Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

BACE1: A Key Regulator in Alzheimer’s Disease Progression and Current Development of its Inhibitors

Author(s): Smith Patel, Ankush Vardhaman Bansoad, Rakesh Singh and Gopal L. Khatik*

Volume 20, Issue 6, 2022

Published on: 06 April, 2022

Page: [1174 - 1193] Pages: 20

DOI: 10.2174/1570159X19666211201094031

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is a chronic neurodegenerative disease with no specific disease-modifying treatment. β-secretase (BACE1) is considered the potential and rationale target because it is involved in the rate-limiting step, which produces toxic Aβ42 peptides that leads to deposits in the form of amyloid plaques extracellularly, resulting in AD.

Objective: This study aims to discuss the role and implications of BACE1 and its inhibitors in the management of AD.

Methods: We have searched and collected the relevant quality work from PubMed using the following keywords “BACE1”, BACE2”, “inhibitors”, and “Alzheimer’s disease”. In addition, we included the work which discusses the role of BACE1 in AD and the recent work on its inhibitors.

Results: In this review, we have discussed the importance of BACE1 in regulating AD progression and the current development of BACE1 inhibitors. However, the development of a BACE1 inhibitor is very challenging due to the large active site of BACE1. Nevertheless, some of the BACE1 inhibitors have managed to enter advanced phases of clinical trials, such as MK-8931 (Verubecestat), E2609 (Elenbecestat), AZD3293 (Lanabecestat), and JNJ-54861911 (Atabecestat). This review also sheds light on the prospect of BACE1 inhibitors as the most effective therapeutic approach in delaying or preventing AD progression.

Conclusion: BACE1 is involved in the progression of AD. The current ongoing or failed clinical trials may help understand the role of BACE1 inhibition in regulating the Aβ load and cognitive status of AD patients.

Keywords: BACE1, Beta-secretase, 42 peptide, inhibitors, Alzheimer’s disease, neurodegenerative disease.

Graphical Abstract
[2]
Alzheimer’s Association 2019 Alzheimer’s Disease Facts and Figures. Alzheimers Dement., 2019, 15, 321-387.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[3]
Alzheimer Association Early signs and symptoms of Alzheimer’s. Alzheimers Dement., 2019, 1-88.
[4]
Coimbra, J.R.M.; Marques, D.F.F.; Baptista, S.J.; Pereira, C.M.F.; Moreira, P.I.; Dinis, T.C.P.; Santos, A.E.; Salvador, J.A.R. Highlights in BACE1 inhibitors for Alzheimer’s disease treatment. Front Chem., 2018, 6, 178.
[http://dx.doi.org/10.3389/fchem.2018.00178] [PMID: 29881722]
[5]
Das, B.; Yan, R. A close look at BACE1 inhibitors for Alzheimer’s disease treatment. CNS Drugs, 2019, 33(3), 251-263.
[http://dx.doi.org/10.1007/s40263-019-00613-7] [PMID: 30830576]
[6]
Amiri, H.; Saeidi, K.; Borhani, P.; Manafirad, A.; Ghavami, M.; Zerbi, V. Alzheimer’s disease: Pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS Chem. Neurosci., 2013, 4(11), 1417-1429.
[http://dx.doi.org/10.1021/cn4001582] [PMID: 24024702]
[7]
Chaudhary, A.; Maurya, P.K.; Yadav, B.S.; Singh, S.; Mani, A. Current therapeutic targets for Alzheimer’s disease. J. Biomed. (Syd.), 2018, 3, 74-84.
[http://dx.doi.org/10.7150/jbm.26783]
[8]
Hall, A.; Gijsen, H.J.M. Targeting β-secretase (BACE) for the treatment of Alzheimer’s disease. Compr. Med. Chem. III, 2017, 7, 326-383.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.13809-0]
[9]
Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(9), 89.
[http://dx.doi.org/10.1186/s13195-014-0089-7] [PMID: 25621019]
[10]
Yuan, J.; Venkatraman, S.; Zheng, Y.; McKeever, B.M.; Dillard, L.W.; Singh, S.B. Structure-based design of β-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2013, 56(11), 4156-4180.
[http://dx.doi.org/10.1021/jm301659n] [PMID: 23509904]
[11]
Al-Tel, T.H.; Semreen, M.H.; Al-Qawasmeh, R.A.; Schmidt, M.F.; El-Awadi, R.; Ardah, M.; Zaarour, R.; Rao, S.N.; El-Agnaf, O. Design, synthesis, and qualitative structure-activity evaluations of novel β-secretase inhibitors as potential Alzheimer’s drug leads. J. Med. Chem., 2011, 54(24), 8373-8385.
[http://dx.doi.org/10.1021/jm201181f] [PMID: 22044119]
[12]
Solans, A.; Estivill, X.; de La Luna, S. A new aspartyl protease on 21q22.3, BACE2, is highly similar to Alzheimer’s amyloid precursor protein β-secretase. Cytogenet. Cell Genet., 2000, 89(3-4), 177-184.
[http://dx.doi.org/10.1159/000015608] [PMID: 10965118]
[13]
Bennett, B.D.; Babu-Khan, S.; Loeloff, R.; Louis, J.C.; Curran, E.; Citron, M.; Vassar, R. Expression analysis of BACE2 in brain and peripheral tissues. J. Biol. Chem., 2000, 275(27), 20647-20651.
[http://dx.doi.org/10.1074/jbc.M002688200] [PMID: 10749877]
[14]
Moussa-Pacha, N.M.; Abdin, S.M.; Omar, H.A.; Alniss, H.; Al-Tel, T.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med. Res. Rev., 2020, 40(1), 339-384.
[http://dx.doi.org/10.1002/med.21622] [PMID: 31347728]
[15]
Mirsafian, H.; Mat Ripen, A.; Merican, A.F.; Bin Mohamad, S. Amino acid sequence and structural comparison of BACE1 and BACE2 using evolutionary trace method. ScientificWorldJournal, 2014, 2014482463
[http://dx.doi.org/10.1155/2014/482463] [PMID: 25254246]
[16]
Hu, B.; Xiong, B.; Qiu, B.Y.; Li, X.; Yu, H.P.; Xiao, K.; Wang, X.; Li, J.; Shen, J.K. Construction of a small peptide library related to inhibitor OM99-2 and its structure-activity relationship to β-secretase. Acta Pharmacol. Sin., 2006, 27(12), 1586-1593.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00432.x] [PMID: 17112413]
[17]
Rombouts, F.J.R.; Alexander, R.; Cleiren, E.; De Groot, A.; Carpentier, M.; Dijkmans, J.; Fierens, K.; Masure, S.; Moechars, D.; Palomino-Schätzlein, M.; Pineda-Lucena, A.; Trabanco, A.A.; Van Glabbeek, D.; Vos, A.; Tresadern, G. Fragment binding to β-secretase 1 without catalytic aspartate interactions identified via orthogonal screening approaches. ACS Omega, 2017, 2(2), 685-697.
[http://dx.doi.org/10.1021/acsomega.6b00482] [PMID: 28626832]
[18]
Xu, Y.; Li, M.J.; Greenblatt, H.; Chen, W.; Paz, A.; Dym, O.; Peleg, Y.; Chen, T.; Shen, X.; He, J.; Jiang, H.; Silman, I.; Sussman, J.L. Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(Pt 1), 13-25.
[http://dx.doi.org/10.1107/S0907444911047251] [PMID: 22194329]
[19]
Mullan, M.; Crawford, F.; Axelman, K.; Houlden, H.; Lilius, L.; Winblad, B.; Lannfelt, L. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat. Genet., 1992, 1(5), 345-347.
[http://dx.doi.org/10.1038/ng0892-345] [PMID: 1302033]
[20]
Di Fede, G.; Catania, M.; Morbin, M.; Rossi, G.; Suardi, S.; Mazzoleni, G.; Merlin, M.; Giovagnoli, A.R.; Prioni, S.; Erbetta, A.; Falcone, C.; Gobbi, M.; Colombo, L.; Bastone, A.; Beeg, M.; Manzoni, C.; Francescucci, B.; Spagnoli, A.; Cantù, L.; Del Favero, E.; Levy, E.; Salmona, M.; Tagliavini, F. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science, 2009, 323(5920), 1473-1477.
[http://dx.doi.org/10.1126/science.1168979] [PMID: 19286555]
[21]
Jonsson, T.; Atwal, J.K.; Steinberg, S.; Snaedal, J.; Jonsson, P.V.; Bjornsson, S.; Stefansson, H.; Sulem, P.; Gudbjartsson, D.; Maloney, J.; Hoyte, K.; Gustafson, A.; Liu, Y.; Lu, Y.; Bhangale, T.; Graham, R.R.; Huttenlocher, J.; Bjornsdottir, G.; Andreassen, O.A.; Jönsson, E.G.; Palotie, A.; Behrens, T.W.; Magnusson, O.T.; Kong, A.; Thorsteinsdottir, U.; Watts, R.J.; Stefansson, K. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 2012, 488(7409), 96-99.
[http://dx.doi.org/10.1038/nature11283] [PMID: 22801501]
[22]
Maloney, J.A.; Bainbridge, T.; Gustafson, A.; Zhang, S.; Kyauk, R.; Steiner, P.; van der Brug, M.; Liu, Y.; Ernst, J.A.; Watts, R.J.; Atwal, J.K. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J. Biol. Chem., 2014, 289(45), 30990-31000.
[http://dx.doi.org/10.1074/jbc.M114.589069] [PMID: 25253696]
[23]
Benilova, I.; Gallardo, R.; Ungureanu, A.A.; Castillo Cano, V.; Snellinx, A.; Ramakers, M.; Bartic, C.; Rousseau, F.; Schymkowitz, J.; De Strooper, B. The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-β (Aβ) aggregation. J. Biol. Chem., 2014, 289(45), 30977-30989.
[http://dx.doi.org/10.1074/jbc.M114.599027] [PMID: 25253695]
[24]
Luo, X.; Prior, M.; He, W.; Hu, X.; Tang, X.; Shen, W.; Yadav, S.; Kiryu-Seo, S.; Miller, R.; Trapp, B.D.; Yan, R. Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination. J. Biol. Chem., 2011, 286(27), 23967-23974.
[http://dx.doi.org/10.1074/jbc.M111.251538] [PMID: 21576249]
[25]
Hitt, B.; Riordan, S.M.; Kukreja, L.; Eimer, W.A.; Rajapaksha, T.W.; Vassar, R. β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J. Biol. Chem., 2012, 287(46), 38408-38425.
[http://dx.doi.org/10.1074/jbc.M112.415505] [PMID: 22988240]
[26]
Salzer, J.L. Axonal regulation of Schwann cell ensheathment and myelination. J. Peripher. Nerv. Syst., 2012, 17(Suppl. 3), 14-19.
[http://dx.doi.org/10.1111/j.1529-8027.2012.00425.x] [PMID: 23279426]
[27]
Zhou, L.; Barão, S.; Laga, M.; Bockstael, K.; Borgers, M.; Gijsen, H.; Annaert, W.; Moechars, D.; Mercken, M.; Gevaert, K.; De Strooper, B. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J. Biol. Chem., 2012, 287(31), 25927-25940.
[http://dx.doi.org/10.1074/jbc.M112.377465] [PMID: 22692213]
[28]
Montag-Sallaz, M.; Schachner, M.; Montag, D. Misguided axonal projections, neural cell adhesion molecule 180 mRNA upregulation, and altered behavior in mice deficient for the close homolog of L1. Mol. Cell. Biol., 2002, 22(22), 7967-7981.
[http://dx.doi.org/10.1128/MCB.22.22.7967-7981.2002] [PMID: 12391163]
[29]
Pratte, M.; Rougon, G.; Schachner, M.; Jamon, M. Mice deficient for the close homologue of the neural adhesion cell L1 (CHL1) display alterations in emotional reactivity and motor coordination. Behav. Brain Res., 2003, 147(1-2), 31-39.
[http://dx.doi.org/10.1016/S0166-4328(03)00114-1] [PMID: 14659567]
[30]
Pimplikar, S.W.; Ghosal, K. Amyloid precursor protein: More than just neurodegeneration. Stem Cell Res. Ther., 2011, 2(5), 39.
[http://dx.doi.org/10.1186/scrt80] [PMID: 22000643]
[31]
Priller, C.; Bauer, T.; Mitteregger, G.; Krebs, B.; Kretzschmar, H.A.; Herms, J. Synapse formation and function is modulated by the amyloid precursor protein. J. Neurosci., 2006, 26(27), 7212-7221.
[http://dx.doi.org/10.1523/JNEUROSCI.1450-06.2006] [PMID: 16822978]
[32]
Seubert, P.; Oltersdorf, T.; Lee, M.G.; Barbour, R.; Blomquist, C.; Davis, D.L.; Bryant, K.; Fritz, L.C.; Galasko, D.; Thal, L.J.; Lieberburg, I.; Schenk, D.B. Secretion of β-amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide. Nature, 1993, 361(6409), 260-263.
[http://dx.doi.org/10.1038/361260a0] [PMID: 7678698]
[33]
Hrabinova, M.; Pejchal, J.; Kucera, T.; Jun, D.; Schmidt, M.; Soukup, O. Is It the Twilight of BACE1 Inhibitors? Curr. Neuropharmacol., 2021, 19(1), 61-77.
[http://dx.doi.org/10.2174/1570159X18666200503023323] [PMID: 32359337]
[34]
Evin, G.; Lessene, G.; Wilkins, S. BACE inhibitors as potential drugs for the treatment of Alzheimer’s disease: Focus on bioactivity. Recent Patents CNS Drug Discov., 2011, 6(2), 91-106.
[http://dx.doi.org/10.2174/157488911795933938] [PMID: 21585329]
[35]
Scott, J.D.; Li, S.W.; Brunskill, A.P.J.; Chen, X.; Cox, K.; Cumming, J.N.; Forman, M.; Gilbert, E.J.; Hodgson, R.A.; Hyde, L.A.; Jiang, Q.; Iserloh, U.; Kazakevich, I.; Kuvelkar, R.; Mei, H.; Meredith, J.; Misiaszek, J.; Orth, P.; Rossiter, L.M.; Slater, M.; Stone, J.; Strickland, C.O.; Voigt, J.H.; Wang, G.; Wang, H.; Wu, Y.; Greenlee, W.J.; Parker, E.M.; Kennedy, M.E.; Stamford, A.W. Discovery of the 3-Imino-1,2,4-thiadiazinane 1,1-dioxide derivative verubecestat (MK-8931)-A β-site amyloid precursor protein cleaving enzyme 1 inhibitor for the treatment of Alzheimer’s disease. J. Med. Chem., 2016, 59(23), 10435-10450.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00307] [PMID: 27933948]
[36]
Janelidze, S.; Stomrud, E.; Brix, B.; Hansson, O. Towards a unified protocol for handling of CSF before β-amyloid measurements. Alzheimers Res. Ther., 2019, 11(1), 63.
[http://dx.doi.org/10.1186/s13195-019-0517-9] [PMID: 31324260]
[37]
Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; Nisticò, R.; Corbo, M.; Imbimbo, B.P.; Streffer, J.; Voytyuk, I.; Timmers, M.; Tahami Monfared, A.A.; Irizarry, M.; Albala, B.; Koyama, A.; Watanabe, N.; Kimura, T.; Yarenis, L.; Lista, S.; Kramer, L.; Vergallo, A. The β-secretase BACE1 in Alzheimer’s disease. Biol. Psychiatry, 2021, 89(8), 745-756.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]
[38]
Hong, L.; Turner, R.T., III; Koelsch, G.; Shin, D.; Ghosh, A.K.; Tang, J. Crystal structure of memapsin 2 (β-secretase) in complex with an inhibitor OM00-3. Biochemistry, 2002, 41(36), 10963-10967.
[http://dx.doi.org/10.1021/bi026232n] [PMID: 12206667]
[39]
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the protease domain of memapsin 2 (β-Secretase) complexed with inhibitor. Science (80-. )., 2000, 290, 150-153.
[40]
Dash, C.; Kulkarni, A.; Dunn, B.; Rao, M. Aspartic peptidase inhibitors: Implications in drug development. Crit. Rev. Biochem. Mol. Biol., 2003, 38(2), 89-119.
[http://dx.doi.org/10.1080/713609213] [PMID: 12749695]
[41]
Ghosh, A.K.; Kumaragurubaran, N.; Hong, L.; Lei, H.; Hussain, K.A.; Liu, C.F.; Devasamudram, T.; Weerasena, V.; Turner, R.; Koelsch, G.; Bilcer, G.; Tang, J. Design, synthesis and X-ray structure of protein-ligand complexes: Important insight into selectivity of memapsin 2 (β-secretase) inhibitors. J. Am. Chem. Soc., 2006, 128(16), 5310-5311.
[http://dx.doi.org/10.1021/ja058636j] [PMID: 16620080]
[42]
Sandgren, V.; Bäck, M.; Kvarnström, I.; Dahlgren, A. Design and synthesis of hydroxyethylene-based BACE-1 inhibitors incorporating extended P1 substituents. Open Med. Chem. J., 2013, 7, 1-15.
[http://dx.doi.org/10.2174/1874104501307010001] [PMID: 23585822]
[43]
Chang, W.P.; Huang, X.; Downs, D.; Cirrito, J.R.; Koelsch, G.; Holtzman, D.M.; Ghosh, A.K.; Tang, J. Beta-secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. FASEB J., 2011, 25(2), 775-784.
[http://dx.doi.org/10.1096/fj.10-167213] [PMID: 21059748]
[44]
Beswick, P.; Charrier, N.; Clarke, B.; Demont, E.; Dingwall, C.; Dunsdon, R.; Faller, A.; Gleave, R.; Hawkins, J.; Hussain, I.; Johnson, C.N.; MacPherson, D.; Maile, G.; Matico, R.; Milner, P.; Mosley, J.; Naylor, A.; O’Brien, A.; Redshaw, S.; Riddell, D.; Rowland, P.; Skidmore, J.; Soleil, V.; Smith, K.J.; Stanway, S.; Stemp, G.; Stuart, A.; Sweitzer, S.; Theobald, P.; Vesey, D.; Walter, D.S.; Ward, J.; Wayne, G. BACE-1 inhibitors part 3: Identification of hydroxy ethylamines (HEAs) with nanomolar potency in cells. Bioorg. Med. Chem. Lett., 2008, 18(3), 1022-1026.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.020] [PMID: 18171615]
[45]
Rueeger, H.; Lueoend, R.; Machauer, R.; Veenstra, S.J.; Jacobson, L.H.; Staufenbiel, M.; Desrayaud, S.; Rondeau, J.M.; Möbitz, H.; Neumann, U. Discovery of cyclic sulfoxide hydroxyethylamines as potent and selective β-site APP-cleaving enzyme 1 (BACE1) inhibitors: Structure based design and in vivo reduction of amyloid β-peptides. Bioorg. Med. Chem. Lett., 2013, 23(19), 5300-5306.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.071] [PMID: 23981898]
[46]
Kortum, S.W.; Benson, T.E.; Bienkowski, M.J.; Emmons, T.L.; Prince, D.B.; Paddock, D.J.; Tomasselli, A.G.; Moon, J.B.; LaBorde, A.; TenBrink, R.E. Potent and selective isophthalamide S2 hydroxyethylamine inhibitors of BACE1. Bioorg. Med. Chem. Lett., 2007, 17(12), 3378-3383.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.096] [PMID: 17434734]
[47]
Björklund, C.; Oscarson, S.; Benkestock, K.; Borkakoti, N.; Jansson, K.; Lindberg, J.; Vrang, L.; Hallberg, A.; Rosenquist, A.; Samuelsson, B. Design and synthesis of potent and selective BACE-1 inhibitors. J. Med. Chem., 2010, 53(4), 1458-1464.
[http://dx.doi.org/10.1021/jm901168f] [PMID: 20128595]
[48]
Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6765-6813.
[http://dx.doi.org/10.1039/C3CS60460H] [PMID: 24691405]
[49]
Gerritz, S.W.; Zhai, W.; Shi, S.; Zhu, S.; Toyn, J.H.; Meredith, J.E., Jr; Iben, L.G.; Burton, C.R.; Albright, C.F.; Good, A.C.; Tebben, A.J.; Muckelbauer, J.K.; Camac, D.M.; Metzler, W.; Cook, L.S.; Padmanabha, R.; Lentz, K.A.; Sofia, M.J.; Poss, M.A.; Macor, J.E.; Thompson, L.A. III Acyl guanidine inhibitors of β-secretase (BACE-1): Optimization of a micromolar hit to a nanomolar lead via iterative solid- and solution-phase library synthesis. J. Med. Chem., 2012, 55(21), 9208-9223.
[http://dx.doi.org/10.1021/jm300931y] [PMID: 23030502]
[50]
Gu, T.; Wu, W.Y.; Dong, Z.X.; Yu, S.P.; Sun, Y.; Zhong, Y.; Lu, Y.T.; Li, N.G. Development and structural modification of BACE1 inhibitors. Molecules, 2016, 22(1), 22.
[http://dx.doi.org/10.3390/molecules22010004] [PMID: 28025519]
[51]
Boy, K.M.; Guernon, J.M.; Wu, Y.J.; Zhang, Y.; Shi, J.; Zhai, W.; Zhu, S.; Gerritz, S.W.; Toyn, J.H.; Meredith, J.E.; Barten, D.M.; Burton, C.R.; Albright, C.F.; Good, A.C.; Grace, J.E.; Lentz, K.A.; Olson, R.E.; Macor, J.E.; Thompson, L.A. III Macrocyclic prolinyl acyl guanidines as inhibitors of β-secretase (BACE). Bioorg. Med. Chem. Lett., 2015, 25(22), 5040-5047.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.031] [PMID: 26497283]
[52]
Brown, T. Design thinking. Harv. Bus. Rev., 2008, 86(6), 84-92, 141.
[PMID: 18605031]
[53]
Yonezawa, S.; Yamamoto, T.; Yamakawa, H.; Muto, C.; Hosono, M.; Hattori, K.; Higashino, K.; Yutsudo, T.; Iwamoto, H.; Kondo, Y.; Sakagami, M.; Togame, H.; Tanaka, Y.; Nakano, T.; Takemoto, H.; Arisawa, M.; Shuto, S. Conformational restriction approach to β-secretase (BACE1) inhibitors: Effect of a cyclopropane ring to induce an alternative binding mode. J. Med. Chem., 2012, 55(20), 8838-8858.
[http://dx.doi.org/10.1021/jm3011405] [PMID: 22998419]
[54]
Haghighijoo, Z.; Firuzi, O.; Hemmateenejad, B.; Emami, S.; Edraki, N.; Miri, R. Synthesis and biological evaluation of quinazolinone-based hydrazones with potential use in Alzheimer’s disease. Bioorg. Chem., 2017, 74, 126-133.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.014] [PMID: 28780149]
[55]
Yan, G.; Hao, L.; Niu, Y.; Huang, W.; Wang, W.; Xu, F.; Liang, L.; Wang, C.; Jin, H.; Xu, P. 2-Substituted-thio-N-(4-substituted-thiazol/1H-imidazol-2-yl)acetamides as BACE1 inhibitors: Synthesis, biological evaluation and docking studies. Eur. J. Med. Chem., 2017, 137, 462-475.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.020] [PMID: 28624701]
[56]
Iraji, A.; Khoshneviszadeh, M.; Firuzi, O.; Khoshneviszadeh, M.; Edraki, N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg. Chem., 2020, 97103649
[http://dx.doi.org/10.1016/j.bioorg.2020.103649] [PMID: 32101780]
[57]
Kennedy, M.E.; Stamford, A.W.; Chen, X.; Cox, K.; Cumming, J.N.; Dockendorf, M.F.; Egan, M.; Ereshefsky, L.; Hodgson, R.A.; Hyde, L.A.; Jhee, S.; Kleijn, H.J.; Kuvelkar, R.; Li, W.; Mattson, B.A.; Mei, H.; Palcza, J.; Scott, J.D.; Tanen, M.; Troyer, M.D.; Tseng, J.L.; Stone, J.A.; Parker, E.M.; Forman, M.S. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci. Transl. Med., 2016, 8(363)363ra150
[http://dx.doi.org/10.1126/scitranslmed.aad9704] [PMID: 27807285]
[58]
Egan, M.F.; Kost, J.; Tariot, P.N.; Aisen, P.S.; Cummings, J.L.; Vellas, B.; Sur, C.; Mukai, Y.; Voss, T.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Vandenberghe, R.; Mo, Y.; Michelson, D. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med., 2018, 378(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1706441] [PMID: 29719179]
[59]
Piton, M.; Hirtz, C.; Desmetz, C.; Milhau, J.; Lajoix, A.D.; Bennys, K.; Lehmann, S.; Gabelle, A. Alzheimer’s disease: Advances in drug development. J. Alzheimers Dis., 2018, 65(1), 3-13.
[http://dx.doi.org/10.3233/JAD-180145] [PMID: 30040716]
[60]
Cumming, J.N.; Smith, E.M.; Wang, L.; Misiaszek, J.; Durkin, J.; Pan, J.; Iserloh, U.; Wu, Y.; Zhu, Z.; Strickland, C.; Voigt, J.; Chen, X.; Kennedy, M.E.; Kuvelkar, R.; Hyde, L.A.; Cox, K.; Favreau, L.; Czarniecki, M.F.; Greenlee, W.J.; McKittrick, B.A.; Parker, E.M.; Stamford, A.W. Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(7), 2444-2449.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.013] [PMID: 22390835]
[61]
May, P.C.; Dean, R.A.; Lowe, S.L.; Martenyi, F.; Sheehan, S.M.; Boggs, L.N.; Monk, S.A.; Mathes, B.M.; Mergott, D.J.; Watson, B.M.; Stout, S.L.; Timm, D.E.; Smith Labell, E.; Gonzales, C.R.; Nakano, M.; Jhee, S.S.; Yen, M.; Ereshefsky, L.; Lindstrom, T.D.; Calligaro, D.O.; Cocke, P.J.; Greg Hall, D.; Friedrich, S.; Citron, M.; Audia, J.E. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J. Neurosci., 2011, 31(46), 16507-16516.
[http://dx.doi.org/10.1523/JNEUROSCI.3647-11.2011] [PMID: 22090477]
[62]
Boggs, L.N.; May, P.C.; Yang, Z.; Brier, R.A.; Monk, S.A.; Borders, A.R.; Winneroski, L.L.; Green, S.J.; Mergott, D.J.; McKinzie, D.L. P3-035: A correlational analysis of exposure and pharmacodynamic effects of the Bace1 inhibitor LY3202626 in PDAPP mice following acute oral dosing. Alzheimers Dement., 2016, 12, 831-P831.
[http://dx.doi.org/10.1016/j.jalz.2016.06.1693]
[63]
May, P.C.; Willis, B.A.; Lowe, S.L.; Dean, R.A.; Monk, S.A.; Cocke, P.J.; Audia, J.E.; Boggs, L.N.; Borders, A.R.; Brier, R.A.; Calligaro, D.O.; Day, T.A.; Ereshefsky, L.; Erickson, J.A.; Gevorkyan, H.; Gonzales, C.R.; James, D.E.; Jhee, S.S.; Komjathy, S.F.; Li, L.; Lindstrom, T.D.; Mathes, B.M.; Martényi, F.; Sheehan, S.M.; Stout, S.L.; Timm, D.E.; Vaught, G.M.; Watson, B.M.; Winneroski, L.L.; Yang, Z.; Mergott, D.J. The potent BACE1 inhibitor LY2886721 elicits robust central Aβ pharmacodynamic responses in mice, dogs, and humans. J. Neurosci., 2015, 35(3), 1199-1210.
[http://dx.doi.org/10.1523/JNEUROSCI.4129-14.2015] [PMID: 25609634]
[64]
Cheng, Y.; Brown, J.; Judd, T.C.; Lopez, P.; Qian, W.; Powers, T.S.; Chen, J.J.; Bartberger, M.D.; Chen, K.; Dunn, R.T., II; Epstein, O.; Fremeau, R.T., Jr; Harried, S.; Hickman, D.; Hitchcock, S.A.; Luo, Y.; Minatti, A.E.; Patel, V.F.; Vargas, H.M.; Wahl, R.C.; Weiss, M.M.; Wen, P.H.; White, R.D.; Whittington, D.A.; Zheng, X.M.; Wood, S. An orally available BACE1 inhibitor that affords robust CNS Aβ reduction without cardiovascular liabilities. ACS Med. Chem. Lett., 2014, 6(2), 210-215.
[http://dx.doi.org/10.1021/ml500458t] [PMID: 25699151]
[65]
Hilpert, H.; Guba, W.; Woltering, T.J.; Wostl, W.; Pinard, E.; Mauser, H.; Mayweg, A.V.; Rogers-Evans, M.; Humm, R.; Krummenacher, D.; Muser, T.; Schnider, C.; Jacobsen, H.; Ozmen, L.; Bergadano, A.; Banner, D.W.; Hochstrasser, R.; Kuglstatter, A.; David-Pierson, P.; Fischer, H.; Polara, A.; Narquizian, R. β-Secretase (BACE1) inhibitors with high in vivo efficacy suitable for clinical evaluation in Alzheimer’s disease. J. Med. Chem., 2013, 56(10), 3980-3995.
[http://dx.doi.org/10.1021/jm400225m] [PMID: 23590342]
[66]
Rankovic, Z. CNS drug design: Balancing physicochemical properties for optimal brain exposure. J. Med. Chem., 2015, 58(6), 2584-2608.
[http://dx.doi.org/10.1021/jm501535r] [PMID: 25494650]
[67]
Fuchino, K.; Mitsuoka, Y.; Masui, M.; Kurose, N.; Yoshida, S.; Komano, K.; Yamamoto, T.; Ogawa, M.; Unemura, C.; Hosono, M.; Ito, H.; Sakaguchi, G.; Ando, S.; Ohnishi, S.; Kido, Y.; Fukushima, T.; Miyajima, H.; Hiroyama, S.; Koyabu, K.; Dhuyvetter, D.; Borghys, H.; Gijsen, H.J.M.; Yamano, Y.; Iso, Y.; Kusakabe, K.I. Rational design of novel 1,3-oxazine based β-secretase (BACE1) inhibitors: Incorporation of a double bond to reduce p-gp efflux leading to robust Aβ reduction in the brain. J. Med. Chem., 2018, 61(12), 5122-5137.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00002] [PMID: 29733614]
[68]
Ciordia, M.; Pérez-Benito, L.; Delgado, F.; Trabanco, A.A.; Tresadern, G. Application of free energy perturbation for the design of BACE1 inhibitors. J. Chem. Inf. Model., 2016, 56(9), 1856-1871.
[http://dx.doi.org/10.1021/acs.jcim.6b00220] [PMID: 27500414]
[69]
Keränen, H.; Pérez-Benito, L.; Ciordia, M.; Delgado, F.; Steinbrecher, T.B.; Oehlrich, D.; van Vlijmen, H.W.T.; Trabanco, A.A.; Tresadern, G. Acylguanidine beta secretase 1 inhibitors: A combined experimental and free energy perturbation study. J. Chem. Theory Comput., 2017, 13(3), 1439-1453.
[http://dx.doi.org/10.1021/acs.jctc.6b01141] [PMID: 28103438]
[70]
Tresadern, G.; Delgado, F.; Delgado, O.; Gijsen, H.; Macdonald, G.J.; Moechars, D.; Rombouts, F.; Alexander, R.; Spurlino, J.; Van Gool, M.; Vega, J.A.; Trabanco, A.A. Rational design and synthesis of aminopiperazinones as β-secretase (BACE) inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(24), 7255-7260.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.050] [PMID: 22071305]
[71]
Bower, J.F.; Rujirawanich, J.; Gallagher, T. N-heterocycle construction via cyclic sulfamidates. Applications in synthesis. Org. Biomol. Chem., 2010, 8(7), 1505-1519.
[http://dx.doi.org/10.1039/b921842d] [PMID: 20237659]
[72]
Oehlrich, D.; Peschiulli, A.; Tresadern, G.; Van Gool, M.; Vega, J.A.; De Lucas, A.I.; Alonso de Diego, S.A.; Prokopcova, H.; Austin, N.; Van Brandt, S.; Surkyn, M.; De Cleyn, M.; Vos, A.; Rombouts, F.J.R.; Macdonald, G.; Moechars, D.; Gijsen, H.J.M.; Trabanco, A.A. Evaluation of a series of β-secretase 1 inhibitors containing novel heteroaryl-fused-piperazine amidine warheads. ACS Med. Chem. Lett., 2019, 10(8), 1159-1165.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00181] [PMID: 31413800]
[73]
Patel, S.; Vuillard, L.; Cleasby, A.; Murray, C.W.; Yon, J. Apo and inhibitor complex structures of BACE (β-secretase). J. Mol. Biol., 2004, 343(2), 407-416.
[http://dx.doi.org/10.1016/j.jmb.2004.08.018] [PMID: 15451669]
[74]
Hong, L.; Tang, J. Flap position of free memapsin 2 (β-secretase), a model for flap opening in aspartic protease catalysis. Biochemistry, 2004, 43(16), 4689-4695.
[http://dx.doi.org/10.1021/bi0498252] [PMID: 15096037]
[75]
Ostermann, N.; Eder, J.; Eidhoff, U.; Zink, F.; Hassiepen, U.; Worpenberg, S.; Maibaum, J.; Simic, O.; Hommel, U.; Gerhartz, B. Crystal structure of human BACE2 in complex with a hydroxyethylamine transition-state inhibitor. J. Mol. Biol., 2006, 355(2), 249-261.
[http://dx.doi.org/10.1016/j.jmb.2005.10.027] [PMID: 16305800]
[76]
Banner, D.W.; Gsell, B.; Benz, J.; Bertschinger, J.; Burger, D.; Brack, S.; Cuppuleri, S.; Debulpaep, M.; Gast, A.; Grabulovski, D.; Hennig, M.; Hilpert, H.; Huber, W.; Kuglstatter, A.; Kusznir, E.; Laeremans, T.; Matile, H.; Miscenic, C.; Rufer, A.C.; Schlatter, D.; Steyaert, J.; Stihle, M.; Thoma, R.; Weber, M.; Ruf, A. Mapping the conformational space accessible to BACE2 using surface mutants and cocrystals with Fab fragments, fynomers and xaperones. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(Pt 6), 1124-1137.
[http://dx.doi.org/10.1107/S0907444913006574] [PMID: 23695257]
[77]
Malamas, M.S.; Barnes, K.; Johnson, M.; Hui, Y.; Zhou, P.; Turner, J.; Hu, Y.; Wagner, E.; Fan, K.; Chopra, R.; Olland, A.; Bard, J.; Pangalos, M.; Reinhart, P.; Robichaud, A.J. Di-substituted pyridinyl aminohydantoins as potent and highly selective human β-secretase (BACE1) inhibitors. Bioorg. Med. Chem., 2010, 18(2), 630-639.
[http://dx.doi.org/10.1016/j.bmc.2009.12.007] [PMID: 20045648]
[78]
Fujimoto, K.; Matsuoka, E.; Asada, N.; Tadano, G.; Yamamoto, T.; Nakahara, K.; Fuchino, K.; Ito, H.; Kanegawa, N.; Moechars, D.; Gijsen, H.J.M.; Kusakabe, K.I. Structure-based design of selective β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: Targeting the flap to gain selectivity over BACE2. J. Med. Chem., 2019, 62(10), 5080-5095.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00309] [PMID: 31021626]
[79]
Darras, F.H.; Pockes, S.; Huang, G.; Wehle, S.; Strasser, A.; Wittmann, H.J.; Nimczick, M.; Sotriffer, C.A.; Decker, M. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists. ACS Chem. Neurosci., 2014, 5(3), 225-242.
[http://dx.doi.org/10.1021/cn4002126] [PMID: 24422467]
[80]
Darras, F.H.; Wehle, S.; Huang, G.; Sotriffer, C.A.; Decker, M. Amine substitution of quinazolinones leads to selective nanomolar AChE inhibitors with ‘inverted’ binding mode. Bioorg. Med. Chem., 2014, 22(17), 4867-4881.
[http://dx.doi.org/10.1016/j.bmc.2014.06.045] [PMID: 25047936]
[81]
Ma, F.; Du, H. Novel deoxyvasicinone derivatives as potent multitarget-directed ligands for the treatment of Alzheimer’s disease: Design, synthesis, and biological evaluation. Eur. J. Med. Chem., 2017, 140, 118-127.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.008] [PMID: 28923380]
[82]
Tan, C.C.; Yu, J.T.; Wang, H.F.; Tan, M.S.; Meng, X.F.; Wang, C.; Jiang, T.; Zhu, X.C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis., 2014, 41(2), 615-631.
[http://dx.doi.org/10.3233/JAD-132690] [PMID: 24662102]
[83]
Shidore, M.; Machhi, J.; Shingala, K.; Murumkar, P.; Sharma, M.K.; Agrawal, N.; Tripathi, A.; Parikh, Z.; Pillai, P.; Yadav, M.R. Benzylpiperidine-linked diarylthiazoles as potential anti-Alzheimer’s agents: synthesis and biological evaluation. J. Med. Chem., 2016, 59(12), 5823-5846.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00426] [PMID: 27253679]
[84]
Ismaili, L.; Refouvelet, B.; Benchekroun, M.; Brogi, S.; Brindisi, M.; Gemma, S.; Campiani, G.; Filipic, S.; Agbaba, D.; Esteban, G.; Unzeta, M.; Nikolic, K.; Butini, S.; Marco-Contelles, J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog. Neurobiol., 2017, 151, 4-34.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.003] [PMID: 26797191]
[85]
Iraji, A.; Firuzi, O.; Khoshneviszadeh, M.; Tavakkoli, M.; Mahdavi, M.; Nadri, H.; Edraki, N.; Miri, R. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer’s disease. Eur. J. Med. Chem., 2017, 141, 690-702.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.057] [PMID: 29107423]
[86]
Edraki, N.; Firuzi, O.; Foroumadi, A.; Miri, R.; Madadkar-Sobhani, A.; Khoshneviszadeh, M.; Shafiee, A. Phenylimino-2H-chromen-3-carboxamide derivatives as novel small molecule inhibitors of β-secretase (BACE1). Bioorg. Med. Chem., 2013, 21(8), 2396-2412.
[http://dx.doi.org/10.1016/j.bmc.2013.01.064] [PMID: 23480856]
[87]
Du, H.; Liu, X.; Xie, J.; Ma, F. Novel deoxyvasicinone-donepezil hybrids as potential multitarget drug candidates for Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(5), 2397-2407.
[http://dx.doi.org/10.1021/acschemneuro.8b00699] [PMID: 30720268]
[88]
N-1H-Indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/9998128
[89]
Thai, N.Q.; Nguyen, H.L.; Linh, H.Q.; Li, M.S. Protocol for fast screening of multi-target drug candidates: Application to Alzheimer’s disease. J. Mol. Graph. Model., 2017, 77, 121-129.
[http://dx.doi.org/10.1016/j.jmgm.2017.08.002] [PMID: 28850894]
[90]
Thai, N.Q.; Bednarikova, Z.; Gancar, M.; Linh, H.Q.; Hu, C.K.; Li, M.S.; Gazova, Z. Compound CID 9998128 is a potential multitarget drug for Alzheimer’s disease. ACS Chem. Neurosci., 2018, 9(11), 2588-2598.
[http://dx.doi.org/10.1021/acschemneuro.8b00091] [PMID: 29775277]
[91]
Rajendran, L.; Schneider, A.; Schlechtingen, G.; Weidlich, S.; Ries, J.; Braxmeier, T.; Schwille, P.; Schulz, J.B.; Schroeder, C.; Simons, M.; Jennings, G.; Knölker, H.J.; Simons, K. Efficient inhibition of the Alzheimer’s disease β-secretase by membrane targeting. Science, 2008, 320(5875), 520-523.
[http://dx.doi.org/10.1126/science.1156609] [PMID: 18436784]
[92]
Gouras, G.K.; Tampellini, D.; Takahashi, R.H.; Capetillo-Zarate, E. Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol., 2010, 119(5), 523-541.
[http://dx.doi.org/10.1007/s00401-010-0679-9] [PMID: 20354705]
[93]
Ben Halima, S.; Mishra, S.; Raja, K.M.P.; Willem, M.; Baici, A.; Simons, K.; Brüstle, O.; Koch, P.; Haass, C.; Caflisch, A.; Rajendran, L. Specific inhibition of β-secretase processing of the Alzheimer disease amyloid precursor protein. Cell Rep., 2016, 14(9), 2127-2141.
[http://dx.doi.org/10.1016/j.celrep.2016.01.076] [PMID: 26923602]
[94]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[95]
Kobayashi, S.; Kato, T.; Azuma, T.; Kikuzaki, H.; Abe, K. Anti-allergenic activity of polymethoxyflavones from Kaempferia parviflora. J. Funct. Foods, 2015, 13, 100-107.
[http://dx.doi.org/10.1016/j.jff.2014.12.029]
[96]
Youn, K.; Lee, J.; Ho, C.T.; Jun, M. Discovery of polymethoxyflavones from black ginger (Kaempferia parviflora) as potential β-secretase (BACE1) inhibitors. J. Funct. Foods, 2016, 20, 567-574.
[http://dx.doi.org/10.1016/j.jff.2015.10.036]
[97]
Williams, P.; Sorribas, A.; Liang, Z. New methods to explore marine resources for Alzheimer’s therapeutics. Curr. Alzheimer Res., 2010, 7(3), 210-213.
[http://dx.doi.org/10.2174/156720510791050812] [PMID: 20088803]
[98]
Mekjaruskul, C.; Jay, M.; Sripanidkulchai, B. Modulatory effects of Kaempferia parviflora extract on mouse hepatic cytochrome P450 enzymes. J. Ethnopharmacol., 2012, 141(3), 831-839.
[http://dx.doi.org/10.1016/j.jep.2012.03.023] [PMID: 22465145]
[99]
Zou, Z.; Xu, P.; Zhang, G.; Cheng, F.; Chen, K.; Li, J.; Zhu, W.; Cao, D.; Xu, K.; Tan, G. Selagintriflavonoids with BACE1 inhibitory activity from the fern Selaginella doederleinii. Phytochemistry, 2017, 134, 114-121.
[http://dx.doi.org/10.1016/j.phytochem.2016.11.011] [PMID: 27889245]
[100]
Ji, K.Y.; Kim, K.M.; Kim, Y.H.; Im, A.R.; Lee, J.Y.; Park, B.; Na, M.; Chae, S. The enhancing immune response and anti-inflammatory effects of Anemarrhena asphodeloides extract in RAW 264.7 cells. Phytomedicine, 2019, 59152789
[http://dx.doi.org/10.1016/j.phymed.2018.12.012] [PMID: 31009851]
[101]
Wang, H.Q.; Liu, M.; Wang, L.; Lan, F.; Zhang, Y.H.; Xia, J.E.; Xu, Z.D.; Zhang, H. Identification of a novel BACE1 inhibitor, timosaponin A-III, for treatment of Alzheimer’s disease by a cell extraction and chemogenomics target knowledgebase-guided method. Phytomedicine, 2020, 75153244
[http://dx.doi.org/10.1016/j.phymed.2020.153244] [PMID: 32502824]
[102]
Hosen, S.M.Z.; Rubayed, M.; Dash, R.; Junaid, M.; Mitra, S.; Alam, M.S.; Dey, R. Prospecting and structural insight into the binding of novel plant-derived molecules of Leea indica as inhibitors of BACE1. Curr. Pharm. Des., 2018, 24(33), 3972-3979.
[http://dx.doi.org/10.2174/1381612824666181106111020] [PMID: 30398111]
[103]
Wong, Y.H.; Abdul Kadir, H.; Ling, S.K. Bioassay-guided isolation of cytotoxic cycloartane triterpenoid glycosides from the traditionally used medicinal plant Leea indica. Evidence-based Complement. Altern. Med., 2012, 2012
[104]
Kaundal, M.; Akhtar, M.; Deshmukh, R. Lupeol isolated from betula alnoides ameliorates amyloid beta induced neuronal damage via targeting various pathological events and alteration in neurotransmitter levels in rat’s brain. J. Neurol. Neurosci., 2017, 8, 3-10.
[http://dx.doi.org/10.21767/2171-6625.1000195]
[105]
Jack, C.R. Jr Alzheimer disease: New concepts on its neurobiology and the clinical role imaging will play. Radiology, 2012, 263(2), 344-361.
[http://dx.doi.org/10.1148/radiol.12110433] [PMID: 22517954]
[106]
Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimer’s disease: The challenge of the second century. Sci. Transl. Med., 2011, 3(77), 77sr1.
[http://dx.doi.org/10.1126/scitranslmed.3002369] [PMID: 21471435]
[107]
Laird, F.M.; Cai, H.; Savonenko, A.V.; Farah, M.H.; He, K.; Melnikova, T.; Wen, H.; Chiang, H.C.; Xu, G.; Koliatsos, V.E.; Borchelt, D.R.; Price, D.L.; Lee, H.K.; Wong, P.C. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J. Neurosci., 2005, 25(50), 11693-11709.
[http://dx.doi.org/10.1523/JNEUROSCI.2766-05.2005] [PMID: 16354928]
[108]
McConlogue, L.; Buttini, M.; Anderson, J.P.; Brigham, E.F.; Chen, K.S.; Freedman, S.B.; Games, D.; Johnson-Wood, K.; Lee, M.; Zeller, M.; Liu, W.; Motter, R.; Sinha, S. Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP transgenic mice. J. Biol. Chem., 2007, 282(36), 26326-26334.
[http://dx.doi.org/10.1074/jbc.M611687200] [PMID: 17616527]
[109]
Jack, C.R., Jr; Holtzman, D.M.; Ad, L. Biomarker modeling of Alzheimer’s disease. Neuron, 2013, 80(6), 1347-1358.
[http://dx.doi.org/10.1016/j.neuron.2013.12.003] [PMID: 24360540]
[110]
Rosén, C.; Hansson, O.; Blennow, K.; Zetterberg, H. Fluid biomarkers in Alzheimer’s disease - current concepts. Mol. Neurodegener., 2013, 8, 20.
[http://dx.doi.org/10.1186/1750-1326-8-20] [PMID: 23800368]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy