Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Tannic Acid Exhibits Adjuvant Activity by Enhancing Humoral and Cell-Mediated Immunity Against BSA as a Protein Antigen

Author(s): Nidia Cabral-Hipólito, Brenda Sarahí Molina-Ramírez, Irais Castillo-Maldonado, Rocío Meza-Velázquez, Rubén García-Garza, Sergio-Everardo Velázquez Gauna, Dealmy Delgadillo-Guzmán, Alejandro Hernández-Herrera, Agustina Ramírez-Moreno, Jorge Haro Santa Cruz, Perla-Karina Espino-Silva and David Pedroza-Escobar*

Volume 29, Issue 2, 2022

Published on: 14 February, 2022

Page: [166 - 175] Pages: 10

DOI: 10.2174/0929866528666211125110701

Price: $65

Abstract

Background: Immunization or vaccination is the process of inducing artificial immunity against an antigen taking advantage of the mechanisms of immunological memory. Current vaccines include substances known as adjuvants, which tend to improve the immunogenicity of the antigen, reduce the antigen quantity employed, and boost the immune response in weak responders. Unfortunately, only a few vaccine adjuvants are approved for human use.

Objective: Thus, the objective of this study was to investigate the effect of Tannic acid on humoral and cell-mediated immunity against bovine serum albumin (BSA) as a protein antigen in Wistar rats.

Methods: In order to establish the Tannic acid concentration to test it as an adjuvant, the lethal dose 50 and maximum non-toxic dose were calculated through cytotoxicity and hemolytic assays with J774 A.1 cell line and rat erythrocytes by resazurin reduction method and UV/vis spectrophotometry. Thirty Wistar rats were divided into 5 groups that included two controls without antigen and three treatment groups of adjuvants plus BSA as a protein antigen. The rats were immunized in a 30-day scheme. Blood samples were collected for humoral immunity analysis by means of immunoglobulin quantification, isotyping and antigen-antibody precipitation inhibition analysis. Rat peritoneal macrophages and splenocytes were isolated for cell-mediated immunity analysis by means of nitric oxide quantification from adjuvant stimulated peritoneal macrophages and lymphocytes proliferation assay.

Results: Tannic acid was capable of increasing the immunogenicity of the antigen; besides, it was able to stimulate cell-mediated immunity by means of increased lymphocyte proliferation. Moreover, Tannic acid improved the humoral response by means of increased specific antibodies titers. These activities may be attributed to pattern recognition receptors stimulation.

Conclusion: Tannic acid was considered biocompatible when tested in vivo because the concentration tested did not show cytotoxicity or hemolytic effect, and there was no detrimental effect observed on the animals’ health. These results show Tannic acid as a promising candidate for vaccine adjuvant.

Keywords: Adjuvant, cell-mediated immunity, humoral immunity, immunogenicity, tannic acid, vaccine adjuvant.

Graphical Abstract
[1]
Rodwell, V.W.; Bender, D.A.; Botham, K.M.; Kennelly, P.J.; Weill, A. Harper’s Illustrated Biochemistry, 31st ed.; McGraw-Hill: New York, NY, 2018.
[2]
Flint, S.J.; Racaniello, V.R.; Rall, G.F.; Skalka, A.M.; Enquist, L.W. Principles of Virology Molecular biology, pathogenesis and control, 4th ed.; ASM PRESS: Washington, DC, 2015.
[http://dx.doi.org/10.1128/9781555818968]
[3]
Reyna-Margarita, H.R.; Irais, C.M.; Mario-Alberto, R.G.; Agustina, R.M.; Luis-Benjamín, S.G.; David, P.E. Plant phenolics and lectins as vaccine adjuvants. Curr. Pharm. Biotechnol., 2019, 20(15), 1236-1243.
[http://dx.doi.org/10.2174/1389201020666190716110705] [PMID: 31333121]
[4]
Irais, C.M.; María-de-la-Luz, S.G.; Dealmy, D.G.; Agustina, R.M.; Nidia, C.H.; Mario-Alberto, R.G.; Luis-Benjamín, S.G.; María-Del-Carmen, V.M.; David, P.E. Plant phenolics as pathogen-carrier immunogenicity modulator haptens. Curr. Pharm. Biotechnol., 2020, 21(10), 897-905.
[http://dx.doi.org/10.2174/1389201021666200121130313] [PMID: 31965941]
[5]
Kumru, O.S.; Joshi, S.B.; Smith, D.E.; Middaugh, C.R.; Prusik, T.; Volkin, D.B. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Vaccine, 2014, 42(5), 237-259.
[http://dx.doi.org/10.1016/j.biologicals.2014.05.007] [PMID: 24996452]
[6]
Di Pasquale, A.; Preiss, S.; Tavares Da Silva, F.; Garçon, N. Vaccine adjuvants: From 1920 to 2015 and beyond. Vaccines (Basel), 2015, 3(2), 320-343.
[http://dx.doi.org/10.3390/vaccines3020320] [PMID: 26343190]
[7]
Zhang, L.; Wang, W.; Wang, S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev. Vaccines, 2015, 14(11), 1509-1523.
[http://dx.doi.org/10.1586/14760584.2015.1081067] [PMID: 26313239]
[8]
Shi, S.; Zhu, H.; Xia, X.; Liang, Z.; Ma, X.; Sun, B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine, 2019, 37(24), 3167-3178.
[http://dx.doi.org/10.1016/j.vaccine.2019.04.055] [PMID: 31047671]
[9]
Apostólico, Jde.S.; Lunardelli, V.A.; Coirada, F.C.; Boscardin, S.B.; Rosa, D.S. Adjuvants: Classification, modus operandi, and licensing. J. Immunol. Res., 2016, 2016, 1459394.
[http://dx.doi.org/10.1155/2016/1459394] [PMID: 27274998]
[10]
Bastola, R.; Noh, G.; Keum, T.; Bashyal, S.; Seo, J.E.; Choi, J.; Oh, Y.; Cho, Y.; Lee, S. Vaccine adjuvants: Smart components to boost the immune system. Arch. Pharm. Res., 2017, 40(11), 1238-1248.
[http://dx.doi.org/10.1007/s12272-017-0969-z] [PMID: 29027637]
[11]
Lattanzio, V. Chapter 50. Phenolic compounds: Introduction. Natural Products; Springer: Berlin, 2016, pp. 1543-1580.
[12]
Ozcan, T.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L.; Delikanli, B. Phenolics in human health. Int. J. Chem. Eng. Appl., 2014, 5(5), 393-396.
[http://dx.doi.org/10.7763/IJCEA.2014.V5.416]
[13]
Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int., 2019, 102(5), 1397-1400.
[http://dx.doi.org/10.5740/jaoacint.19-0133] [PMID: 31200785]
[14]
Griroge, A. Chapter 5. Plant Phenolic Compounds as Immunomodulatory Agents. Phenolic Compounds - Biological Activity; Marcos Soto-Hernandez: IntechOpen, 2017, pp. 75-98.
[15]
Takahagi, S.; Harada, N.; Kamegashira, A.; Suzuki, S.; Shindo, H.; Kanatani, H.; Tanaka, A.; Mizuno, H.; Hide, M. Randomized double-blind cross-over trial of bath additive containing tannic acid in patients with atopic dermatitis. Cutan. Immunol. Allergy, 2020, 3, 56-61.
[http://dx.doi.org/10.1002/cia2.12112]
[16]
Serrano, J.; Puupponen-Pimiä, R.; Dauer, A.; Aura, A.M.; Saura-Calixto, F. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res., 2009, 53(Suppl. 2), S310-S329.
[http://dx.doi.org/10.1002/mnfr.200900039] [PMID: 19437486]
[17]
Sieniawska, E.; Baj, T. Chapter 10. Tannins. Pharmacognosy Fundamentals, Applications and Strategies; Elsevier Science: Boston, MA, 2017, pp. 199-232.
[18]
Cabral-Hipólito, N. Efecto del extracto acuoso de Azadirachta indica A. Juss (Neem) en la respuesta específica BSA-anticuerpos de suero de ratas Wistar, 2019.
[19]
Hernández-Ramos, R.M.; Hernández-Herrera, A.; Hernández-Nava, A.; Castillo-Maldonado, I.; Rivera-Guillén, M.A.; García-Garza, R.; Ramírez-Moreno, A.; Serrano-Gallardo, L.B.; Pedroza-Escobar, D. Immunomodulatory activity of Castela texana methanolic-extract on the production of nitric oxide in murine macrophages. J. Plant Dev. Sci., 2018, 10(12), 677-682.
[20]
Sun, H.X. Haemolytic activities and adjuvant effect of Bupleurum chinense saponins on the immune responses to ovalbumin in mice. Vaccine, 2006, 24(9), 1324-1331.
[http://dx.doi.org/10.1016/j.vaccine.2005.09.030] [PMID: 16214270]
[21]
United Federation of Teachers. How toxic is toxic? Available from: https://www.uft.org/chapters/doe-chapters/lab-specialists/you-should-know/how-toxic-toxic (Accessed on: April 4, 2020).
[22]
Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and molecular immunology, 9th ed.; Elsevier Science: Boston, MA, 2018.
[23]
Rojas-Espinosa, O. Inmunología (de memoria), 4th ed.; Editorial Médica Panamericana: Mexico City, 2017.
[24]
Regueiro-González, J.R.; López-Larrea, C.; González-Rodríguez, S.; Martínez-Naves, E. Inmunología Biología y patología del sistema inmunitario, 4th ed.; Editorial Médica Panamericana: Mexico City, 2011.
[25]
Mesquita Júnior, D.; Araújo, J.A.; Catelan, T.T.; Souza, A.W.; Cruvinel, Wde.M.; Andrade, L.E.; Silva, N.P. Immune system - part II: Basis of the immunological response mediated by T and B lymphocytes. Rev. Bras. Reumatol., 2010, 50(5), 552-580.
[PMID: 21125191]
[26]
MacMicking, J.; Xie, Q.W.; Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol., 1997, 15, 323-350.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.323] [PMID: 9143691]
[27]
Utaisincharoen, P.; Tangthawornchaikul, N.; Kespichayawattana, W.; Anuntagool, N.; Chaisuriya, P.; Sirisinha, S. Kinetic studies of the production of nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha) in macrophages stimulated with Burkholderia pseudomallei endotoxin. Clin. Exp. Immunol., 2000, 122(3), 324-329.
[http://dx.doi.org/10.1046/j.1365-2249.2000.01386.x] [PMID: 11122236]
[28]
Grandi, A.; Tomasi, M.; Grandi, G. Vaccinology: The art of putting together the right ingredients. Hum. Vaccin. Immunother., 2016, 12(5), 1311-1317.
[http://dx.doi.org/10.1080/21645515.2015.1123829] [PMID: 26751339]
[29]
Garçon, N.; Di Pasquale, A. From discovery to licensure, the Adjuvant System story. Hum. Vaccin. Immunother., 2017, 13(1), 19-33.
[http://dx.doi.org/10.1080/21645515.2016.1225635] [PMID: 27636098]
[30]
Tung, C.Y.; Lewis, D.E.; Han, L.; Jaja, M.; Yao, S.; Li, F.; Robertson, M.J.; Zhou, B.; Sun, J.; Chang, H.C. Activation of dendritic cell function by soypeptide lunasin as a novel vaccine adjuvant. Vaccine, 2014, 32(42), 5411-5419.
[http://dx.doi.org/10.1016/j.vaccine.2014.07.103] [PMID: 25131731]
[31]
Maisonneuve, C.; Bertholet, S.; Philpott, D.J.; De Gregorio, E. Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc. Natl. Acad. Sci. USA, 2014, 111(34), 12294-12299.
[http://dx.doi.org/10.1073/pnas.1400478111] [PMID: 25136133]
[32]
Maughan, C.N.; Preston, S.G.; Williams, G.R. Particulate inorganic adjuvants: Recent developments and future outlook. J. Pharm. Pharmacol., 2015, 67(3), 426-449.
[http://dx.doi.org/10.1111/jphp.12352] [PMID: 25496339]
[33]
Chahal, D.S.; Sivamani, R.K.; Isseroff, R.R.; Dasu, M.R. Plant-based modulation of Toll-like receptors: An emerging therapeutic model. Phytother. Res., 2013, 27(10), 1423-1438.
[http://dx.doi.org/10.1002/ptr.4886] [PMID: 23147906]
[34]
Venkatalakshmi, P.; Vadivel, V.; Brindha, P. Role of phytochemicals as immunomodulatory agents: A review. Int. J. Green Pharm., 2016, 10(1), 1-18.
[35]
Zacchino, S.A.; Butassi, E.; Liberto, M.D.; Raimondi, M.; Postigo, A.; Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 2017, 37, 27-48.
[http://dx.doi.org/10.1016/j.phymed.2017.10.018] [PMID: 29174958]
[36]
Lee, S.; Nguyen, M.T. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw., 2015, 15(2), 51-57.
[http://dx.doi.org/10.4110/in.2015.15.2.51] [PMID: 25922593]
[37]
Wang, Y.; Wang, X.; Huang, J.; Li, J. Adjuvant effect of Quillaja saponaria Saponin (QSS) on protective efficacy and IgM generation in Turbot (Scophthalmus maximus) upon immersion vaccination. Int. J. Mol. Sci., 2016, 17(3), 325.
[http://dx.doi.org/10.3390/ijms17030325] [PMID: 26950114]
[38]
Zhu, D.; Tuo, W. QS-21: A potent vaccine adjuvant. Nat. Prod. Chem. Res., 2016, 3(4), e113.
[PMID: 27213168]
[39]
Cibulski, S.P.; Rivera-Patron, M.; Mourglia-Ettlin, G.; Casaravilla, C.; Yendo, A.C.A.; Fett-Neto, A.G.; Chabalgoity, J.A.; Moreno, M.; Roehe, P.M.; Silveira, F. Quillaja brasiliensis saponin-based nanoparticulate adjuvants are capable of triggering early immune responses. Sci. Rep., 2018, 8(1), 13582.
[http://dx.doi.org/10.1038/s41598-018-31995-1] [PMID: 30206376]
[40]
Kaur, R.; Kaur, S. Evaluation of in vitro and in vivo antileishmanial potential of bergenin rich Bergenia ligulata (Wall.) Engl. root extract against visceral leishmaniasis in inbred BALB/c mice through immunomodulation. J. Tradit. Complement. Med., 2017, 8(1), 251-260.
[http://dx.doi.org/10.1016/j.jtcme.2017.06.006] [PMID: 29322016]
[41]
Mubarak, Z.; Humaira, A.; Gani, B.A.; Muchlisin, Z.A. Preliminary study on the inhibitory effect of seaweed Gracilaria verrucosa extract on biofilm formation of Candida albicans cultured from the saliva of a smoker. F1000 Res., 2018, 7, 684.
[http://dx.doi.org/10.12688/f1000research.14879.2] [PMID: 30210788]
[42]
Catap, E.S.; Kho, M.J.L.; Jimenez, M.R.R. In vivo nonspecific immunomodulatory and antispasmodic effects of common purslane (Portulaca oleracea Linn.) leaf extracts in ICR mice. J. Ethnopharmacol., 2018, 215, 191-198.
[http://dx.doi.org/10.1016/j.jep.2018.01.009] [PMID: 29325915]
[43]
Lakhani, N.; Kamra, D.N.; Lakhani, P.; Alhussien, M.N. Immune status and haemato-biochemical profile of buffalo calves supplemented with phytogenic feed additives rich in tannins, saponins and essential oils. Trop. Anim. Health Prod., 2019, 51(3), 565-573.
[http://dx.doi.org/10.1007/s11250-018-1727-z] [PMID: 30328547]
[44]
Ryel Min, B.; McTear, K.; Wang, H.H.; Joakin, M.; Gurung, N.; Abrahamsen, F.; Solaiman, S.; Sue Eun, J.; Hon Lee, J.; Dietz, L.A.; Zeller, W.E. Influence of elevated protein and tannin-rich peanut skin supplementation on growth performance, blood metabolites, carcass traits and immune-related gene expression of grazing meat goats. J. Anim. Physiol. Anim. Nutr. (Berl.), 2019. [Epub ahead of print].
[PMID: 31724236]
[45]
Banninger, G.; Reich, N.C. STAT2 nuclear trafficking. J. Biol. Chem., 2004, 279(38), 39199-39206.
[http://dx.doi.org/10.1074/jbc.M400815200] [PMID: 15175343]
[46]
Kolodziej, H.; Burmeister, A.; Trun, W.; Radtke, O.A.; Kiderlen, A.F.; Ito, H.; Hatano, T.; Yoshida, T.; Foo, L.Y. Tannins and related compounds induce nitric oxide synthase and cytokines gene expressions in Leishmania major-infected macrophage-like RAW 264.7 cells. Bioorg. Med. Chem., 2005, 13(23), 6470-6476.
[http://dx.doi.org/10.1016/j.bmc.2005.07.012] [PMID: 16143535]
[47]
Orlowski, P.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Gniadek, M.; Labedz, O.; Malewski, T.; Nowakowska, J.; Chodaczek, G.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic acid-modified silver and gold nanoparticles as novel stimulators of dendritic cells activation. Front. Immunol., 2018, 9(9), 1115.
[http://dx.doi.org/10.3389/fimmu.2018.01115] [PMID: 29872440]
[48]
Orłowski, P.; Kowalczyk, A.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Węgrzyn, A.; Grzesiak, J.; Celichowski, G.; Grobelny, J.; Eriksson, K.; Krzyzowska, M.; Krzyzowska, M. Antiviral activity of tannic acid modified silver nanoparticles: potential to activate immune response in herpes genitalis. Viruses, 2018, 10(10), E524.
[http://dx.doi.org/10.3390/v10100524] [PMID: 30261662]
[49]
Claassen, E.; de Leeuw, W.; de Greeve, P.; Hendriksen, C.; Boersma, W. Freund’s complete adjuvant: An effective but disagreeable formula. Res. Immunol., 1992, 143(5), 478-483.
[http://dx.doi.org/10.1016/0923-2494(92)80057-R] [PMID: 1439126]
[50]
Stills, H.F.Jr. Adjuvants and antibody production: Dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J., 2005, 46(3), 280-293.
[http://dx.doi.org/10.1093/ilar.46.3.280] [PMID: 15953835]
[51]
Dubé, J.Y.; McIntosh, F.; Zarruk, J.G.; David, S.; Nigou, J.; Behr, M.A. Synthetic mycobacterial molecular patterns partially complete Freund’s adjuvant. Sci. Rep., 2020, 10(1), 5874.
[http://dx.doi.org/10.1038/s41598-020-62543-5] [PMID: 32246076]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy