Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

2′,7′-Dichlorofluorescein: Biological, Analytical, and Industrial Progress

Author(s): Shazia Kousar*, Muhammad Ahmad Mudassir, Fehmeeda Bibi, Madiha Irfan, Mohammad Alyas, Syed Waqas Bukhari and Salman Qadir

Volume 19, Issue 6, 2022

Published on: 11 March, 2022

Page: [708 - 716] Pages: 9

DOI: 10.2174/1570193X19666220110114234

Price: $65

Abstract

Fluorescein derivatives have attracted a great deal of attention for ubiquitous applications on account of their unique properties. Particularly, the 2′,7′-dichlorofluorescein (DCF) is of paramount importance in biological, analytical, and industrial fields. Mainly, DCF has been employed as a reactant in reactive oxygen species (ROS) formation reactions in biological applications. It has been utilized in oxidative stress and cell spreading measurement. It has been extensively explored to analyze oxidative, respiratory burst, secretory peroxidase, and multidrug resistance-associated proteins (MRPs). It has been widely investigated for detecting/quantification of H2O2, glucose, lipid, cholesterol, other hydroperoxides, and polycationic protamine.

Moreover, it has been applied to differentiate dopamine from ascorbic acid. It has also shown immense potential in biolabeling, cancer imaging, and drug delivery. Several studies demonstrated the great promise of DCF as a fluorescent probe for real-time monitoring/quantification of mercury, cadmium, zinc, arsenite, acetate, fluoride, thiocyanate, azide ions, hydrogen peroxide, ammonia, ozone, sulfur dioxide, and drug molecules. Furthermore, the use of DCF to manufacture dyesensitized solar cells and Schottky barrier devices opens up avenues for its industrial applications. Apart from presenting a comprehensive account of the immense potential of DCF in the areas mentioned above, the present review also intends to provide insight into its broader future scope for a myriad of applications to emerge.

Keywords: Fluorescein derivatives, applications of DCF, ROS formation, fluorescent probe, metal-free sensitizer, solar cells.

Graphical Abstract
[1]
Kasha, M.; Rawls, H.R.; El-Bayoumi, M.A. The exciton model in molecular spectroscopy. Pure Appl. Chem., 1965, 11, 371-392.
[http://dx.doi.org/10.1351/pac196511030371]
[2]
Qian, H.; Cousins, M.E.; Horak, E.H.; Wakefield, A.; Liptak, M.D.; Aprahamian, I. Suppression of Kasha’s rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission. Nat. Chem., 2017, 9(1), 83-87.
[http://dx.doi.org/10.1038/nchem.2612] [PMID: 27995926]
[3]
Lakowicz, J.R. Principles of fluorescence spectroscopy; Kluwer Academic/Plenum Publishers, 1999.
[http://dx.doi.org/10.1007/978-1-4757-3061-6]
[4]
Johnson, R.K.; Eschmeyer, W.N.; Paxton, J.R. Encyclopedia of fishes; Academic Press: San Diego, 1998, p. 125.
[5]
Wannas, F.A.; Gafel, R.A.A.; Jaffer, N.D. A literature review on the fluorescence and phosphorescent. Am. Int. J. Sci. Eng. Res, 2019, 2, 47.
[http://dx.doi.org/10.46545/aijser.v2i1.53]
[6]
Ryota, S.; Tatsuya, S.; Taiga, S.; Kaito, M.; Ryota, K.; Taiki, O.; Yoichiro, S. Isolation of photobacterium kishitanii taigaleon from a local fish Mehikari (greeneye) found near Iwaki city Japan, and possible application for water quality assessment. Asian J. Microbiol. Biotechnol. Environ. Sci., 2020, 22, 584-593.
[7]
Jameson, D.M.; Ross, J.A. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem. Rev., 2010, 110(5), 2685-2708.
[http://dx.doi.org/10.1021/cr900267p] [PMID: 20232898]
[8]
Yao, H.; Steill, J.D.; Oomens, J.; Jockusch, R.A. Infrared multiple photon dissociation action spectroscopy and computational studies of mass-selected gas-phase fluorescein and 2′,7′-dichlorofluorescein ions. J. Phys. Chem. A, 2011, 115(34), 9739-9747.
[http://dx.doi.org/10.1021/jp201946a] [PMID: 21800861]
[9]
Kolthoff, I.M.; Lauer, W.M.; Sunde, C.J. The use of dichlorofluorescein as an adsorption indicator for the Argentometric titration of chlorides. J. Am. Chem. Soc., 1929, 51, 3273.
[http://dx.doi.org/10.1021/ja01386a014]
[10]
Bambach, K.; Rider, T.H. Volumetric determinations of halides: Use of dichlorofluorescein as an adsorption indicator. Ind. Eng. Chem. Anal. Ed., 1935, 7, 165.
[http://dx.doi.org/10.1021/ac50095a012]
[11]
Chen, X.; Zhong, Z.; Xu, Z.; Chen, L.; Wang, Y. 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free Radic. Res., 2010, 44(6), 587-604.
[http://dx.doi.org/10.3109/10715761003709802] [PMID: 20370560]
[12]
Afri, M.; Frimer, A.A.; Cohen, Y. Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2′,7′-dichlorofluorescein (DCF), 2′,7′-dichlorodihydrofluorescein (DCFH) and 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer. Chem. Phys. Lipids, 2004, 131(1), 123-133.
[http://dx.doi.org/10.1016/j.chemphyslip.2004.04.006] [PMID: 15210370]
[13]
Sun, W-C.; Gee, K.R.; Klaubert, D.H.; Haugland, R.P. Synthesis of fluorinated fluoresceins. J. Org. Chem., 1997, 62, 6469-6475.
[http://dx.doi.org/10.1021/jo9706178]
[14]
Li, X.; Gao, X.; Shi, W.; Ma, H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev., 2014, 114(1), 590-659.
[http://dx.doi.org/10.1021/cr300508p] [PMID: 24024656]
[15]
Reiniers, M.J.; van Golen, R.F.; van Gulik, T.M.; Heger, M. 2′,7′-Dichlorofluorescein is not a probe for the detection of reactive oxygen and nitrogen species. J. Hepatol., 2012, 56(5), 1214-1216.
[http://dx.doi.org/10.1016/j.jhep.2011.10.012] [PMID: 22127279]
[16]
Reiniers, M.J.; van Golen, R.F.; Bonnet, S.; Broekgaarden, M.; van Gulik, T.M.; Egmond, M.R.; Heger, M. Preparation and practical applications of 2′,7′-dichlorodihydrofluorescein in redox assays. Anal. Chem., 2017, 89(7), 3853-3857.
[http://dx.doi.org/10.1021/acs.analchem.7b00043] [PMID: 28224799]
[17]
O’Malley, Y.Q.; Reszka, K.J.; Britigan, B.E. Direct oxidation of 2′,7′-dichlorodihydrofluorescein by pyocyanin and other redox-active compounds independent of reactive oxygen species production. Free Radic. Biol. Med., 2004, 36(1), 90-100.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.09.021] [PMID: 14732293]
[18]
Rota, C.; Chignell, C.F.; Mason, R.P. Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic. Biol. Med., 1999, 27(7-8), 873-881.
[http://dx.doi.org/10.1016/S0891-5849(99)00137-9] [PMID: 10515592]
[19]
Loetchutinat, C.; Kothan, S.; Dechsupa, S.; Meesungnoen, J.; Jay-Gerin, J-P.; Mankhetkorn, S. Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiat. Phys. Chem., 2005, 72, 323-331.
[http://dx.doi.org/10.1016/j.radphyschem.2004.06.011]
[20]
Yang, B.; Chen, Y.; Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev., 2019, 119(8), 4881-4985.
[http://dx.doi.org/10.1021/acs.chemrev.8b00626] [PMID: 30973011]
[21]
Mudassir, M.A.; Hussain, S.Z.; Khan, M.; Asma, S.T.; Iqbal, Z.; Huma, Z.; Ullah, N.; Zhang, H.; Ansari, T.M.; Hussain, I. Polyacrylamide exotemplate-assisted synthesis of hierarchically porous nanostructured TiO2 macrobeads for efficient photodegradation of organic dyes and microbes. RSC Advances, 2018, 8, 29628-29636.
[http://dx.doi.org/10.1039/C8RA06197A]
[22]
Kooy, N.W.; Royall, J.A.; Ischiropoulos, H. Oxidation of 2′,7′-dichlorofluorescin by peroxynitrite. Free Radic. Res., 1997, 27(3), 245-254.
[http://dx.doi.org/10.3109/10715769709065763] [PMID: 9350429]
[23]
Bilski, P.; Belanger, A.G.; Chignell, C.F. Photosensitized oxidation of 2′,7′-dichlorofluorescin: singlet oxygen does not contribute to the formation of fluorescent oxidation product 2′,7′-dichlorofluorescein. Free Radic. Biol. Med., 2002, 33(7), 938-946.
[http://dx.doi.org/10.1016/S0891-5849(02)00982-6] [PMID: 12361804]
[24]
Daghastanli, N.A.; Itri, R.; Baptista, M.S. Singlet oxygen reacts with 2′,7′-dichlorodihydrofluorescein and contributes to the formation of 2′,7′-dichlorofluorescein. Photochem. Photobiol., 2008, 84(5), 1238-1243.
[http://dx.doi.org/10.1111/j.1751-1097.2008.00345.x] [PMID: 18422880]
[25]
Burow, S.; Valet, G. Flow-cytometric characterization of stimulation, free radical formation, peroxidase activity and phagocytosis of human granulocytes with 2,7-dichlorofluorescein (DCF). Eur. J. Cell Biol., 1987, 43(1), 128-133.
[PMID: 3569301]
[26]
Rothe, G.; Valet, G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′,7′-dichlorofluorescin. J. Leukoc. Biol., 1990, 47(5), 440-448.
[http://dx.doi.org/10.1002/jlb.47.5.440] [PMID: 2159514]
[27]
Proctor, G.B.; Chan, K.M. A fluorometric assay of peroxidase activity utilizing 2′,7′-dichlorofluorescein with thiocyanate: application to the study of salivary secretion. J. Biochem. Biophys. Methods, 1994, 28(1), 69-76.
[http://dx.doi.org/10.1016/0165-022X(94)90065-5] [PMID: 8151071]
[28]
Li, M.; Liu, L.; Shi, Y.; Yang, Y.; Zhenga, H.; Long, Y. Dichlorofluorescein as a peroxidase mimic and its application to glucose detection. New J. Chem., 2017, 41, 7578-7582.
[http://dx.doi.org/10.1039/C7NJ01213F]
[29]
Cathcart, R.; Schwiers, E.; Ames, B.N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal. Biochem., 1983, 134(1), 111-116.
[http://dx.doi.org/10.1016/0003-2697(83)90270-1] [PMID: 6660480]
[30]
Rastogi, R.P.; Singh, S.P.; Häder, D-P.; Sinha, R.P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun., 2010, 397(3), 603-607.
[http://dx.doi.org/10.1016/j.bbrc.2010.06.006] [PMID: 20570649]
[31]
Mudassir, M.A.; Aslam, H.Z.; Ansari, T.M.; Zhang, H.; Hussain, I. Fundamentals and design-led synthesis of emulsion-templated porous materials for environmental applications. Adv. Sci. (Weinh.), 2021, 8(22), e2102540.
[http://dx.doi.org/10.1002/advs.202102540] [PMID: 34553500]
[32]
Mudassir, M.A.; Hussain, S.Z.; Kousar, S.; Zhang, H.; Ansari, T.M.; Hussain, I. Hyperbranched polyethylenimine-tethered multiple emulsion-templated hierarchically macroporous poly(acrylic acid)–Al2O3 nanocomposite beads for water purification. ACS Appl. Mater. Interfaces, 2021, 13(23), 27400-27410.
[http://dx.doi.org/10.1021/acsami.1c03922] [PMID: 34081850]
[33]
Feng, M.; Yin, H.; Peng, H.; Liu, Z.; Lu, G.; Dang, Z. Hexavalent chromium induced oxidative stress and apoptosis in Pycnoporus sanguineus. Environ. Pollut., 2017, 228, 128-139.
[http://dx.doi.org/10.1016/j.envpol.2017.05.012] [PMID: 28528260]
[34]
Lampiao, F.; Strijdom, H.; Du Plessis, S. Reactive oxygen species measurement in human spermatozoa by flow cytometry using the fluorescent probe, 2′,7′-dichlorofluorescein-diacetate (DCFH-DA). Medi. Tech. SA, 2006, 20, 9-10.
[35]
Koopman, W.J.; Verkaart, S.; van Emst-de Vries, S.E.; Grefte, S.; Smeitink, J.A.; Willems, P.H. Simultaneous quantification of oxidative stress and cell spreading using 5-(and-6)-chloromethyl-2′,7′-dichlorofluorescein. Cytometry A, 2006, 69(12), 1184-1192.
[http://dx.doi.org/10.1002/cyto.a.20348] [PMID: 17066472]
[36]
Laupeze, B.; Amiot, L.; Courtois, A.; Vernhet, L.; Drenou, B.; Fauchet, R.; Fardel, O. Use of the anionic dye carboxy-2′,7′-dichlorofluorescein for sensitive flow cytometric detection of multidrug resistance-associated protein activity. Int. J. Oncol., 1999, 15(3), 571-576.
[http://dx.doi.org/10.3892/ijo.15.3.571] [PMID: 10427142]
[37]
Xiong, X.; Song, F.; Chen, G.; Sun, W.; Wang, J.; Gao, P.; Zhang, Y.; Qiao, B.; Li, W.; Sun, S.; Fan, J.; Peng, X. Construction of long-wavelength fluorescein analogues and their application as fluorescent probes. Chemistry, 2013, 19(21), 6538-6545.
[http://dx.doi.org/10.1002/chem.201300418] [PMID: 23589345]
[38]
Haloi, S.; Goswami, P.; Das, D.K. Differentiating response of 2′,7′-dichlorofluorescein intercalated CTAB modified Na-MMT clay matrix towards dopamine and ascorbic acid investigated by electronic, fluorescence spectroscopy and electrochemistry. Appl. Clay Sci., 2013, 77, 79-82.
[http://dx.doi.org/10.1016/j.clay.2013.01.017]
[39]
Castro, J.C.; Malakhov, A.; Burgess, K. Synthesis of regioisomerically pure 5-functionalized 2′,7′-dichlorofluoresceins. Synthesis, 2009, 7, 1224-1226.
[40]
Koide, K.; Song, F.; de Groh, E.D.; Garner, A.L.; Mitchell, V.D.; Davidson, L.A.; Hukriede, N.A. Scalable and concise synthesis of dichlorofluorescein derivatives displaying tissue permeation in live zebrafish embryos. ChemBioChem, 2008, 9(2), 214-218.
[http://dx.doi.org/10.1002/cbic.200700565] [PMID: 18161734]
[41]
Gomes, E.C.; de Carvalho, I.M.; Diógenes, I.C.; de Sousa, E.H.; Longhinotti, E. On the incorporation of Rhodamine B and 2′,7′-dichlorofluorescein dyes in silica: Synthesis of fluorescent nanoparticles. Opt. Mater., 2014, 36, 1197-1202.
[http://dx.doi.org/10.1016/j.optmat.2014.02.028]
[42]
Basavaiah, K.; Nagegowda, P. Determination of Ranitidine using potassium iodate and dichlorofluorescein. Indian J. Chem. Technol., 2004, 11, 11-16.
[43]
Wang, E.; Wang, G.; Ma, L.; Stivanello, C.M.; Lam, S.; Patel, H. Optical films for protamine detection with lipophilic dichlorofluorescein derivatives. Anal. Chim. Acta, 1996, 334, 139-147.
[http://dx.doi.org/10.1016/S0003-2670(96)00299-1]
[44]
de Weille, J.R.; Müller, M.; Lazdunski, M. Activation and inhibition of ATP-sensitive K+ channels by fluorescein derivatives. J. Biol. Chem., 1992, 267(7), 4557-4563.
[http://dx.doi.org/10.1016/S0021-9258(18)42869-4] [PMID: 1311312]
[45]
Guo, S.; Dong, S. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev., 2011, 40(5), 2644-2672.
[http://dx.doi.org/10.1039/c0cs00079e] [PMID: 21283849]
[46]
Goswami, P.; Baruah, S.; Das, D.K. 2′,7′-dichlorofluorescein, a fluorescent sensor to detect Cd2+ over Na+, K+, Ca 2+, Cu2+, Ni2+ and Zn2+. Indian J. Chem. Technol., 2010, 49A, 1617-1620.
[47]
Wong, B.A.; Friedle, S.; Lippard, S.J. Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluo-rescein-based Zn2+ sensors. J. Am. Chem. Soc., 2009, 131(20), 7142-7152.
[http://dx.doi.org/10.1021/ja900980u] [PMID: 19405465]
[48]
Kempahanumakkagari, S.; Malingappa, P.; Ambikapathi, G.; Kuramkote Shivanna, D. 2′,7′-dichlorofluorescein hydrazide as a new fluorescent probe for mercury quantification: Application to industrial effluents and polluted water samples. J. Spectrosc., 2013, 2015, 276981.
[49]
Mudassir, M.A.; Hussain, S.Z.; Rehman, A.; Zaheer, W.; Asma, S.T.; Jilani, A.; Aslam, M.; Zhang, H.; Ansari, T.M.; Hussain, I. Development of silver-nanoparticle-decorated emulsion-templated hierarchically porous poly(1-vinylimidazole) beads for water treatment. ACS Appl. Mater. Interfaces, 2017, 9(28), 24190-24197.
[http://dx.doi.org/10.1021/acsami.7b05311] [PMID: 28644011]
[50]
Abbas, A.S. Spectrofluorimetry-cloud point extraction determination of trace arsenic(III) with 2′,7′-dichlorofluorescein. J. Phys. Conf. Ser., 2019, 1294(5), 052060.
[51]
Wu, J-S.; Kim, H.J.; Lee, M.H.; Yoon, J.H.; Lee, J.H.; Kim, J.S. Anion-induced ring-opening of fluorescein spirolactam: Fluorescent OFF–ON. Tetrahedron Lett., 2007, 48, 3159-3162.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.060]
[52]
Nakaya, M.; Oshima, M.; Takayanagi, T.; Motomizu, S.; Yamashita, H. Sensitive fluorimetric flow injection analysis for fluoride ion with a novel reagent, 2′,7′-dichlorofluorescein di-tert-butyldimethylsilyl ether. Talanta, 2011, 84(5), 1361-1365.
[http://dx.doi.org/10.1016/j.talanta.2011.03.081] [PMID: 21641452]
[53]
Yang, X.; Zhang, G.; Li, Y.; Liu, Z.; Gong, X.; Gao, B.; Zhang, G.; Cui, Y.; Sun, G. Colorimetric and fluorogenic signalling of fluoride ions by diketopyrrolopyrrole-based chemosensor. RSC Advances, 2015, 5, 22455-22462.
[http://dx.doi.org/10.1039/C4RA14639E]
[54]
Gong, B.; Gong, G. Fluorimetric method for the determination of thiocyanate with 2′,7′-dichlorofluorescein and iodine. Anal. Chim. Acta, 1999, 394, 171.
[http://dx.doi.org/10.1016/S0003-2670(99)00295-0]
[55]
Lee, J.W.; Kim, H.W. Im, H.G.; Kim, H.Y.; Chang, S.-K. Dual signaling of azide ions by deprotection of a dichlorofluorescein chloroacetate. Sens. Actuators B Chem., 2014, 192, 9-14.
[http://dx.doi.org/10.1016/j.snb.2013.10.095]
[56]
Watanabe, H.; Mitsuihida, N.; Andoh, M.; Takeda, M.; Maeda, M.; Tsuji, A. Chemiluminescent assay of hydrogen peroxide using leuco-2′ 7′-dichlorofluorescein-peroxyoxalate. Anal. Sci., 1986, 2, 461-465.
[http://dx.doi.org/10.2116/analsci.2.461]
[57]
Nie, F.; Wang, N.; Zheng, J.; Zhang, J. An ultrasensitive post chemiluminescence reaction of ammonium in NBS-dichlorofluorescein system and its application. Talanta, 2011, 84(4), 1063-1067.
[http://dx.doi.org/10.1016/j.talanta.2011.03.005] [PMID: 21530780]
[58]
Guoquan, G.; Qingzhi, Z.; Huaigong, W. Fluorescence quenching method for the determination of atmospheric ozone using 2′,7′-dichlorofluorescein. Anal. Chim. Acta, 1994, 298, 135-139.
[http://dx.doi.org/10.1016/0003-2670(94)90052-3]
[59]
Guoquan, G.; He, X.; Huaigong, W. A fluorimetric method for the determination of atmospheric sulphur dioxide with 2′,7′-dichlorofluorescein. Anal. Lett., 1995, 28, 909-915.
[http://dx.doi.org/10.1080/00032719508001433]
[60]
Ng, D.; Blass, K. A rapid, sensitive method for accurate determination of the lecithin/sphingomyelin ratio by thin-layer chromatography and reflectance spectrofluorometry. J. Chromatogr. B Biomed. Appl., 1979, 163, 37-46.
[http://dx.doi.org/10.1016/S0378-4347(00)81166-4]
[61]
McElwee, D.J. A new method for the detection of sedative drugs on thin-layer chromatograms using chlorine vapors and 2′,7′-dichlorofluorescein. J. Anal. Toxicol., 1979, 3, 266-268.
[http://dx.doi.org/10.1093/jat/3.6.266]
[62]
Panah, S.H.; Panah, S.H.; Khosravi, A.; Gharanjig, K.; Khorassani, M.; Zadeh, M.K.; Taromi, F.A. Synthesis and characterization of new fluorescent polymerizable dyes based on naphthalimide. Iran. Polym. J., 2010, 19, 491-500.
[63]
O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737-740.
[http://dx.doi.org/10.1038/353737a0]
[64]
Yahia, I.; Shakra, A.; Fadel, M.; Hafez, H.S.; Micheal, M.; Yakuphanoglu, F. Photovoltaic response of dye-sensitized solar cell using 2′,7′-dichlorofluorescein as an organic dye. Mater. Sci. Semicond. Process., 2014, 28, 77.
[http://dx.doi.org/10.1016/j.mssp.2014.06.023]
[65]
Soylu, M.; Yahia, I.; Yakuphanoglu, F.; Farooq, W. Modification of electrical properties of Al/p-Si Schottky barrier device based on 2′-7′-dichlorofluorescein. J. Appl. Phys., 2011, 110, 074514.
[http://dx.doi.org/10.1063/1.3647507]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy