Generic placeholder image

Current Organic Chemistry


ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Carboxylation of Alkenes and Alkynes Using CO2 as a Reagent: An Overview

Author(s): Rupak Chatterjee and Asim Bhaumik*

Volume 26, Issue 1, 2022

Page: [60 - 70] Pages: 11

DOI: 10.2174/1385272825666211206090621

Price: $65


CO2 fixation reactions are of paramount interest both from economical and environmental perspectives. As an abundant, non-toxic, and renewable C1 feedstock, CO2 can be utilized for the synthesis of fuels and commodity chemicals under elevated reaction conditions. The major challenge in the CO2 utilization reactions is its chemical inertness due to high thermodynamic stability and kinetic barrier. The carboxylation of unsaturated hydrocarbons with CO2 is an important transformation as it forms high-value reaction products having industrial as well as medicinal importance. This mini-review is mainly focused on the recent developments in the homogeneously and heterogeneously catalyzed carboxylation of alkenes and alkynes by using carbon dioxide as a reagent. We have highlighted various types of carboxylation reactions of alkenes and alkynes involving different catalytic systems, which comprise mainly C-H bond activation, hydrocarboxylation, carbocarboxylation, heterocarboxylation, and ring-closing carboxylation, including visible-light assisted synthesis processes. The mechanistic pathways of these carboxylation reactions have been described. Moreover, challenges and future perspectives of these carboxylation reactions are discussed.

Keywords: Carbon-dioxide fixation, alkenes, alkynes, carboxylation, homogeneous catalysis, heterogeneous catalysis, renewable feedstock.

Graphical Abstract
Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Transition metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed. Engl., 2018, 57(49), 15948-15982.
[] [PMID: 29722461]
Our Planet's CO2 Home Page. 2018. Available from:.
Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.L.; Parmesan, C.; Rockstrom, J.; Rohling, E.J.; Sachs, J.; Smith, P.; Steffen, K.; Van Susteren, L.; von Schuckmann, K.; Zachos, J.C. Assessing “dangerous climate change”: required reduction of carbon emissions to protect young people, future generations and nature. PLoS One, 2013, 8(12)e81648
[] [PMID: 24312568]
Saini, S.; Prajapati, P.K.; Jain, S.L. Transition metal-catalyzed carboxylation of olefins with carbon dioxide: a comprehensive review. Catal. Rev., Sci. Eng., 2020, 1-47.
Cai, X.; Xie, B. Direct carboxylative reactions for the transformation of carbon dioxide into carboxylic acids and derivatives. Synth, 2013, 45(24), 3305-3324.
Sakakura, T.; Choi, J.C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev., 2007, 107(6), 2365-2387.
[] [PMID: 17564481]
Mikkelsen, M.; Jørgensen, M.; Krebs, F.C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 2010, 3, 43-81.
Bhunia, S.; Molla, R.A.; Kumari, V.; Islam, S.M.; Bhaumik, A. Zn(ii) assisted synthesis of porous salen as an efficient heterogeneous scaffold for capture and conversion of CO2. Chem. Commun. (Camb.), 2015, 51(86), 15732-15735.
[] [PMID: 26365199]
Bhanja, P.; Modak, A.; Bhaumik, A. Supported porous nanomaterials as efficient heterogeneous catalysts for CO2 fixation reactions. Chemistry, 2018, 24(29), 7278-7297.
[] [PMID: 29396871]
Kaur, P.; Chopra, H.K. Recent advances in applications of supported ionic liquids. Curr. Org. Chem., 2019, 23(26), 2881-2915.
Bhanja, P.; Modak, A.; Bhaumik, A. Porous organic polymers for CO2 storage and conversion reactions. ChemCatChem, 2019, 11(1), 244-257.
Modak, A.; Bhanja, P.; Dutta, S.; Chowdhury, B.; Bhaumik, A. Catalytic reduction of CO2 into fuels and fine chemicals. Green Chem., 2020, 22(13), 4002-4033.
Marciniak, A.A.; Henrique, F.J.F.S.; de Lima, A.F.F.; Alves, O.C.; Moreira, C.R.; Appel, L.G.; Mota, C.J.A. What are the preferred CeO2 exposed planes for the synthesis of dimethyl carbonate? Answers from theory and experiments. Mol. Catal, 2020, 493111053
Ballatore, C.; Huryn, D.M.; Smith, A.B. III Carboxylic acid (bio)isosteres in drug design. ChemMedChem, 2013, 8(3), 385-395.
[] [PMID: 23361977]
Goossen, L.J.; Rodríguez, N.; Goossen, K. Carboxylic acids as substrates in homogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2008, 47(17), 3100-3120.
[] [PMID: 18357604]
Correa, A.; Martín, R. Metal-catalyzed carboxylation of organometallic reagents with carbon dioxide. Angew. Chem. Int. Ed. Engl., 2009, 48(34), 6201-6204.
[] [PMID: 19544522]
Wu, X.F.; Fang, X.; Wu, L.; Jackstell, R.; Neumann, H.; Beller, M. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account. Acc. Chem. Res., 2014, 47(4), 1041-1053.
[] [PMID: 24564478]
Katagiri, T.; Amao, Y. Recent advances in light-driven C-H bond activation and building C-C bonds with CO2 as a feedstock for carbon capture and utilization technology. Green Chem., 2020, 22(20), 6682-6713.
Colby, D.A.; Bergman, R.G.; Ellman, J.A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem. Rev., 2010, 110(2), 624-655.
[] [PMID: 19438203]
Liu, Y.; Kim, J.; Chae, J. Heterocycle construction via transition metal-catalyzed C-H functionalization and C-heteroatom bond formation. Curr. Org. Chem., 2014, 18(16), 2049-2071.
Dodangeh, M.; Ramazani, A.; Maghsoodlou, M.T.; Zarei, A.; Rezayati, S. Application of readily available metals for C-H activation. Curr. Org. Chem., 2020, 24(14), 1582-1609.
Nemoto, K.; Yoshida, H.; Egusa, N.; Morohashi, N.; Hattori, T. Direct carboxylation of arenes and halobenzenes with CO2 by the combined use of AlBr3 and R3SiCl. J. Org. Chem., 2010, 75(22), 7855-7862.
[] [PMID: 21033692]
Nemoto, K.; Onozawa, S.; Konno, M.; Morohashi, N.; Hattori, T. Direct carboxylation of thiophenes and benzothiophenes with the aid of EtAlCl2. Bull. Chem. Soc. Jpn., 2012, 85(3), 369-371.
Nemoto, K.; Tanaka, S.; Konno, M.; Onozawa, S.; Chiba, M.; Tanaka, Y.; Sasaki, Y.; Okubo, R.; Hattori, T. Me2AlCl-mediated carboxylation, ethoxycarbonylation, and carbamoylation of indoles. Tetrahedron, 2016, 72(5), 734-745.
Tanaka, S.; Watanabe, K.; Tanaka, Y.; Hattori, T. EtAlCl2/2,6-disubstituted pyridine-mediated carboxylation of alkenes with carbon dioxide. Org. Lett., 2016, 18(11), 2576-2579.
[] [PMID: 27187716]
Ostapowicz, T.G.; Hölscher, M.; Leitner, W. Catalytic hydrocarboxylation of olefins with CO2 and H2- a DFT computational analysis. Eur. J. Inorg. Chem., 2012, 34, 5632-5641.
Omae, I. Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev., 2012, 256(13-14), 1384-1405.
Andrushko, N.; Andrushko, V.; Thyrann, T.; König, G.; Börner, A. ynthesis of enantiopure (R)-2-(4-methoxy-3-(3-methoxypropoxy)-benzyl)-3-methylbutanoic acid - a key intermediate for the preparation of Aliskiren. 2008, 49, 5980-5982.,
Xiong, W.; Shi, F.; Cheng, R.; Zhu, B.; Wang, L.; Chen, P.; Lou, H. Palladium-catalyzed highly regioselective hydrocarboxylation of alkynes with carbon dioxide. ACS Catal., 2020, 10(14), 7968-7978.
Simonato, J.; Walter, T.; Métivier, P. Iridium-formic acid based system for hydroxycarbonylation without CO Gas. J. Mol. Catal. Chem., 2001, 171(1-2), 91-94.
Ostapowicz, T.G.; Schmitz, M.; Krystof, M.; Klankermayer, J.; Leitner, W. Carbon dioxide as a C1 building block for the formation of carboxylic acids by formal catalytic hydrocarboxylation. Angew. Chem., 2013, 125(46), 12341-12345.
Yuan, Q.; Song, X.; Feng, S.; Jiang, M.; Yan, L.; Li, J.; Ding, Y. An efficient and ultrastable single-Rh-site catalyst on a porous organic polymer for heterogeneous hydrocarboxylation of olefins. Chem. Commun. (Camb.), 2021, 57(4), 472-475.
[] [PMID: 33326517]
Hou, J.; Ee, A.; Cao, H.; Ong, H.W.; Xu, J.H.; Wu, J. Visible-light-mediated metal-free difunctionalization of alkenes with CO2 and silanes or C(Sp3)−H alkanes. Angew. Chem. Int. Ed. Engl., 2018, 57(52), 17220-17224.
[] [PMID: 30411439]
Nan, S.; Hai-Bin, W.; Li, G.; Jing-Yao, Z.; Jian-Feng, G.; Fang, W.; Ebadi, A. A. Sila-, bora-, thio-, and phosphono-carboxylation of unsaturated compounds with carbon dioxide: an overview. J. CO2 Util, 2021, 48, 101522.,
Butcher, T.W.; McClain, E.J.; Hamilton, T.G.; Perrone, T.M.; Kroner, K.M.; Donohoe, G.C.; Akhmedov, N.G.; Petersen, J.L.; Popp, B.V. Regioselective copper-catalyzed boracarboxylation of vinyl arenes. Org. Lett., 2016, 18(24), 6428-6431.
[] [PMID: 27978640]
Ye, J.H.; Miao, M.; Huang, H.; Yan, S.S.; Yin, Z.B.; Zhou, W.J.; Yu, D.G. Visible-light-driven iron-promoted thiocarboxylation of styrenes and acrylates with CO2. Angew. Chem. Int. Ed. Engl., 2017, 56(48), 15416-15420.
[] [PMID: 29024349]
Fu, Q.; Bo, Z.Y.; Ye, J.H.; Ju, T.; Huang, H.; Liao, L.L.; Yu, D.G. Transition metal-free phosphonocarboxylation of alkenes with carbon dioxide via visible-light photoredox catalysis. Nat. Commun., 2019, 10(1), 3592.
[] [PMID: 31399588]
Takimoto, M.; Mori, M. Novel catalytic CO2 incorporation reaction: nickel-catalyzed regio- and stereoselective ring-closing carboxylation of bis-1,3-dienes. J. Am. Chem. Soc., 2002, 124(34), 10008-10009.
[] [PMID: 12188663]
Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. Highly enantioselective catalytic carbon dioxide incorporation reaction: nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes. J. Am. Chem. Soc., 2004, 126(19), 5956-5957.
[] [PMID: 15137747]
Tsuda, T.; Ueda, K.; Saegusa, T. Carbon dioxide insertion into organocopper and organosilver compounds. J. Chem. Soc. Chem. Commun., 1974, 5(10), 380-381.
Fukue, Y.; Oi, S.Y.I. Direct synthesis of alkyl-2-alkynoates from alk-l-ynes, CO2, and bromoalkanes catalysed by copper(1) or silver(1) salt. J. Chem. Soc. Chem. Commun., 1994, 18, 2091.
Dang, Q.Q.; Liu, C.Y.; Wang, X.M.; Zhang, X.M. Novel covalent triazine framework for high-performance CO2 capture and alkyne carboxylation reaction. ACS Appl. Mater. Interfaces, 2018, 10(33), 27972-27978.
[] [PMID: 30040377]
Lan, X.; Du, C.; Cao, L.; She, T.; Li, Y.; Bai, G. Ultrafine Ag nanoparticles encapsulated by covalent triazine framework nanosheets for CO2 conversion. ACS Appl. Mater. Interfaces, 2018, 10(45), 38953-38962.
[] [PMID: 30338979]
Liu, X.H.; Ma, J.G.; Niu, Z.; Yang, G.M.; Cheng, P. An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure. Angew. Chem. Int. Ed. Engl., 2015, 54(3), 988-991.
[] [PMID: 25385217]
Molla, R.A.; Ghosh, K.; Banerjee, B.; Iqubal, M.A.; Kundu, S.K.; Islam, S.M.; Bhaumik, A. Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure. J. Colloid Interface Sci., 2016, 477, 220-229.
[] [PMID: 27309859]
Sun, L.; Yun, Y.; Sheng, H.; Du, Y.; Ding, Y.; Wu, P.; Li, P.; Zhu, M. Rational encapsulation of atomically precise nanoclusters into metal-organic frameworks by electrostatic attraction for CO2 conversion. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(31), 15371-15376.
Zhou, Z.; Yang, L.; Wang, Y.F.; He, C.; Duan, C.Y. Recent advance on chemical fixation of carbon dioxide by metal-organic frameworks as heterogeneous catalysts. Curr. Org. Chem., 2018, 22(18), 1809-1824.
Yu, D.; Tan, M.X.; Zhang, Y. Carboxylation of terminal alkynes with carbon dioxide catalyzed by poly(N-heterocyclic carbene)-supported silver nanoparticles. Adv. Synth. Catal., 2012, 354(6), 969-974.
Zhang, X.; Liu, H.; Shi, Y.; Han, J.; Yang, Z.; Zhang, Y.; Long, C.; Guo, J.; Zhu, Y.; Qiu, X.; Xue, G.; Zhang, L.; Zhang, B.; Chang, L.; Tang, Z. Boosting CO2 conversion with terminal alkynes by molecular architecture of graphene oxide-supported Ag nanoparticles. Matter, 2020, 3(2), 558-570.
Zhang, W.; Mei, Y.; Huang, X.; Wu, P.; Wu, H.; He, M. Size-controlled growth of silver nanoparticles onto functionalized ordered mesoporous polymers for efficient CO2 upgrading. ACS Appl. Mater. Interfaces, 2019, 11(47), 44241-44248.
[] [PMID: 31674181]
Cui, Y.; Xu, Z.; Li, H.Y.; Young, D.J.; Ren, Z.G.; Li, H.X. Synthesis of a pyrazole-based microporous organic polymer for high-performance CO2 capture and alkyne carboxylation. ACS Appl. Polym. Mater., 2020, 2(11), 4512-4520.
Shi, G.; Xu, W.; Wang, J.; Yuan, Y.; Chaemchuen, S.; Verpoort, F. A Cubased MOF for the effective carboxylation of terminal alkynes with CO2 under mild conditions. J. CO2 Util, 2020, 39, 101177.,
Bondarenko, G.N.; Dvurechenskaya, E.G.; Magommedov, E.S.; Beletskaya, I.P. Copper(0) nanoparticles supported on Al2O3 as catalyst for carboxylation of terminal alkynes. Catal. Lett., 2017, 147(10), 2570-2580.
Bu, R.; Zhang, L.; Gao, L.L.; Sun, W.J.; Yang, S.L.; Gao, E.Q. Copper(I)-modified covalent organic framework for CO2 insertion to terminal alkynes. Mol. Catal., 2021, 499111319
Yang, P.; Zuo, S.; Zhang, F.; Yu, B.; Guo, S.; Yu, X.; Zhao, Y.; Zhang, J.; Liu, Z. Carbon nitride-based single-atom Cu catalysts for highly efficient carboxylation of alkynes with atmospheric CO2. Ind. Eng. Chem. Res., 2020, 59(16), 7327-7335.
Burkhart, G.; Hoberg, H. Oxanickelacyclopentene derivatives from Nickel(0), carbon dioxide, and alkynes. Angew. Chem. Int. Ed. Engl., 1982, 21(1), 76-76.
Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. Nickel-mediated regio- and chemoselective carboxylation of alkynes in the presence of carbon dioxide. J. Org. Chem., 1999, 64(11), 3975-3978.
Takimoto, M.; Shimizu, K.; Mori, M. Nickel-promoted alkylative or arylative carboxylation of alkynes. Org. Lett., 2001, 3(21), 3345-3347.
[] [PMID: 11594830]
Dèrien, S.; Duńach, E.; Périchon, J. From stoichiometry to catalysis: electroreductive coupling of alkynes and carbon dioxide with nickel-bipyridine complexes magnesium ions as the key for catalysis. J. Am. Chem. Soc., 1991, 113(22), 8447-8454.
Li, S.; Yuan, W.; Ma, S. Highly regio- and stereoselective three-component nickel-catalyzed syn-hydrocarboxylation of alkynes with diethyl zinc and carbon dioxide. Angew. Chem. Int. Ed. Engl., 2011, 50(11), 2578-2582.
[] [PMID: 21370341]
Fujihara, T.; Xu, T.; Semba, K.; Terao, J.; Tsuji, Y. Copper-catalyzed hydrocarboxylation of alkynes using carbon dioxide and hydrosilanes. Angew. Chem. Int. Ed. Engl., 2011, 50(2), 523-527.
[] [PMID: 21157832]
Takimoto, M.; Hou, Z. Cu-catalyzed formal methylative and hydrogenative carboxylation of alkynes with carbon dioxide: efficient synthesis of α,β-unsaturated carboxylic acids. Chemistry, 2013, 19(34), 11439-11445.
[] [PMID: 23852827]
Santhoshkumar, R.; Hong, Y.C.; Luo, C.Z.; Wu, Y.C.; Hung, C.H.; Hwang, K.Y.; Tu, A.P.; Cheng, C.H. Synthesis of vinyl carboxylic acids using carbon dioxide as a carbon source by iron-catalyzed hydromagnesiation. ChemCatChem, 2016, 8(13), 2210-2213.
Shao, P.; Wang, S.; Du, G.; Xi, C. Cp2TiCl2-catalyzed hydrocarboxylation of alkynes with CO2: formation of α,β-unsaturated carboxylic acids. RSC Adv, 2017, 7(6), 3534-3539.
Wang, X.; Nakajima, M.; Martin, R. Ni-catalyzed regioselective hydrocarboxylation of alkynes with CO2 by using simple alcohols as proton sources. J. Am. Chem. Soc., 2015, 137(28), 8924-8927.
[] [PMID: 26130587]
Taniguchi, T.; Saito, N.; Doi, R.; Kimoto, A.; Hoshiya, N.; Fujiki, K.; Shuto, S.; Fujioka, H.; Arisawa, M.; Sato, Y. Nickel nanoparticle-catalyzed carboxylation of unsaturated hydrocarbon with CO2 using sulfur-modified Au-supported nickel material. Chem. Lett., 2019, 48(11), 1406-1409.
Mao, J.L.; Ran, X.K.; Tian, J.Z.; Jiao, B.; Zhou, H.L.; Chen, L.; Wang, Z.G. Design, synthesis and biological evaluation of novel 4-hydroxybenzene acrylic acid derivatives. Bioorg. Med. Chem. Lett., 2011, 21(5), 1549-1553.
[] [PMID: 21288716]
Louie, J.; Gibby, J.E.; Farnworth, M.V.; Tekavec, T.N. Efficient nickel-catalyzed [2 + 2 + 2] cycloaddition of CO2 and diynes. J. Am. Chem. Soc., 2002, 124(51), 15188-15189.
[] [PMID: 12487590]
Cao, T.; Yang, Z. Selectivities in nickel-catalyzed hydrocarboxylation of enynes with carbon dioxide. ACS Catal., 2017, 7(7), 4504-4508.
Diccianni, J.B.; Heitmann, T.; Diao, T. Nickel-catalyzed reductive cycloisomerization of enynes with CO2. J. Org. Chem., 2017, 82(13), 6895-6903.
[] [PMID: 28614656]
Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. Catalytic boracarboxylation of alkynes with diborane and carbon dioxide by an N-heterocyclic carbene copper catalyst. J. Am. Chem. Soc., 2012, 134(35), 14314-14317.
[] [PMID: 22909063]
Fleming, I.; Roessler, F. Reaction of a silyl-copper reagent with acetylenes: a new synthesis of vinylsilanes. J. Chem. Soc. Chem. Commun., 1980, 1(6), 276-277.
Fujihara, T.; Tani, Y.; Semba, K.; Terao, J.; Tsuji, Y. Copper-catalyzed silacarboxylation of internal alkynes by employing carbon dioxide and silylboranes. Angew. Chem. Int. Ed. Engl., 2012, 51(46), 11487-11490.
[] [PMID: 23042673]
Huang, W.B.; Ren, F.Y.; Wang, M.W.; Qiu, L.Q.; Chen, K.H.; He, L.N. Bin; Ren, F.Y.; Wang, M.W.; Qiu, L.Q.; Chen, K.H.; He, L.N. Cu(II)-catalyzed phosphonocarboxylative cyclization reaction of propargylic amines and phosphine oxide with CO2. J. Org. Chem., 2020, 85(21), 14109-14120.
[] [PMID: 33118350]
Miao, B.; Li, S.; Li, G.; Ma, S. Cyclic anti-azacarboxylation of 2-alkynylanilines with carbon dioxide. Org. Lett., 2016, 18(11), 2556-2559.
[] [PMID: 27214662]
Kirillov, E.; Carpentier, J.F.; Bunel, E.; Friedrich, J.A.G. Carboxylic acid derivatives via catalytic carboxylation of unsaturated hydrocarbons: whether the nature of a reductant may determine the mechanism of CO2 incorporation? Dalton Trans., 2015, 44(37), 16212-16223.
[] [PMID: 26243336]
Yamazaki, K.; Moteki, T.; Ogura, M. Carbonate synthesis from carbon dioxide and cyclic ethers over methylated nitrogen-substituted mesoporous silica. Mol. Catal., 2018, 454, 38-43.
Modak, A.; Ghosh, A.; Bhaumik, A.; Chowdhury, B. CO2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Adv. Colloid Interface Sci., 2021, 290102349
[] [PMID: 33780826]
Zhou, C.G.; Yu, S.A.; Ma, K.; Liang, B.; Tang, S.Y.; Liu, C.J.; Yue, H.R. Amine-functionalized mesoporous monolithic adsorbents for post-combustion carbon dioxide capture. Chem. Eng. J., 2021, 413127675

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy