Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Emerging Role of Epigenetic Methylation in Kidney Disease

Author(s): Li Wen, Hong-liu Yang, Lin Lin, Liang Ma* and Ping Fu

Volume 29, Issue 21, 2022

Published on: 31 January, 2022

Page: [3732 - 3747] Pages: 16

DOI: 10.2174/1573405617666211213110222

Price: $65

conference banner
Abstract

Kidney disease has complex and multifactorial pathophysiology and pathogenesis. Recent studies have revealed that epigenetic methylation changes, namely DNA methylation, histone methylation and non-histone methylation, are strongly implicated in various forms of kidney diseases. This review provides a perspective on the emerging role of epigenetic methylation in kidney disease, including the effects of DNA methylation in diverse promoter regions, regulation and implication of histone methylation, and recent advances and potential directions related to non-histone methylation. Monitoring or targeting epigenetic methylation has the potential to contribute to development of therapeutic approaches for multiple kidney diseases.

Keywords: Epigenomics, DNA methylation, histones, non-histone, methylation, kidney diseases.

[1]
Luyckx, V.A.; Tonelli, M.; Stanifer, J.W. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ., 2018, 96(6), 414-422D.
[http://dx.doi.org/10.2471/BLT.17.206441] [PMID: 29904224]
[2]
Petronis, A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature, 2010, 465(7299), 721-727.
[http://dx.doi.org/10.1038/nature09230] [PMID: 20535201]
[3]
Dressler, G.R.; Patel, S.R. Epigenetics in kidney development and renal disease. Transl. Res., 2015, 165(1), 166-176.
[http://dx.doi.org/10.1016/j.trsl.2014.04.007] [PMID: 24958601]
[4]
Biswas, S.; Rao, C.M. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur. J. Pharmacol., 2018, 837, 8-24.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.021] [PMID: 30125562]
[5]
Lee, K.H.; Kim, B.C.; Jeong, S.H.; Jeong, C.W.; Ku, J.H.; Kwak, C.; Kim, H.H. Histone Demethylase LSD1 regulates kidney cancer progression by modulating androgen receptor activity. Int. J. Mol. Sci., 2020, 21(17), 6089.
[http://dx.doi.org/10.3390/ijms21176089] [PMID: 32847068]
[6]
Liu, L-M.; Sun, W-Z.; Fan, X-Z.; Xu, Y-L.; Cheng, M-B.; Zhang, Y. Methylation of C/EBPα by PRMT1 inhibits its tumor-suppressive function in breast cancer. Cancer Res., 2019, 79(11), 2865-2877.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3211] [PMID: 31015230]
[7]
Schübeler, D. Function and information content of DNA methylation. Nature, 2015, 517(7534), 321-326.
[http://dx.doi.org/10.1038/nature14192] [PMID: 25592537]
[8]
Beckerman, P.; Ko, Y-A.; Susztak, K. Epigenetics: A new way to look at kidney diseases. Nephrol. Dial. Transplant., 2014, 29(10), 1821-1827.
[http://dx.doi.org/10.1093/ndt/gfu026] [PMID: 24675284]
[9]
Latham, K.E. X chromosome imprinting and inactivation in the early mammalian embryo. Trends Genet., 1996, 12(4), 134-138.
[http://dx.doi.org/10.1016/0168-9525(96)10017-2] [PMID: 8901417]
[10]
Smith, S.S. Maintaining the unmethylated state. Clin. Epigenetics, 2013, 5(1), 17.
[http://dx.doi.org/10.1186/1868-7083-5-17] [PMID: 24079333]
[11]
Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA, 1999, 96(15), 8681-8686.
[http://dx.doi.org/10.1073/pnas.96.15.8681] [PMID: 10411935]
[12]
Zhang, L.; Zhang, Q.; Liu, S.; Chen, Y.; Li, R.; Lin, T.; Yu, C.; Zhang, H.; Huang, Z.; Zhao, X.; Tan, X.; Li, Z.; Ye, Z.; Ma, J.; Zhang, B.; Wang, W.; Shi, W.; Liang, X. DNA methyltransferase 1 may be a therapy target for attenuating diabetic nephropathy and podocyte injury. Kidney Int., 2017, 92(1), 140-153.
[http://dx.doi.org/10.1016/j.kint.2017.01.010] [PMID: 28318634]
[13]
Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 2012, 13(7), 484-492.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[14]
Okano, M.; Xie, S.; Li, E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res., 1998, 26(11), 2536-2540.
[http://dx.doi.org/10.1093/nar/26.11.2536] [PMID: 9592134]
[15]
Goll, M.G.; Kirpekar, F.; Maggert, K.A.; Yoder, J.A.; Hsieh, C-L.; Zhang, X.; Golic, K.G.; Jacobsen, S.E.; Bestor, T.H. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006, 311(5759), 395-398.
[http://dx.doi.org/10.1126/science.1120976] [PMID: 16424344]
[16]
Tuorto, F.; Herbst, F.; Alerasool, N.; Bender, S.; Popp, O.; Federico, G.; Reitter, S.; Liebers, R.; Stoecklin, G.; Gröne, H.J.; Dittmar, G.; Glimm, H.; Lyko, F. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J., 2015, 34(18), 2350-2362.
[http://dx.doi.org/10.15252/embj.201591382] [PMID: 26271101]
[17]
Rassoulzadegan, M.; Grandjean, V.; Gounon, P.; Vincent, S.; Gillot, I.; Cuzin, F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature, 2006, 441(7092), 469-474.
[http://dx.doi.org/10.1038/nature04674] [PMID: 16724059]
[18]
Dahl, C.; Guldberg, P. DNA methylation analysis techniques. Biogerontology, 2003, 4(4), 233-250.
[http://dx.doi.org/10.1023/A:1025103319328] [PMID: 14501188]
[19]
Guo, C.; Pei, L.; Xiao, X.; Wei, Q.; Chen, J-K.; Ding, H-F.; Huang, S.; Fan, G.; Shi, H.; Dong, Z. DNA methylation protects against cisplatin-induced kidney injury by regulating specific genes, including interferon regulatory factor 8. Kidney Int., 2017, 92(5), 1194-1205.
[http://dx.doi.org/10.1016/j.kint.2017.03.038] [PMID: 28709638]
[20]
Wang, J.; Li, H.; Qiu, S.; Dong, Z.; Xiang, X.; Zhang, D. MBD2 upregulates miR-301a-5p to induce kidney cell apoptosis during vancomycin-induced AKI. Cell Death Dis., 2017, 8(10), e3120-e3120.
[http://dx.doi.org/10.1038/cddis.2017.509] [PMID: 29022913]
[21]
Castellano, G.; Franzin, R.; Sallustio, F.; Stasi, A.; Banelli, B.; Romani, M.; De Palma, G.; Lucarelli, G.; Divella, C.; Battaglia, M.; Crovace, A.; Staffieri, F.; Grandaliano, G.; Stallone, G.; Ditonno, P.; Cravedi, P.; Cantaluppi, V.; Gesualdo, L. Complement component C5a induces aberrant epigenetic modifications in renal tubular epithelial cells accelerating senescence by Wnt4/βcatenin signaling after ischemia/reperfusion injury. Aging (Albany NY), 2019, 11(13), 4382-4406.
[http://dx.doi.org/10.18632/aging.102059] [PMID: 31284268]
[22]
Tampe, B.; Steinle, U.; Tampe, D.; Carstens, J.L.; Korsten, P.; Zeisberg, E.M.; Müller, G.A.; Kalluri, R.; Zeisberg, M. Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression. Kidney Int., 2017, 91(1), 157-176.
[http://dx.doi.org/10.1016/j.kint.2016.07.042] [PMID: 27692563]
[23]
Singh, N.; Dueñas-González, A.; Lyko, F.; Medina-Franco, J.L. Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem, 2009, 4(5), 792-799.
[http://dx.doi.org/10.1002/cmdc.200900017] [PMID: 19322801]
[24]
Yin, S.; Zhang, Q.; Yang, J.; Lin, W.; Li, Y.; Chen, F.; Cao, W. TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(7), 1207-1216.
[http://dx.doi.org/10.1016/j.bbamcr.2017.03.002] [PMID: 28285987]
[25]
Agha, G.; Mendelson, M.M.; Ward-Caviness, C.K.; Joehanes, R.; Huan, T.; Gondalia, R.; Salfati, E.; Brody, J.A.; Fiorito, G.; Bressler, J.; Chen, B.H.; Ligthart, S.; Guarrera, S.; Colicino, E.; Just, A.C.; Wahl, S.; Gieger, C.; Vandiver, A.R.; Tanaka, T.; Hernandez, D.G.; Pilling, L.C.; Singleton, A.B.; Sacerdote, C.; Krogh, V.; Panico, S.; Tumino, R.; Li, Y.; Zhang, G.; Stewart, J.D.; Floyd, J.S.; Wiggins, K.L.; Rotter, J.I.; Multhaup, M.; Bakulski, K.; Horvath, S.; Tsao, P.S.; Absher, D.M.; Vokonas, P.; Hirschhorn, J.; Fallin, M.D.; Liu, C.; Bandinelli, S.; Boerwinkle, E.; Dehghan, A.; Schwartz, J.D.; Psaty, B.M.; Feinberg, A.P.; Hou, L.; Ferrucci, L.; Sotoodehnia, N.; Matullo, G.; Peters, A.; Fornage, M.; Assimes, T.L.; Whitsel, E.A.; Levy, D.; Baccarelli, A.A. Blood leukocyte DNA methylation predicts risk of future myocardial infarction and coronary heart disease. Circulation, 2019, 140(8), 645-657.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.039357] [PMID: 31424985]
[26]
Chu, A.Y.; Tin, A.; Schlosser, P.; Ko, Y-A.; Qiu, C.; Yao, C.; Joehanes, R.; Grams, M.E.; Liang, L.; Gluck, C.A.; Liu, C.; Coresh, J.; Hwang, S.J.; Levy, D.; Boerwinkle, E.; Pankow, J.S.; Yang, Q.; Fornage, M.; Fox, C.S.; Susztak, K.; Köttgen, A. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat. Commun., 2017, 8(1), 1286-1286.
[http://dx.doi.org/10.1038/s41467-017-01297-7] [PMID: 29097680]
[27]
Wahl, S.; Drong, A.; Lehne, B.; Loh, M.; Scott, W.R.; Kunze, S.; Tsai, P.C.; Ried, J.S.; Zhang, W.; Yang, Y.; Tan, S.; Fiorito, G.; Franke, L.; Guarrera, S.; Kasela, S.; Kriebel, J.; Richmond, R.C.; Adamo, M.; Afzal, U.; Ala-Korpela, M.; Albetti, B.; Ammerpohl, O.; Apperley, J.F.; Beekman, M.; Bertazzi, P.A.; Black, S.L.; Blancher, C.; Bonder, M.J.; Brosch, M.; Carstensen-Kirberg, M.; de Craen, A.J.; de Lusignan, S.; Dehghan, A.; Elkalaawy, M.; Fischer, K.; Franco, O.H.; Gaunt, T.R.; Hampe, J.; Hashemi, M.; Isaacs, A.; Jenkinson, A.; Jha, S.; Kato, N.; Krogh, V.; Laffan, M.; Meisinger, C.; Meitinger, T.; Mok, Z.Y.; Motta, V.; Ng, H.K.; Nikolakopoulou, Z.; Nteliopoulos, G.; Panico, S.; Pervjakova, N.; Prokisch, H.; Rathmann, W.; Roden, M.; Rota, F.; Rozario, M.A.; Sandling, J.K.; Schafmayer, C.; Schramm, K.; Siebert, R.; Slagboom, P.E.; Soininen, P.; Stolk, L.; Strauch, K.; Tai, E.S.; Tarantini, L.; Thorand, B.; Tigchelaar, E.F.; Tumino, R.; Uitterlinden, A.G.; van Duijn, C.; van Meurs, J.B.; Vineis, P.; Wickremasinghe, A.R.; Wijmenga, C.; Yang, T.P.; Yuan, W.; Zhernakova, A.; Batterham, R.L.; Smith, G.D.; Deloukas, P.; Heijmans, B.T.; Herder, C.; Hofman, A.; Lindgren, C.M.; Milani, L.; van der Harst, P.; Peters, A.; Illig, T.; Relton, C.L.; Waldenberger, M.; Järvelin, M.R.; Bollati, V.; Soong, R.; Spector, T.D.; Scott, J.; McCarthy, M.I.; Elliott, P.; Bell, J.T.; Matullo, G.; Gieger, C.; Kooner, J.S.; Grallert, H.; Chambers, J.C. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature, 2017, 541(7635), 81-86.
[http://dx.doi.org/10.1038/nature20784] [PMID: 28002404]
[28]
Zawada, A.M.; Schneider, J.S.; Michel, A.I.; Rogacev, K.S.; Hummel, B.; Krezdorn, N.; Müller, S.; Rotter, B.; Winter, P.; Obeid, R.; Geisel, J.; Fliser, D.; Heine, G.H. DNA methylation profiling reveals differences in the 3 human monocyte subsets and identifies uremia to induce DNA methylation changes during differentiation. Epigenetics, 2016, 11(4), 259-272.
[http://dx.doi.org/10.1080/15592294.2016.1158363] [PMID: 27018948]
[29]
Hamatani, H.; Sakairi, T.; Ikeuchi, H.; Kaneko, Y.; Maeshima, A.; Nojima, Y.; Hiromura, K. TGF-β1 alters DNA methylation levels in promoter and enhancer regions of the WT1 gene in human podocytes. Nephrology (Carlton), 2019, 24(5), 575-584.
[http://dx.doi.org/10.1111/nep.13411] [PMID: 29851165]
[30]
Heylen, L.; Thienpont, B.; Naesens, M.; Lambrechts, D.; Sprangers, B. The emerging role of DNA methylation in kidney transplantation: A perspective. Am. J. Transplant., 2016, 16(4), 1070-1078.
[http://dx.doi.org/10.1111/ajt.13585] [PMID: 26780242]
[31]
Chen, G.; Chen, H.; Ren, S.; Xia, M.; Zhu, J.; Liu, Y.; Zhang, L.; Tang, L.; Sun, L.; Liu, H.; Dong, Z. Aberrant DNA methylation of mTOR pathway genes promotes inflammatory activation of immune cells in diabetic kidney disease. Kidney Int., 2019, 96(2), 409-420.
[http://dx.doi.org/10.1016/j.kint.2019.02.020] [PMID: 31101365]
[32]
Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature, 2017, 542(7640), 177-185.
[http://dx.doi.org/10.1038/nature21363] [PMID: 28179656]
[33]
Bansal, A.; Balasubramanian, S.; Dhawan, S.; Leung, A.; Chen, Z.; Natarajan, R. Integrative omics analyses reveal epigenetic memory in diabetic renal cells regulating genes associated with kidney dysfunction. Diabetes, 2020, 69(11), 2490-2502.
[http://dx.doi.org/10.2337/db20-0382] [PMID: 32747424]
[34]
Watanabe, A.; Marumo, T.; Kawarazaki, W.; Nishimoto, M.; Ayuzawa, N.; Ueda, K.; Hirohama, D.; Tanaka, T.; Yagi, S.; Ota, S.; Nagae, G.; Aburatani, H.; Kumagai, H.; Fujita, T. Aberrant DNA methylation of pregnane X receptor underlies metabolic gene alterations in the diabetic kidney. Am. J. Physiol. Renal Physiol., 2018, 314(4), F551-F560.
[http://dx.doi.org/10.1152/ajprenal.00390.2017] [PMID: 29212764]
[35]
Smyth, L.J.; Patterson, C.C.; Swan, E.J.; Maxwell, A.P.; McKnight, A.J. DNA methylation associated with diabetic kidney disease in blood-derived DNA. Front. Cell Dev. Biol., 2020, 8561907
[http://dx.doi.org/10.3389/fcell.2020.561907] [PMID: 33178681]
[36]
Oba, S.; Ayuzawa, N.; Nishimoto, M.; Kawarazaki, W.; Ueda, K.; Hirohama, D.; Kawakami-Mori, F.; Shimosawa, T.; Marumo, T.; Fujita, T. Aberrant DNA methylation of Tgfb1 in diabetic kidney mesangial cells. Sci. Rep., 2018, 8(1), 16338.
[http://dx.doi.org/10.1038/s41598-018-34612-3] [PMID: 30397232]
[37]
Chen, W.; Zhuang, J.; Wang, P.P.; Jiang, J.; Lin, C.; Zeng, P.; Liang, Y.; Zhang, X.; Dai, Y.; Diao, H. DNA methylation-based classification and identification of renal cell carcinoma prognosis-subgroups. Cancer Cell Int., 2019, 19(1), 185.
[http://dx.doi.org/10.1186/s12935-019-0900-4] [PMID: 31346320]
[38]
Miao, Y.; Cao, F.; Li, P.; Liu, P. DNA methylation of Hugl-2 is a prognostic biomarker in kidney renal clear cell carcinoma. Clin. Exp. Pharmacol. Physiol., 2020, 48(1), 44-53.
[http://dx.doi.org/10.1111/1440-1681.13390] [PMID: 32754907]
[39]
Heylen, L.; Thienpont, B.; Busschaert, P.; Sprangers, B.; Kuypers, D.; Moisse, M.; Lerut, E.; Lambrechts, D.; Naesens, M. Age-related changes in DNA methylation affect renal histology and post-transplant fibrosis. Kidney Int., 2019, 96(5), 1195-1204.
[http://dx.doi.org/10.1016/j.kint.2019.06.018] [PMID: 31530476]
[40]
Yang, Q.; Chen, H-Y.; Wang, J-N.; Han, H-Q.; Jiang, L.; Wu, W-F.; Wei, B.; Gao, L.; Ma, Q.Y.; Liu, X.Q.; Chen, Q.; Wen, J.G.; Jin, J.; Huang, Y.; Ni, W.J.; Ma, T.T.; Li, J.; Meng, X.M. Alcohol promotes renal fibrosis by activating Nox2/4-mediated DNA methylation of Smad7. Clin. Sci. (Lond.), 2020, 134(2), 103-122.
[http://dx.doi.org/10.1042/CS20191047] [PMID: 31898747]
[41]
Chang, Y.W.; Singh, K.P. Arsenic induces fibrogenic changes in human kidney epithelial cells potentially through epigenetic alterations in DNA methylation. J. Cell. Physiol., 2019, 234(4), 4713-4725.
[http://dx.doi.org/10.1002/jcp.27244] [PMID: 30191986]
[42]
Li, H.; Zhang, W.; Zhong, F.; Das, G.C.; Xie, Y.; Li, Z.; Cai, W.; Jiang, G.; Choi, J.; Sidani, M.; Hyink, D.P.; Lee, K.; Klotman, P.E.; He, J.C. Epigenetic regulation of RCAN1 expression in kidney disease and its role in podocyte injury. Kidney Int., 2018, 94(6), 1160-1176.
[http://dx.doi.org/10.1016/j.kint.2018.07.023] [PMID: 30366682]
[43]
Zinellu, A.; Sotgia, S.; Sotgiu, E.; Assaretti, S.; Baralla, A.; Mangoni, A.A.; Satta, A.E.; Carru, C. Cholesterol lowering treatment restores blood global DNA methylation in chronic kidney disease (CKD) patients. Nutr. Metab. Cardiovasc. Dis., 2017, 27(9), 822-829.
[http://dx.doi.org/10.1016/j.numecd.2017.06.011] [PMID: 28755807]
[44]
Hayashi, K.; Hishikawa, A.; Hashiguchi, A.; Azegami, T.; Yoshimoto, N.; Nakamichi, R.; Tokuyama, H.; Itoh, H. Association of glomerular DNA damage and DNA methylation with one-year eGFR decline in IgA nephropathy. Sci. Rep., 2020, 10(1), 237.
[http://dx.doi.org/10.1038/s41598-019-57140-0] [PMID: 31937846]
[45]
Smyth, L.J.; Duffy, S.; Maxwell, A.P.; McKnight, A.J. Genetic and epigenetic factors influencing chronic kidney disease. Am. J. Physiol. Renal Physiol., 2014, 307(7), F757-F776.
[http://dx.doi.org/10.1152/ajprenal.00306.2014] [PMID: 25080522]
[46]
Hishikawa, A.; Hayashi, K.; Abe, T.; Kaneko, M.; Yokoi, H.; Azegami, T.; Nakamura, M.; Yoshimoto, N.; Kanda, T.; Sakamaki, Y.; Itoh, H. Decreased KAT5 expression impairs DNA repair and induces altered DNA methylation in kidney podocytes. Cell Rep., 2019, 26(5), 1318-1332.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.01.005] [PMID: 30699357]
[47]
Hishikawa, A.; Hayashi, K.; Yoshimoto, N.; Nakamichi, R.; Homma, K.; Itoh, H. DNA damage and expression of DNA methylation modulators in urine-derived cells of patients with hypertension and diabetes. Sci. Rep., 2020, 10(1), 3377.
[http://dx.doi.org/10.1038/s41598-020-60420-9] [PMID: 32099032]
[48]
Cann, K.L.; Dellaire, G. Heterochromatin and the DNA damage response: The need to relax. Biochem. Cell Biol., 2011, 89(1), 45-60.
[http://dx.doi.org/10.1139/O10-113] [PMID: 21326362]
[49]
Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 2011, 333(6047), 1300-1303.
[http://dx.doi.org/10.1126/science.1210597] [PMID: 21778364]
[50]
Ito, S.; D’Alessio, A.C.; Taranova, O.V.; Hong, K.; Sowers, L.C.; Zhang, Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 2010, 466(7310), 1129-1133.
[http://dx.doi.org/10.1038/nature09303] [PMID: 20639862]
[51]
Huang, N.; Tan, L.; Xue, Z.; Cang, J.; Wang, H. Reduction of DNA hydroxymethylation in the mouse kidney insulted by ischemia reperfusion. Biochem. Biophys. Res. Commun., 2012, 422(4), 697-702.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.061] [PMID: 22627137]
[52]
Williams, K.; Christensen, J.; Pedersen, M.T.; Johansen, J.V.; Cloos, P.A.; Rappsilber, J.; Helin, K. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature, 2011, 473(7347), 343-348.
[http://dx.doi.org/10.1038/nature10066] [PMID: 21490601]
[53]
Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; Rao, A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929), 930-935.
[http://dx.doi.org/10.1126/science.1170116] [PMID: 19372391]
[54]
Watson, C.J.; Collier, P.; Tea, I.; Neary, R.; Watson, J.A.; Robinson, C.; Phelan, D.; Ledwidge, M.T.; McDonald, K.M.; McCann, A.; Sharaf, O.; Baugh, J.A. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum. Mol. Genet., 2014, 23(8), 2176-2188.
[http://dx.doi.org/10.1093/hmg/ddt614] [PMID: 24301681]
[55]
Singh, V.; Sharma, P.; Capalash, N. DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Curr. Cancer Drug Targets, 2013, 13(4), 379-399.
[http://dx.doi.org/10.2174/15680096113139990077] [PMID: 23517596]
[56]
Liu, B.; Du, Q.; Chen, L.; Fu, G.; Li, S.; Fu, L.; Zhang, X.; Ma, C.; Bin, C. CpG methylation patterns of human mitochondrial DNA. Sci. Rep., 2016, 6(1), 23421.
[http://dx.doi.org/10.1038/srep23421] [PMID: 26996456]
[57]
Mau, T.; Yung, R. Potential of epigenetic therapies in non-cancerous conditions. Front. Genet., 2014, 5, 438.
[http://dx.doi.org/10.3389/fgene.2014.00438] [PMID: 25566322]
[58]
Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet., 2012, 13(5), 343-357.
[http://dx.doi.org/10.1038/nrg3173] [PMID: 22473383]
[59]
Nguyen, A.T.; Zhang, Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev., 2011, 25(13), 1345-1358.
[http://dx.doi.org/10.1101/gad.2057811] [PMID: 21724828]
[60]
Zhang, A.S.; Xu, Y.P.; Sui, X.L.; Zhang, Y.Z.; Gu, F.J.; Chen, J.H. Correlation between histone H3K4 trimethylation and DNA methylation and evaluation of the metabolomic features in acute rejection after kidney transplantation. Am. J. Transl. Res., 2020, 12(11), 7565-7580.
[PMID: 33312389]
[61]
Lin, S-H.; Ho, W-T.; Wang, Y-T.; Chuang, C-T.; Chuang, L-Y.; Guh, J-Y. Histone methyltransferase Suv39h1 attenuates high glucose-induced fibronectin and p21(WAF1) in mesangial cells. Int. J. Biochem. Cell Biol., 2016, 78, 96-105.
[http://dx.doi.org/10.1016/j.biocel.2016.06.021] [PMID: 27373678]
[62]
Sasaki, K.; Doi, S.; Nakashima, A.; Irifuku, T.; Yamada, K.; Kokoroishi, K.; Ueno, T.; Doi, T.; Hida, E.; Arihiro, K.; Kohno, N.; Masaki, T. Inhibition of SET domain-containing lysine methyltransferase 7/9 ameliorates renal fibrosis. J. Am. Soc. Nephrol., 2016, 27(1), 203-215.
[http://dx.doi.org/10.1681/ASN.2014090850] [PMID: 26045091]
[63]
Irifuku, T.; Doi, S.; Sasaki, K.; Doi, T.; Nakashima, A.; Ueno, T.; Yamada, K.; Arihiro, K.; Kohno, N.; Masaki, T. Inhibition of H3K9 histone methyltransferase G9a attenuates renal fibrosis and retains klotho expression. Kidney Int., 2016, 89(1), 147-157.
[http://dx.doi.org/10.1038/ki.2015.291] [PMID: 26444031]
[64]
Sharma, N.; Sankrityayan, H.; Kale, A.; Gaikwad, A.B. Role of SET7/9 in the progression of ischemic renal injury in diabetic and non-diabetic rats. Biochem. Biophys. Res. Commun., 2020, 528(1), 14-20.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.075] [PMID: 32448511]
[65]
Chen, J.; Gu, Y.; Zhang, H.; Ning, Y.; Song, N.; Hu, J.; Cai, J.; Shi, Y.; Ding, X.; Zhang, X. Amelioration of uremic toxin indoxyl sulfate-induced osteoblastic calcification by SET domain containing lysine methyltransferase 7/9 protein. Nephron, 2019, 141(4), 287-294.
[http://dx.doi.org/10.1159/000495885] [PMID: 30783062]
[66]
Jia, Y.; Reddy, M.A.; Das, S.; Oh, H.J.; Abdollahi, M.; Yuan, H.; Zhang, E.; Lanting, L.; Wang, M.; Natarajan, R. Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1-induced gene expression in mesangial cells and diabetic kidney. J. Biol. Chem., 2019, 294(34), 12695-12707.
[http://dx.doi.org/10.1074/jbc.RA119.007575] [PMID: 31266808]
[67]
Soofi, A.; Kutschat, A.P.; Azam, M.; Laszczyk, A.M.; Dressler, G.R. Regeneration after acute kidney injury requires PTIP-mediated epigenetic modifications. JCI Insight, 2020, 5(3)e130204
[http://dx.doi.org/10.1172/jci.insight.130204] [PMID: 31917689]
[68]
Morera, L.; Lübbert, M.; Jung, M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics, 2016, 8(1), 57.
[http://dx.doi.org/10.1186/s13148-016-0223-4] [PMID: 27222667]
[69]
Liu, Y.; Yu, Y.; Zhang, J.; Wang, C. The therapeutic effect of dexmedetomidine on protection from renal failure via inhibiting KDM5A in lipopolysaccharide-induced sepsis of mice. Life Sci., 2019, 239(239)116868
[http://dx.doi.org/10.1016/j.lfs.2019.116868] [PMID: 31682847]
[70]
Chen, H.; Huang, Y.; Zhu, X.; Liu, C.; Yuan, Y.; Su, H.; Zhang, C.; Liu, C.; Xiong, M.; Qu, Y.; Yun, P.; Zheng, L.; Huang, K. Histone demethylase UTX is a therapeutic target for diabetic kidney disease. J. Physiol., 2019, 597(6), 1643-1660.
[http://dx.doi.org/10.1113/JP277367] [PMID: 30516825]
[71]
Guo, Y.; Xiong, Z.; Guo, X. Histone demethylase KDM6B regulates human podocyte differentiation in vitro. Biochem. J., 2019, 476(12), 1741-1751.
[http://dx.doi.org/10.1042/BCJ20180968] [PMID: 31138771]
[72]
Deng, X.; Hamamoto, R.; Vougiouklakis, T.; Wang, R.; Yoshioka, Y.; Suzuki, T.; Dohmae, N.; Matsuo, Y.; Park, J.H.; Nakamura, Y. Critical roles of SMYD2-mediated β-catenin methylation for nuclear translocation and activation of Wnt signaling. Oncotarget, 2017, 8(34), 55837-55847.
[http://dx.doi.org/10.18632/oncotarget.19646] [PMID: 28915556]
[73]
Li, L.X.; Fan, L.X.; Zhou, J.X.; Grantham, J.J.; Calvet, J.P.; Sage, J.; Li, X. Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease. J. Clin. Invest., 2017, 127(7), 2751-2764.
[http://dx.doi.org/10.1172/JCI90921] [PMID: 28604386]
[74]
Ea, C-K.; Baltimore, D. Regulation of NF-kappaB activity through lysine monomethylation of p65. Proc. Natl. Acad. Sci. USA, 2009, 106(45), 18972-18977.
[http://dx.doi.org/10.1073/pnas.0910439106] [PMID: 19864627]
[75]
Roworth, A.P.; Carr, S.M.; Liu, G.; Barczak, W.; Miller, R.L.; Munro, S.; Kanapin, A.; Samsonova, A.; La Thangue, N.B. Arginine methylation expands the regulatory mechanisms and extends the genomic landscape under E2F control. Sci. Adv., 2019, 5(6)eaaw4640
[http://dx.doi.org/10.1126/sciadv.aaw4640] [PMID: 31249870]
[76]
Huang, L.; Wang, Z.; Narayanan, N.; Yang, Y. Arginine methylation of the C-terminus RGG motif promotes TOP3B topoisomerase activity and stress granule localization. Nucleic Acids Res., 2018, 46(6), 3061-3074.
[http://dx.doi.org/10.1093/nar/gky103] [PMID: 29471495]
[77]
Zhu, Y.; He, X.; Lin, Y.C.; Dong, H.; Zhang, L.; Chen, X.; Wang, Z.; Shen, Y.; Li, M.; Wang, H.; Sun, J.; Nguyen, L.X.; Zhang, H.; Jiang, W.; Yang, Y.; Chen, J.; Müschen, M.; Chen, C.W.; Konopleva, M.Y.; Sun, W.; Jin, J.; Carlesso, N.; Marcucci, G.; Luo, Y.; Li, L. Targeting PRMT1-mediated FLT3 methylation disrupts maintenance of MLL-rearranged acute lymphoblastic leukemia. Blood, 2019, 134(15), 1257-1268.
[http://dx.doi.org/10.1182/blood.2019002457] [PMID: 31395602]
[78]
Boisvert, F-M.; Rhie, A.; Richard, S.; Doherty, A.J. The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle, 2005, 4(12), 1834-1841.
[http://dx.doi.org/10.4161/cc.4.12.2250] [PMID: 16294045]
[79]
Boisvert, F.M.; Déry, U.; Masson, J.Y.; Richard, S. Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev., 2005, 19(6), 671-676.
[http://dx.doi.org/10.1101/gad.1279805] [PMID: 15741314]
[80]
Choi, H-J.; Weis, W.I. Purification and Structural Analysis of Desmoplakin.In: Methods in Enzymology; Wilson, K.L.; Sonnenberg, A., Eds.; Academic Press, USA, , 2016; 569, pp. (Ch. 11)197-213.
[81]
Yoshimoto, T.; Boehm, M.; Olive, M.; Crook, M.F.; San, H.; Langenickel, T.; Nabel, E.G. The arginine methyltransferase PRMT2 binds RB and regulates E2F function. Exp. Cell Res., 2006, 312(11), 2040-2053.
[http://dx.doi.org/10.1016/j.yexcr.2006.03.001] [PMID: 16616919]
[82]
Marjon, K.; Cameron, M.J.; Quang, P.; Clasquin, M.F.; Mandley, E.; Kunii, K.; McVay, M.; Choe, S.; Kernytsky, A.; Gross, S.; Konteatis, Z.; Murtie, J.; Blake, M.L.; Travins, J.; Dorsch, M.; Biller, S.A.; Marks, K.M. MTAP Deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep., 2016, 15(3), 574-587.
[http://dx.doi.org/10.1016/j.celrep.2016.03.043] [PMID: 27068473]
[83]
Hsu, M-C.; Pan, M-R.; Chu, P-Y.; Tsai, Y-L.; Tsai, C-H.; Shan, Y-S.; Chen, L.T.; Hung, W.C. Protein Arginine methyltransferase 3 enhances chemoresistance in pancreatic cancer by methylating hnRNPA1 to increase ABCG2 expression. Cancers (Basel), 2018, 11(1), 8.
[http://dx.doi.org/10.3390/cancers11010008] [PMID: 30577570]
[84]
Cheng, D.; Vemulapalli, V.; Lu, Y.; Shen, J.; Aoyagi, S.; Fry, C.J.; Yang, Y.; Foulds, C.E.; Stossi, F.; Treviño, L.S.; Mancini, M.A.; O’Malley, B.W.; Walker, C.L.; Boyer, T.G.; Bedford, M.T. CARM1 methylates MED12 to regulate its RNA-binding ability. Life Sci. Alliance, 2018, 1(5)e201800117
[http://dx.doi.org/10.26508/lsa.201800117] [PMID: 30456381]
[85]
Waldmann, T.; Izzo, A.; Kamieniarz, K.; Richter, F.; Vogler, C.; Sarg, B.; Lindner, H.; Young, N.L.; Mittler, G.; Garcia, B.A.; Schneider, R. Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenetics Chromatin, 2011, 4(1), 11.
[http://dx.doi.org/10.1186/1756-8935-4-11] [PMID: 21774791]
[86]
Li, M.; An, W.; Xu, L.; Lin, Y.; Su, L.; Liu, X. The arginine methyltransferase PRMT5 and PRMT1 distinctly regulate the degradation of anti-apoptotic protein CFLARL in human lung cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 64.
[http://dx.doi.org/10.1186/s13046-019-1064-8] [PMID: 30736843]
[87]
Mersaoui, S.Y.; Yu, Z.; Coulombe, Y.; Karam, M.; Busatto, F.F.; Masson, J-Y.; Richard, S. Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids. EMBO J., 2019, 38(15)e100986
[http://dx.doi.org/10.15252/embj.2018100986] [PMID: 31267554]
[88]
Yang, Y.; Hadjikyriacou, A.; Xia, Z.; Gayatri, S.; Kim, D.; Zurita-Lopez, C.; Kelly, R.; Guo, A.; Li, W.; Clarke, S.G.; Bedford, M.T. PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat. Commun., 2015, 6(1), 6428.
[http://dx.doi.org/10.1038/ncomms7428] [PMID: 25737013]
[89]
Jeong, H-J.; Lee, S-J.; Lee, H-J.; Kim, H-B.; Anh Vuong, T.; Cho, H.; Bae, G.U.; Kang, J.S. PRMT7 Promotes Myoblast Differentiation Via Methylation Of P38mapk On Arginine Residue 70. Cell Death Differ., 2020, 27(2), 573-586.
[http://dx.doi.org/10.1038/s41418-019-0373-y] [PMID: 31243342]
[90]
Haghandish, N.; Baldwin, R.M.; Morettin, A.; Dawit, H.T.; Adhikary, H.; Masson, J-Y.; Mazroui, R.; Trinkle-Mulcahy, L.; Côté, J. PRMT7 methylates eukaryotic translation initiation factor 2α and regulates its role in stress granule formation. Mol. Biol. Cell, 2019, 30(6), 778-793.
[http://dx.doi.org/10.1091/mbc.E18-05-0330] [PMID: 30699057]
[91]
Baldwin, R.M.; Haghandish, N.; Daneshmand, M.; Amin, S.; Paris, G.; Falls, T.J.; Bell, J.C.; Islam, S.; Côté, J. Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget, 2015, 6(5), 3013-3032.
[http://dx.doi.org/10.18632/oncotarget.3072] [PMID: 25605249]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy