Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Proteomic Analysis of the Colistin-resistant E. coli Clinical Isolate: Explorations of the Resistome

Author(s): Divakar Sharma, Manisha Aswal, Nayeem Ahmad, Manish Kumar and Asad U. Khan*

Volume 29, Issue 2, 2022

Published on: 24 February, 2022

Page: [184 - 198] Pages: 15

DOI: 10.2174/0929866528666211129095001

Price: $65

Abstract

Background: Antimicrobial resistance is a worldwide problem after the emergence of colistin resistance since it was the last option left to treat carbapenemase-resistant bacterial infections. The mcr gene and its variants are one of the causes for colistin resistance. Besides mcr genes, some other intrinsic genes are also involved in colistin resistance but still need to be explored.

Objective: The aim of this study was to investigate differential proteins expression of colistin-resistant E. coli clinical isolate and to understand their interactive partners as future drug targets.

Methods: In this study, we have employed the whole proteome analysis through LC-MS/MS. The advance proteomics tools were used to find differentially expressed proteins in the colistin-resistant Escherichia coli clinical isolate compared to susceptible isolate. Gene ontology and STRING were used for functional annotation and protein-protein interaction networks, respectively.

Results: LC-MS/MS analysis showed overexpression of 47 proteins and underexpression of 74 proteins in colistin-resistant E. coli. These proteins belong to DNA replication, transcription and translational process; defense and stress related proteins; proteins of phosphoenol pyruvate phosphotransferase system (PTS) and sugar metabolism. Functional annotation and protein-protein interaction showed translational and cellular metabolic process, sugar metabolism and metabolite interconversion.

Conclusion: We conclude that these protein targets and their pathways might be used to develop novel therapeutics against colistin-resistant infections. These proteins could unveil the mechanism of colistin resistance.

Keywords: Colistin resistance, colistin-resistant E. coli, antimicrobial resistance, proteomics, functional annotation, pathways enrichment, STRING.

« Previous
Graphical Abstract
[1]
U.S. Department of Health and Human Services. Antibiotic resistance threats in the United States. 2013. Available from:http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
[2]
World Health Organization. Factsheet on antimicrobial resistance. Available from:http://www.who.int/mediacentre/factsheets/fs194
[3]
Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control, 2019, 8, 76.
[http://dx.doi.org/10.1186/s13756-019-0533-3] [PMID: 31131107]
[4]
Ahmad, N.; Khalid, S.; Ali, S.M.; Khan, A.U. Occurrence of blaNDM variants among Enterobacteriaceae from a neonatal intensive care unit in a Northern India Hospital. Front. Microbiol., 2018, 9, 407.
[http://dx.doi.org/10.3389/fmicb.2018.00407] [PMID: 29563908]
[5]
Parvez, S.; Khan, A.U. Hospital sewage water: A reservoir for variants of New Delhi metallo-β-lactamase (NDM)- and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Int. J. Antimicrob. Agents, 2018, 51(1), 82-88.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.08.032] [PMID: 28887202]
[6]
Khalid, S.; Ahmad, N.; Ali, S.M.; Khan, A.U. Outbreak of efficiently transferred Carbapenem-Resistant blaNDM-producing Gram-Negative Bacilli isolated from neonatal intensive care unit of an Indian Hospital. Microb. Drug Resist., 2020, 26(3), 284-289.
[http://dx.doi.org/10.1089/mdr.2019.0092] [PMID: 31397624]
[7]
Schwarz, S.; Johnson, A.P. Transferable resistance to colistin: A new but old threat. J. Antimicrob. Chemother., 2016, 71(8), 2066-2070.
[http://dx.doi.org/10.1093/jac/dkw274] [PMID: 27342545]
[8]
Adams, M.D.; Nickel, G.C.; Bajaksouzian, S.; Lavender, H.; Murthy, A.R.; Jacobs, M.R.; Bonomo, R.A. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob. Agents Chemother., 2009, 53(9), 3628-3634.
[http://dx.doi.org/10.1128/AAC.00284-09] [PMID: 19528270]
[9]
Moffatt, J.H.; Harper, M.; Adler, B.; Nation, R.L.; Li, J.; Boyce, J.D. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob. Agents Chemother., 2011, 55(6), 3022-3024.
[http://dx.doi.org/10.1128/AAC.01732-10] [PMID: 21402838]
[10]
Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.H.; Shen, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis., 2016, 16(2), 161-168.
[http://dx.doi.org/10.1016/S1473-3099(15)00424-7] [PMID: 26603172]
[11]
Xavier, B.B.; Lammens, C.; Ruhal, R.; Kumar-Singh, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill., 2016, 21(27), 30280.
[http://dx.doi.org/10.2807/1560-7917.ES.2016.21.27.30280] [PMID: 27416987]
[12]
Yin, W.; Li, H.; Shen, Y.; Liu, Z.; Wang, S.; Shen, Z.; Zhang, R.; Walsh, T.R.; Shen, J.; Wang, Y. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio, 2017, 8(3), e00543-e17.
[http://dx.doi.org/10.1128/mBio.00543-17] [PMID: 28655818]
[13]
Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzotti, G.; Magistrali, C.F. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill., 2017, 22(31), 30589.
[http://dx.doi.org/10.2807/1560-7917.ES.2017.22.31.30589] [PMID: 28797329]
[14]
Borowiak, M.; Fischer, J.; Hammerl, J.A.; Hendriksen, R.S.; Szabo, I.; Malorny, B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J. Antimicrob. Chemother., 2017, 72(12), 3317-3324.
[http://dx.doi.org/10.1093/jac/dkx327] [PMID: 28962028]
[15]
AbuOun, M.; Stubberfield, E. J.; Duggett, N. A.; Kirchner, M.; Dormer, L.; Nunez-Garcia, J.; Randall, L. P.; Lemma, F.; Crook, D. W.; Teale, C.; Smith, R.P Mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J. Agents. Chemother., 2017, 72, 2745-2749.
[16]
Yang, Y.Q.; Li, Y.X.; Lei, C.W.; Zhang, A.Y.; Wang, H.N. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J. Antimicrob. Chemother., 2018, 73(7), 1791-1795.
[http://dx.doi.org/10.1093/jac/dky111] [PMID: 29912417]
[17]
Wang, X.; Wang, Y.; Zhou, Y.; Li, J.; Yin, W.; Wang, S.; Zhang, S.; Shen, J.; Shen, Z.; Wang, Y. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg. Microbes Infect., 2018, 7(1), 122.
[http://dx.doi.org/10.1038/s41426-018-0124-z] [PMID: 29970891]
[18]
Carroll, L.M.; Gaballa, A.; Guldimann, C.; Sullivan, G.; Henderson, L.O.; Wiedmann, M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio, 2019, 10(3), e00853-e19.
[http://dx.doi.org/10.1128/mBio.00853-19] [PMID: 31064835]
[19]
Wang, C.; Feng, Y.; Liu, L.; Wei, L.; Kang, M.; Zong, Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg. Microbes Infect., 2020, 9(1), 508-516.
[http://dx.doi.org/10.1080/22221751.2020.1732231] [PMID: 32116151]
[20]
Sharma, D.; Bisht, D.; Khan, A.U. Potential alternative strategy against drug resistant Tuberculosis: A proteomics prospect. Proteom., 2018, 6, 26.
[http://dx.doi.org/10.3390/proteomes6020026]
[21]
Sharma, D.; Kumar, B.; Lata, M.; Joshi, B.; Venkatesan, K.; Shukla, S.; Bisht, D. Comparative proteomic analysis of aminoglycosides resistant and susceptible Mycobacterium tuberculosis clinical isolates for exploring potential drug targets. PLoS One, 2015, 10(10), e0139414.
[http://dx.doi.org/10.1371/journal.pone.0139414] [PMID: 26436944]
[22]
Sharma, D.; Garg, A.; Kumar, M.; Khan, A.U. Proteome profiling of carbapenem-resistant K. pneumoniae clinical isolate (NDM-4): Exploring the mechanism of resistance and potential drug targets. J. Proteomics, 2019, 200, 102-110.
[http://dx.doi.org/10.1016/j.jprot.2019.04.003] [PMID: 30953729]
[23]
Sharma, D.; Garg, A.; Kumar, M.; Rashid, F.; Khan, A.U. Down regulation of flagellar, fimbriae & pili proteins in carbapenem resistant Klebsiella pneumoniae (NDM-4) clinical isolates: A novel linkageto drug resistance. Front. Microbiol., 2019, 10, 2865.
[http://dx.doi.org/10.3389/fmicb.2019.02865] [PMID: 31921045]
[24]
Li, H.; Wang, Y.; Meng, Q.; Wang, Y.; Xia, G.; Xia, X.; Shen, J. Comprehensive proteomic and metabolomic profiling of mcr-1-mediated colistin resistance in Escherichia coli. Int. J. Antimicrob. Agents, 2019, 53(6), 795-804.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.02.014] [PMID: 30811973]
[25]
Shemesh, M.; Tam, A.; Steinberg, D. Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. J. Med. Microbiol., 2007, 56(Pt 11), 1528-1535.
[http://dx.doi.org/10.1099/jmm.0.47146-0] [PMID: 17965356]
[26]
Wayne, PA Performance standards for antimicrobial susceptibility testing: 24 informational supplement. CLSI, 2014, M100, S24.
[27]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[28]
Camon, E.; Barrell, D.; Lee, V.; Dimmer, E.; Apweiler, R. The Gene Ontology Annotation (GOA) Database- an integrated resource of GO annotations to the UniProt Knowledgebase. In Silico Biol., 2004, 4(1), 5-6.
[PMID: 15089749]
[29]
Sharma, D.; Bisht, D. Secretory proteome analysis of streptomycin resistant Mycobacterium tuberculosis clinical isolates. SLAS Discov., 2017, 22(10), 1229-1238.
[http://dx.doi.org/10.1177/2472555217698428] [PMID: 28314116]
[30]
Sharma, D.; Bisht, D. Bisht. D. Role of bacterioferritin & ferritin in M. tuberculosis pathogenesis and drug resistance: A future perspective by interactomic approach. Front. Cell. Infect. Microbiol., 2017, 7, 240.
[http://dx.doi.org/10.3389/fcimb.2017.00240] [PMID: 28642844]
[31]
Sharma, D.; Singh, R.; Deo, N.; Bisht, D. Interactome analysis of Rv0148 to predict potential targets and their pathways linked to aminoglycosides drug resistance: An in silico approach. Microb. Pathog., 2018, 121, 179-183.
[http://dx.doi.org/10.1016/j.micpath.2018.05.034] [PMID: 29800702]
[32]
Ludwig, W.; Weizenegger, M.; Betzl, D.; Leidel, E.; Lenz, T.; Ludvigsen, A.; Möllenhoff, D.; Wenzig, P.; Schleifer, K.H. Complete nucleotide sequences of seven eubacterial genes coding for the elongation factor Tu: Functional, structural and phylogenetic evaluations. Arch. Microbiol., 1990, 153(3), 241-247.
[http://dx.doi.org/10.1007/BF00249075] [PMID: 2110445]
[33]
Sprinzl, M. Elongation factor Tu: A regulatory GTPase with an integrated effector. Trends Biochem. Sci., 1994, 19(6), 245-250.
[http://dx.doi.org/10.1016/0968-0004(94)90149-X] [PMID: 8073502]
[34]
Craigen, W.J.; Cook, R.G.; Tate, W.P.; Caskey, C.T. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc. Natl. Acad. Sci. USA, 1985, 82(11), 3616-3620.
[http://dx.doi.org/10.1073/pnas.82.11.3616] [PMID: 3889910]
[35]
Petropoulos, A.D.; McDonald, M.E.; Green, R.; Zaher, H.S. Distinct roles for release factor 1 and release factor 2 in translational quality control. J. Biol. Chem., 2014, 289(25), 17589-17596.
[http://dx.doi.org/10.1074/jbc.M114.564989] [PMID: 24798339]
[36]
Mikuni, O.; Ito, K.; Moffat, J.; Matsumura, K.; McCaughan, K.; Nobukuni, T.; Tate, W.; Nakamura, Y. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc. Natl. Acad. Sci. USA, 1994, 91(13), 5798-5802.
[http://dx.doi.org/10.1073/pnas.91.13.5798] [PMID: 8016068]
[37]
Khan, A.; Sharma, D.; Faheem, M.; Bisht, D.; Khan, A.U. Proteomic analysis of a carbapenem-resistant Klebsiella pneumoniae strain in response to meropenem stress. J. Glob. Antimicrob. Resist., 2017, 8, 172-178.
[http://dx.doi.org/10.1016/j.jgar.2016.12.010] [PMID: 28219823]
[38]
Miranda-Vizuete, A.; Rodríguez-Ariza, A.; Toribio, F.; Holmgren, A.; López-Barea, J.; Pueyo, C. The levels of ribonucleotide reductase, thioredoxin, glutaredoxin 1, and GSH are balanced in Escherichia coli K12. J. Biol. Chem., 1996, 271(32), 19099-19103.
[http://dx.doi.org/10.1074/jbc.271.32.19099] [PMID: 8702583]
[39]
Storz, G.; Jacobson, F.S.; Tartaglia, L.A.; Morgan, R.W.; Silveira, L.A.; Ames, B.N. An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: Genetic characterization and cloning of ahp. J. Bacteriol., 1989, 171(4), 2049-2055.
[http://dx.doi.org/10.1128/jb.171.4.2049-2055.1989] [PMID: 2649484]
[40]
Jacobson, F.S.; Morgan, R.W.; Christman, M.F.; Ames, B.N. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J. Biol. Chem., 1989, 264(3), 1488-1496.
[http://dx.doi.org/10.1016/S0021-9258(18)94214-6] [PMID: 2643600]
[41]
Hoffmann, A.; Becker, A. H.; Zachmann-Brand, B.; Deuerling, E.; Bukau, B.; Kramer, G. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol. Cell, 2012, 48, 63-74.
[42]
Wen, Z.T.; Suntharaligham, P.; Cvitkovitch, D.G.; Burne, R.A. Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect. Immun., 2005, 73(1), 219-225.
[http://dx.doi.org/10.1128/IAI.73.1.219-225.2005] [PMID: 15618157]
[43]
White, R.J. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli. Biochem. J., 1970, 118(1), 89-92.
[http://dx.doi.org/10.1042/bj1180089] [PMID: 4919472]
[44]
Zhang, P.; Snyder, S.; Feng, P.; Azadi, P.; Zhang, S.; Bulgheresi, S.; Sanderson, K.E.; He, J.; Klena, J.; Chen, T. Role of N-acetylglucosamine within core lipopolysaccharide of several species of gram-negative bacteria in targeting the DC-SIGN (CD209). J. Immunol., 2006, 177(6), 4002-4011.
[http://dx.doi.org/10.4049/jimmunol.177.6.4002] [PMID: 16951363]
[45]
Prim, N.; Rivera, A.; Español, M.; Mirelis, B.; Coll, P. In vivo adaptive resistance to colistin in Escherichia coli isolates. Clin. Infect. Dis., 2015, 61(10), 1628-1629.
[http://dx.doi.org/10.1093/cid/civ645] [PMID: 26318913]
[46]
Deutscher, J.; Francke, C.; Postma, P.W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev., 2006, 70(4), 939-1031.
[http://dx.doi.org/10.1128/MMBR.00024-06] [PMID: 17158705]
[47]
Gosset, G.; Zhang, Z.; Nayyar, S.; Cuevas, W.A.; Saier, M.H., Jr Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J. Bacteriol., 2004, 186(11), 3516-3524.
[http://dx.doi.org/10.1128/JB.186.11.3516-3524.2004] [PMID: 15150239]
[48]
Zheng, D.; Constantinidou, C.; Hobman, J.L.; Minchin, S.D. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res., 2004, 32(19), 5874-5893.
[http://dx.doi.org/10.1093/nar/gkh908] [PMID: 15520470]
[49]
Tworzydło, M.; Polit, A.; Mikołajczak, J.; Wasylewski, Z. Fluorescence quenching and kinetic studies of conformational changes induced by DNA and cAMP binding to cAMP receptor protein from Escherichia coli. FEBS J., 2005, 272(5), 1103-1116.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04540.x] [PMID: 15720385]
[50]
Harman, J.G. Allosteric regulation of the cAMP receptor protein. Biochim. Biophys. Acta, 2001, 1547(1), 1-17.
[http://dx.doi.org/10.1016/S0167-4838(01)00187-X] [PMID: 11343786]
[51]
Héchard, Y.; Pelletier, C.; Cenatiempo, Y.; Frère, J. Analysis of σ(54)-dependent genes in Enterococcus faecalis: A mannose PTS permease (EII(Man)) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology, 2001, 147(Pt 6), 1575-1580.
[http://dx.doi.org/10.1099/00221287-147-6-1575] [PMID: 11390688]
[52]
Ramnath, M.; Arous, S.; Gravesen, A.; Hastings, J.W.; Héchard, Y. Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology, 2004, 150(Pt 8), 2663-2668.
[http://dx.doi.org/10.1099/mic.0.27002-0] [PMID: 15289562]
[53]
Zhang, W.; Cao, C.; Zhang, J.; Kwok, L.Y.; Zhang, H.; Chen, Y. Lactobacillus casei asp23 gene contributes to gentamycin resistance via regulating specific membrane-associated proteins. J. Dairy Sci., 2018, 101(3), 1915-1920.
[http://dx.doi.org/10.3168/jds.2017-13961] [PMID: 29248233]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy