org/10.1039/C6RA22466K]
[116]
Shaikh, S.K.; Sannaikar, M.S.; Kumbar, M.N.; Bayannava, P.K.; Kamble, R.R.; Inamdar, S.R.; Joshi, S.D. Microwave‐expedited green synthesis, photophysical, computational studies of coumarin‐3‐yl‐thiazol‐3‐yl‐1, 2, 4‐triazolin‐3‐ones and their anticancer activity. ChemistrySelect, 2018, 3, 4448-4462.
[http://dx.doi.org/10.1002/slct.201702596]
[117]
Vagish, C.B.; Kumara, K.; Vivek, H.K.; Bharath, S.; Lokanath, N.K.; Kumar, K.A. Coumarin-triazole hybrids: Design, microwave-assisted synthesis, crystal and molecular structure, theoretical and computational studies and screening for their anticancer potentials against PC-3 and DU-145. J. Mol. Struct., 2021, 1230, 129899.
[http://dx.doi.org/10.1016/j.molstruc.2021.129899]
[118]
Toan, V.N.; Thanh, N.D.; Tri, N.M. 1, 3, 4-Thiadiazoline- coumarin hybrid compounds containing D-glucose/D-galactose moieties: Synthesis and evaluation of their antiproliferative activity. Arab. J. Chem., 2021, 14, 103053.
[http://dx.doi.org/10.1016/j.arabjc.2021.103053]
[119]
Zhang, L.; Deng, X.S.; Zhang, C.; Meng, G.P.; Wu, J.F.; Li, X.S.; Zhao, Q.C.; Hu, C. Design, synthesis and cytotoxic evaluation of a novel series of benzo [d] thiazole-2-carboxamide derivatives as potential EGFR inhibitors. Med. Chem. Res., 2017, 26, 2180-2189.
[http://dx.doi.org/10.1007/s00044-017-1925-7]
[120]
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M.; Ni, N. Synthesis, in vitro antitumor activity and molecular modeling studies of a new series of benzothiazole Schiff bases. Chin. Chem. Lett., 2016, 27, 380-386.
[http://dx.doi.org/10.1016/j.cclet.2015.12.033]
[121]
Mokhtar, A.M.; El-Messery, S.M.; Ghaly, M.A.; Hassan, G.S. Targeting EGFR tyrosine kinase: Synthesis, in vitro antitumor evaluation, and molecular modeling studies of benzothiazole-based derivatives. Bioorg. Chem., 2020, 104, 104259.
[http://dx.doi.org/10.1016/j.bioorg.2020.104259] [PMID: 32919134]
[122]
Abdellatif, K.R.A.; Belal, A.; El-Saadi, M.T.; Amin, N.H.; Said, E.G.; Hemeda, L.R. Design, synthesis, molecular docking and antiproliferative activity of some novel benzothiazole derivatives targeting EGFR/HER2 and TS. Bioorg. Chem., 2020, 101, 103976.
[http://dx.doi.org/10.1016/j.bioorg.2020.103976] [PMID: 32506018]
[123]
Srour, A.M.; Ahmed, N.S.; Abd El-Karim, S.S.; Anwar, M.M.; El-Hallouty, S.M. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg. Med. Chem., 2020, 28(18), 115657.
[http://dx.doi.org/10.1016/j.bmc.2020.115657] [PMID: 32828424]
[124]
El-Sherief, H.A.M.; Youssif, B.G.M.; Abbas Bukhari, S.N.; Abdelazeem, A.H.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Synthesis, anticancer activity and molecular modeling studies of 1,2,4-triazole derivatives as EGFR inhibitors. Eur. J. Med. Chem., 2018, 156, 774-789.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.024] [PMID: 30055463]
[125]
Sanachai, K.; Aiebchun, T.; Mahalapbutr, P.; Seetaha, S.; Tabtimmai, L.; Maitarad, P.; Xenikakis, I.; Geronikaki, A.; Choowongkomon, K.; Rungrotmongkol, T. Discovery of novel JAK2 and EGFR inhibitors from a series of thiazole-based chalcone derivatives. RSC Med. Chem., 2021, 12(3), 430-438.
[http://dx.doi.org/10.1039/D0MD00436G] [PMID: 34046625]
[126]
Donarska, B.; Świtalska, M.; Płaziński, W.; Wietrzyk, J.; Łączkowski, K.Z. Effect of the dichloro-substitution on antiproliferative activity of phthalimide-thiazole derivatives. Rational design, synthesis, elastase, caspase 3/7, and EGFR tyrosine kinase activity and molecular modeling study. Bioorg. Chem., 2021, 110, 104819.
[http://dx.doi.org/10.1016/j.bioorg.2021.104819] [PMID: 33752144]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy