Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Identification of Potential Inhibitors for Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2) Angiotensin-converting Enzyme 2 and the Main Protease from Anatolian Traditional Plants

Author(s): Namık Kılınç*, Mikail Açar, Salih Tuncay and Ömer Faruk Karasakal

Volume 19, Issue 11, 2022

Published on: 29 April, 2022

Page: [996 - 1006] Pages: 11

DOI: 10.2174/1570180819666211230123145

Price: $65

Abstract

Background: The 2019 novel coronavirus disease (COVID-19) has caused a global health catastrophe by affecting the human population around the globe. Unfortunately, there is no specific medication or treatment currently available for COVID-19.

Objective: It is extremely important to find effective drug treatment in order to put an end to this pandemic period and return to normal daily life. In this context and considering the urgency, rather than focusing on the discovery of novel compounds, it is critical to explore the effects of existing herbal agents with proven antiviral properties on the virus.

Methods: Molecular docking studies were carried out employing three different methods, Glide extra precision (XP) docking, induced fit docking (IFD), and molecular mechanics/generalized born surface area (MM/GBSA), to determine the potential antiviral and antibacterial effects of 58 phytochemicals present in Rosmarinus officinalis, Thymbra spicata, Satureja thymbra, and Stachys lavandulifolia plants against the main protease (Mpro) and angiotensin-converting enzyme 2 (ACE2) enzymes.

Results: 7 compounds stood out among all the molecules, showing very high binding affinities. According to our findings, the substances chlorogenic acid, rosmarinic acid, and rosmanol exhibited extremely significant binding affinities for both Mpro and ACE2 enzymes. Furthermore, carnosic acid and alphacadinol showed potent anti-Mpro activity, whereas caffeic acid and carvacrol exhibited promising anti- ACE2 activity.

Conclusion: Chlorogenic acid, rosmarinic acid, rosmanol, carnosic acid, alpha-cadinol, caffeic acid, and carvacrol compounds have been shown to be powerful anti-SARS-CoV-2 agents in docking simulations against Mpro and ACE2 enzymes, as well as ADME investigations.

Keywords: Angiotensin-converting enzyme 2, COVID-19, SARS-CoV-2, main protease, Lamiaceae, molecular docking.

Graphical Abstract
[1]
Huremović, D. Brief History of Pandemics (Pandemics Throughout History). Psychiatry of Pandemics; Huremović, D., Ed.; Springer: Cham, Switzerland, 2019, pp. 7-35.
[http://dx.doi.org/10.1007/978-3-030-15346-5_2]
[2]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[3]
Gomes, C. Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Braz. J. Implantol. Health Sci., 2020, 2(3), 3-40.
[4]
Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Di Napoli, R. Features, evaluation and treatment coronavirus (COVID-19). In: StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020.
[5]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[6]
van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.; Wolthers, K.C.; Wertheim-van Dillen, P.M.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med., 2004, 10(4), 368-373.
[http://dx.doi.org/10.1038/nm1024] [PMID: 15034574]
[7]
Şekeroğlu, N.; Gezici, S. Coronavirus pandemic and some Turkish medicinal plants. Anatolian Clin. J. Med. Sci., 2020, 25(Special Issue on COVID 19), 163-182.
[http://dx.doi.org/10.21673/anadoluklin.724210]
[8]
Oladele, J.O.; Ajayi, E.I.; Oyeleke, O.M.; Oladele, O.T.; Olowookere, B.D.; Adeniyi, B.M.; Oyewole, O.I.; Oladiji, A.T. A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants. Heliyon, 2020, 6(9), e04897.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04897] [PMID: 32929412]
[9]
Ertuğ, F. Etnobotanik çalışmaları ve Türkiye’de yeni açılımlar In: Kebikeç; , 2004; 18, pp. 181-187.
[10]
Burger, R.A.; Torres, A.R.; Warren, R.P.; Caldwell, V.D.; Hughes, B.G. Echinacea-induced cytokine production by human macrophages. Int. J. Immunopharmacol., 1997, 19(7), 371-379.
[http://dx.doi.org/10.1016/S0192-0561(97)00061-1] [PMID: 9568541]
[11]
Tada, M.; Okuno, K.; Chiba, K.; Ohnishia, E.; Yoshiia, T. Antiviral diterpenes from Salvia officinalis. Phytochemistry, 1994, 35(2), 539-541.
[http://dx.doi.org/10.1016/S0031-9422(00)94798-8]
[12]
Koch, C.; Reichling, J.; Kehm, R.; Sharaf, M.M.; Zentgraf, H.; Schneele, J.; Schnitzler, P. Efficacy of anise oil, dwarf-pine oil and chamomile oil against thymidine-kinase-positive and thymidine-kinase-negative herpesviruses. J. Pharm. Pharmacol., 2008, 60(11), 1545-1550.
[http://dx.doi.org/10.1211/jpp.60.11.0017] [PMID: 18957177]
[13]
Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Res., 2008, 131(2), 111-120.
[http://dx.doi.org/10.1016/j.virusres.2007.09.008] [PMID: 17981353]
[14]
Tamura, S.; Kaneko, M.; Shiomi, A.; Yang, G-M.; Yamaura, T.; Murakami, N. Unprecedented NES non-antagonistic inhibitor for nuclear export of Rev from Sida cordifolia. Bioorg. Med. Chem. Lett., 2010, 20(6), 1837-1839.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.165] [PMID: 20176483]
[15]
Tan, W.C.; Jaganath, I.B.; Manikam, R.; Sekaran, S.D. Evaluation of antiviral activities of four local Malaysian Phyllanthus species against Herpes simplex viruses and possible antiviral target. Int. J. Med. Sci., 2013, 10(13), 1817-1829.
[http://dx.doi.org/10.7150/ijms.6902] [PMID: 24324358]
[16]
Mikaili, P.; Maadirad, S.; Moloudizargari, M.; Aghajanshakeri, S.; Sarahroodi, S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran. J. Basic Med. Sci., 2013, 16(10), 1031-1048.
[PMID: 24379960]
[17]
Ong, G.H.; Syamsiah, A.S.; Hasrul, A.H.; Zunaida, B.; Maizatul, Z.; Jihan, R.; Redzwan, S.; Leow, B.L.; Faizul, F.M.Y.; Chandrawathani, P.; Ramlan, M. Antiviral effect of aqueous neem extract from branches of neem tree on Newcastle disease virus. Malays. J. Vet. Res., 2014, 5(2), 5-9.
[18]
Aurori, A.C.; Bobiş, O.; Dezmirean, D.S.; Mărghitaş, L.A.; Erler, S. Bay laurel (Laurus nobilis) as potential antiviral treatment in naturally BQCV infected honeybees. Virus Res., 2016, 222, 29-33.
[http://dx.doi.org/10.1016/j.virusres.2016.05.024] [PMID: 27235809]
[19]
Mahmood, M.S.; Mártinez, J.L.; Aslam, A.; Rafique, A.; Vinet, R.; Laurido, C.; Ali, S. Antiviral effects of green tea (Camellia sinensis) against pathogenic viruses in human and animals (a mini-review). Afr. J. Tradit. Complement. Altern. Med., 2016, 13(2), 176-184.
[http://dx.doi.org/10.4314/ajtcam.v13i2.21]
[20]
Güçlü, İ.; Yüksel, V. Fitoterapide antiviral bitkiler. Experimed, 2017, 7(13), 25-34.
[21]
Blank, D.E.; de Oliveira Hübner, S.; Alves, G.H.; Cardoso, C.A.L.; Freitag, R.A.; Cleff, M.B. Chemical composition and antiviral effect of extracts of Origanum vulgare. Adv. Biosci. Biotechnol., 2019, 10(07), 188.
[http://dx.doi.org/10.4236/abb.2019.107014]
[22]
Mbadiko, C.M.; Inkoto, C.L.; Gbolo, B.Z.; Lengbiye, E.M.; Kilembe, J.T.; Matondo, A. A mini review on the phytochemistry, toxicology and antiviral activity of some medically interesting Zingiberaceae species. J. Complement. Altern. Med. Res., 2020, 9(4), 44-56.
[http://dx.doi.org/10.9734/jocamr/2020/v9i430150]
[23]
Prasansuklab, A.; Theerasri, A.; Rangsinth, P.; Sillapachaiyaporn, C.; Chuchawankul, S.; Tencomnao, T. Anti-COVID-19 drug candidates: A review on potential biological activities of natural products in the management of new coronavirus infection. J. Tradit. Complement. Med., 2021, 11(2), 144-157.
[http://dx.doi.org/10.1016/j.jtcme.2020.12.001] [PMID: 33520683]
[24]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[25]
Chaachouay, N.; Douira, A.; Zidane, L. COVID-19, prevention and treatment with herbal medicine in the herbal markets of Salé Prefecture, North-Western Morocco. Eur. J. Integr. Med., 2021, 42, 101285.
[http://dx.doi.org/10.1016/j.eujim.2021.101285] [PMID: 33520016]
[26]
Theisen, L.L.; Muller, C.P. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral Res., 2012, 94(2), 147-156.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.006] [PMID: 22475498]
[27]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[28]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; Abubakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med., 2012, 12(1), 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]
[29]
Drexler, J.F.; Corman, V.M.; Drosten, C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res., 2014, 101, 45-56.
[http://dx.doi.org/10.1016/j.antiviral.2013.10.013] [PMID: 24184128]
[30]
Khan, T.; Khan, M.A.; Mashwani, Z.U.; Ullah, N.; Nadhman, A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal. Agric. Biotechnol., 2021, 31, 101890.
[http://dx.doi.org/10.1016/j.bcab.2020.101890] [PMID: 33520034]
[31]
Nolkemper, S.; Reichling, J.; Stintzing, F.C.; Carle, R.; Schnitzler, P. Antiviral effect of aqueous extracts from species of the Lamiaceae family against Herpes simplex virus type 1 and type 2 in vitro. Planta Med., 2006, 72(15), 1378-1382.
[http://dx.doi.org/10.1055/s-2006-951719] [PMID: 17091431]
[32]
Özçelik, B.; Orhan, İ.E.; Kan, Y. Determination of antiviral activity and cytotoxicity of selected sage (Salvia L.) species. J. Pharm. Sci., 2011, 36, 155-160.
[33]
Saderi, H.; Abbasi, M. Evaluation of Anti-Adenovirus activity of some plants from Lamiaceae family grown in Iran in cell culture. Afr. J. Biotechnol., 2011, 10, 17546-17550.
[34]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[35]
El-Awady, S.I.; Essam, T.; Hashem, A.; Boseila, A.A.; Mohmmed, A.F. Assessment of antiviral activity for Lamiaceae family members against RNA and DNA virus models using cell-culture: in vitro study. World J. Medical Sci., 2014, 11(1), 111-119.
[36]
Bang, S.; Quy Ha, T.K.; Lee, C.; Li, W.; Oh, W.K.; Shim, S.H. Antiviral activities of compounds from aerial parts of Salvia plebeia R. Br. J. Ethnopharmacol., 2016, 192, 398-405.
[http://dx.doi.org/10.1016/j.jep.2016.09.030] [PMID: 27647011]
[37]
Kaewprom, K.; Chen, Y.H.; Lin, C.F.; Chiou, M.T.; Lin, C.N. Antiviral activity of Thymus vulgaris and Stachys thracica hydrosols against porcine reproductive and respiratory syndrome virus. Wetchasan Sattawaphaet, 2017, 47(1), 25.
[38]
Angelova, P.; Tsvetkov, V.; Hinkov, A.; Todorov, D.; Shishkova, K.; Yordanova, Z.; Shishkov, S. Antiviral activity of Stachys thracica Dav. extracts against Human Herpes virus type 1 and 2. Biodiscovery, 2017, 20, e15022.
[http://dx.doi.org/10.3897/biodiscovery.20.e15022]
[39]
Bekut, M.; Brkić, S.; Kladar, N.; Dragović, G.; Gavarić, N.; Božin, B. Potential of selected Lamiaceae plants in anti(retro)viral therapy. Pharmacol. Res., 2018, 133, 301-314.
[http://dx.doi.org/10.1016/j.phrs.2017.12.016] [PMID: 29258916]
[40]
Satıl, F.; Açar, M. Ethnobotanical use of Stachys L.(Lamiaceae) taxa in Turkey. Int. J. Nat. Sci., 2020, 4(2), 66-86.
[41]
Satıl, F.; Selvi, S. Ethnobotanical features of Ziziphora L.(Lamiaceae) Taxa in Turkey. Int. J. Nat. Sci., 2020, 4(1), 56-65.
[42]
Baytop, T. Türkiye’de Bitkiler ile Tedavi, (İlaveli İkinci Baskı); Nobel Tıp Kitabevi: İstanbul, 1999, pp. 193-194.
[43]
al-Sereiti, M.R.; Abu-Amer, K.M.; Sen, P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J. Exp. Biol., 1999, 37(2), 124-130.
[PMID: 10641130]
[44]
Azaz, D.; Demirci, F.; Satil, F.; Kürkçüoğlu, M.; Başer, K.H.; Bașerb, C. Antimicrobial activity of some Satureja essential oils. Z. Naturforsch. C J. Biosci., 2002, 57(9-10), 817-821.
[http://dx.doi.org/10.1515/znc-2002-9-1011] [PMID: 12440718]
[45]
González-Trujano, M.E.; Peña, E.I.; Martínez, A.L.; Moreno, J.; Guevara-Fefer, P.; Déciga-Campos, M.; López-Muñoz, F.J. Evaluation of the antinociceptive effect of Rosmarinus officinalis L. using three different experimental models in rodents. J. Ethnopharmacol., 2007, 111(3), 476-482.
[http://dx.doi.org/10.1016/j.jep.2006.12.011] [PMID: 17223299]
[46]
Cheung, S.; Tai, J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol. Rep., 2007, 17(6), 1525-1531.
[http://dx.doi.org/10.3892/or.17.6.1525] [PMID: 17487414]
[47]
Duran, N.; Kaya, A.; Gulbol, Duran, G.; Eryilmaz, N. In vitro antiviral effect of the essential oils of Thymbra spicata L. on Herpes simplex virus type 2. ICAMS 2012 4th International conference on Advanced Materials and Systems, 2012.
[48]
İşcan, G.; Demirci, B.; Demirci, F.; Göger, F.; Kırımer, N.; Köse, Y. B.; Başer, K.H.C. Antimicrobial and antioxidant activities of Stachys lavandulifolia subsp. lavandulifolia essential oil and its infusion. Nat. Prod. Commun., 2012, 7(9), 1934578X1200700937.
[49]
Giweli, A.A.; Džamić, A.M.; Soković, M.; Ristić, M.S.; Janaćković, P.; Marin, P.D. The chemical composition, antimicrobial and antioxidant activities of the essential oil of Salvia fruticosa growing wild in Libya. Arch. Biol. Sci., 2013, 65(1), 321-329.
[http://dx.doi.org/10.2298/ABS1301321G]
[50]
Sargin, S.A. Potential anti-influenza effective plants used in Turkish folk medicine: A review. J. Ethnopharmacol., 2021, 265, 113319.
[http://dx.doi.org/10.1016/j.jep.2020.113319] [PMID: 32882361]
[51]
Halgren, T. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des., 2007, 69(2), 146-148.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00483.x] [PMID: 17381729]
[52]
Release, S. 2020-3: Maestro; Schrödinger, LLC: New York, NY, 2020.
[53]
Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem., 2006, 49(2), 534-553.
[http://dx.doi.org/10.1021/jm050540c] [PMID: 16420040]
[54]
Jacobson, M.P.; Friesner, R.A.; Xiang, Z.; Honig, B. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol., 2002, 320(3), 597-608.
[http://dx.doi.org/10.1016/S0022-2836(02)00470-9] [PMID: 12096912]
[55]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[56]
Joshi, T.; Joshi, T.; Sharma, P.; Mathpal, S.; Pundir, H.; Bhatt, V.; Chandra, S. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4529-4536.
[PMID: 32373991]
[57]
Chhetri, A.; Chettri, S.; Rai, P.; Mishra, D.K.; Sinha, B.; Brahman, D. Synthesis, characterization and computational study on potential inhibitory action of novel azo imidazole derivatives against COVID-19 main protease (Mpro: 6LU7). J. Mol. Struct., 2021, 1225, 129230.
[http://dx.doi.org/10.1016/j.molstruc.2020.129230] [PMID: 32963413]
[58]
Abdelrheem, D.A.; Ahmed, S.A.; Abd El-Mageed, H.R.; Mohamed, H.S.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: insights from molecular docking analysis and molecular dynamic simulation. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2020, 55(11), 1373-1386.
[http://dx.doi.org/10.1080/10934529.2020.1826192] [PMID: 32998618]
[59]
Basu, A.; Sarkar, A.; Maulik, U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci. Rep., 2020, 10(1), 17699.
[http://dx.doi.org/10.1038/s41598-020-74715-4] [PMID: 33077836]
[60]
Vijayakumar, B.G.; Ramesh, D.; Joji, A.; Jayachandra Prakasan, J.; Kannan, T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur. J. Pharmacol., 2020, 886, 173448.
[http://dx.doi.org/10.1016/j.ejphar.2020.173448] [PMID: 32768503]
[61]
Naso, L.G.; Valcarcel, M.; Roura-Ferrer, M.; Kortazar, D.; Salado, C.; Lezama, L.; Rojo, T.; González-Baró, A.C.; Williams, P.A.; Ferrer, E.G. Promising antioxidant and anticancer (human breast cancer) oxidovanadium(IV) complex of chlorogenic acid. Synthesis, characterization and spectroscopic examination on the transport mechanism with bovine serum albumin. J. Inorg. Biochem., 2014, 135, 86-99.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.02.013] [PMID: 24681549]
[62]
El Gizawy, H.A.; Boshra, S.A.; Mostafa, A.; Mahmoud, S.H.; Ismail, M.I.; Alsfouk, A.A.; Taher, A.T.; Al-Karmalawy, A.A. Pimenta dioica (L.) merr. bioactive constituents exert anti-sars-cov-2 and anti-inflammatory activities: molecular docking and dynamics, in vitro, and in vivo studies. Molecules, 2021, 26(19), 5844.
[http://dx.doi.org/10.3390/molecules26195844] [PMID: 34641388]
[63]
Lin, W.Y.; Yu, Y.J.; Jinn, T.R. Evaluation of the virucidal effects of rosmarinic acid against enterovirus 71 infection via in vitro and in vivo study. Virol. J., 2019, 16(1), 94.
[http://dx.doi.org/10.1186/s12985-019-1203-z] [PMID: 31366366]
[64]
Bailly, F.; Cotelle, P. Anti-HIV activities of natural antioxidant caffeic acid derivatives: toward an antiviral supplementation diet. Curr. Med. Chem., 2005, 12(15), 1811-1818.
[http://dx.doi.org/10.2174/0929867054367239] [PMID: 16029149]
[65]
Krylova, N.V.; Popov, A.M.; Leonova, G.N. Antioxidants as potential antiviral agents for flavivirus ınfections. Antibiot. Khimioter., 2016, 61(5-6), 25-31.
[PMID: 29537738]
[66]
Al-Megrin, W.A.; AlSadhan, N.A.; Metwally, D.M.; Al-Talhi, R.A.; El-Khadragy, M.F.; Abdel-Hafez, L.J.M. Potential antiviral agents of Rosmarinus officinalis extract against herpes viruses 1 and 2. Biosci. Rep., 2020, 40(6), BSR20200992.
[http://dx.doi.org/10.1042/BSR20200992] [PMID: 32469389]
[67]
Umesh, K.D.; Selvaraj, C.; Singh, S.K.; Dubey, V.K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J. Biomol. Struct. Dyn., 2020, 39(9), 3428-3434.
[http://dx.doi.org/10.1080/07391102.2020.1763202] [PMID: 32362243]
[68]
Salman, S.; Shah, F.H.; Idrees, J.; Idrees, F.; Velagala, S.; Ali, J.; Khan, A.A. Virtual screening of immunomodulatory medicinal compounds as promising anti-SARS-CoV-2 inhibitors. Future Virol., 2020, 15(5), 267-275.
[http://dx.doi.org/10.2217/fvl-2020-0079]
[69]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors-an in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn., 2021, 39(12), 4362-4374.
[PMID: 32568613]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy