Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Role of the Cytoskeleton in Steroidogenesis

Author(s): Zaichao Wu and Chunping Zhang*

Volume 22, Issue 6, 2022

Published on: 17 March, 2022

Page: [549 - 557] Pages: 9

DOI: 10.2174/1871530321666211119143653

Price: $65

Abstract

Steroidogenesis in the adrenal cortex or gonads is a complicated process modulated by various elements either at the tissue or molecular level. The substrate cholesterol is first delivered to the outer membrane of mitochondria, undergoing a series of enzymatic reactions along with the material exchange between the mitochondria and the ER (endoplasmic reticulum) and ultimately yielding various steroids, such as aldosterone, cortisol, testosterone, and estrone. Several valves are set to adjust the amount of production as per the needs, e.g., StAR (steroidogenic acute regulator) controls the traffic of cholesterol from the outer membrane to the inner membrane of mitochondria which is a rate-limiting step. Moreover, the “need” is partly reflected by trophic signals, like ACTH, LH, and downstream pathways, such as the intracellular cAMP pathway, representing the endocrinal regulation of steroid synthesis.

The coordinated activities of these related factors are all associated with another crucial cellular constituent, the cytoskeleton, which plays a crucial role in cellular architecture and substrate trafficking. Though considerable studies have been performed regarding steroid synthesis, details regarding the upstream signaling pathways and mechanisms of the regulation by the cytoskeleton network still remain unclear. The metabolism and interplays of the pivotal cellular organelles with cytoskeleton are worth exploring as well. This review summarizes the research of different periods, describing the roles of specific cytoskeleton elements in steroidogenesis and related signaling pathways involved in steroid synthesis. In addition, we discuss the inner cytoskeletal network involved in steroidogenic processes, such as mitochondrial movement, organelle interactions, and cholesterol trafficking.

Keywords: Cholesterol, steroidogenesis, cytoskeleton, organelle interplay, signaling, StAR.

Graphical Abstract
[1]
Doghman-Bouguerra, M.; Lalli, E. The ER-mitochondria couple: In life and death from steroidogenesis to tumorigenesis. Mol. Cell. Endocrinol., 2017, 441, 176-184.
[http://dx.doi.org/10.1016/j.mce.2016.08.050] [PMID: 27594532]
[2]
Lee, S.; Min, K.T. The interface between er and mitochondria: molecular compositions and functions. Mol. Cells, 2018, 41(12), 1000-1007.
[PMID: 30590907]
[3]
Melkov, A.; Abdu, U. Regulation of long-distance transport of mitochondria along microtubules. Cell. Mol. Life Sci., 2018, 75(2), 163-176.
[http://dx.doi.org/10.1007/s00018-017-2590-1] [PMID: 28702760]
[4]
Mauro, A.J.; Jonasson, E.M.; Goodson, H.V. Relationship between dynamic instability of individual microtubules and flux of subunits in-to and out of polymer. Cytoskeleton (Hoboken), 2019, 76(11-12), 495-516.
[http://dx.doi.org/10.1002/cm.21557] [PMID: 31403242]
[5]
Vallés, A.S.; Tenconi, P.E.; Luquez, J.M.; Furland, N.E. The inhibition of microtubule dynamics instability alters lipid homeostasis in TM4 Sertoli cells. Toxicol. Appl. Pharmacol., 2021, 426, 115607.
[http://dx.doi.org/10.1016/j.taap.2021.115607] [PMID: 34089742]
[6]
Svitkina, T. The actin cytoskeleton and actin-based motility. Cold Spring Harb. Perspect. Biol., 2018, 10(1), a018267.
[http://dx.doi.org/10.1101/cshperspect.a018267] [PMID: 29295889]
[7]
Liesenborghs, I.; Eijssen, L.M.T.; Kutmon, M.; Gorgels, T.G.M.F.; Evelo, C.T.; Beckers, H.J.M.; Webers, C.A.B.; Schouten, J.S.A.G. The molecular processes in the trabecular meshwork after exposure to corticosteroids and in corticosteroid-induced ocular hypertension. Invest. Ophthalmol. Vis. Sci., 2020, 61(4), 24.
[http://dx.doi.org/10.1167/iovs.61.4.24] [PMID: 32305042]
[8]
Hohmann, T.; Dehghani, F. The cytoskeleton-a complex interacting meshwork. Cells, 2019, 8(4), E362.
[http://dx.doi.org/10.3390/cells8040362] [PMID: 31003495]
[9]
Serres, M.P.; Samwer, M.; Truong Quang, B.A.; Lavoie, G.; Perera, U.; Görlich, D.; Charras, G.; Petronczki, M.; Roux, P.P.; Paluch, E.K. F-actin interactome reveals vimentin as a key regulator of actin organization and cell mechanics in mitosis. Dev. Cell, 2020, 52(2), 210-222.e7.
[http://dx.doi.org/10.1016/j.devcel.2019.12.011] [PMID: 31928973]
[10]
Duarte, S.; Viedma-Poyatos, Á.; Navarro-Carrasco, E.; Martínez, A.E.; Pajares, M.A.; Pérez-Sala, D. Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division. Nat. Commun., 2019, 10(1), 4200.
[http://dx.doi.org/10.1038/s41467-019-12029-4] [PMID: 31519880]
[11]
Jiu, Y.; Lehtimäki, J.; Tojkander, S.; Cheng, F.; Jäälinoja, H.; Liu, X.; Varjosalo, M.; Eriksson, J.E.; Lappalainen, P. Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers. Cell Rep., 2015, 11(10), 1511-1518.
[http://dx.doi.org/10.1016/j.celrep.2015.05.008] [PMID: 26027931]
[12]
Hall, P.F.; Almahbobi, G. Roles of microfilaments and intermediate filaments in adrenal steroidogenesis. Microsc. Res. Tech., 1997, 36(6), 463-479.
[http://dx.doi.org/10.1002/(SICI)1097-0029(19970315)36:6<463:AID-JEMT4>3.0.CO;2-J] [PMID: 9142693]
[13]
Hookway, C.; Ding, L.; Davidson, M.W.; Rappoport, J.Z.; Danuser, G.; Gelfand, V.I. Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Mol. Biol. Cell, 2015, 26(9), 1675-1686.
[http://dx.doi.org/10.1091/mbc.E14-09-1398] [PMID: 25717187]
[14]
Prahlad, V.; Yoon, M.; Moir, R.D.; Vale, R.D.; Goldman, R.D. Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J. Cell Biol., 1998, 143(1), 159-170.
[http://dx.doi.org/10.1083/jcb.143.1.159] [PMID: 9763428]
[15]
Lin, Y.; Wei, Y.L.; She, Z.Y. Kinesin-8 motors: regulation of microtubule dynamics and chromosome movements. Chromosoma, 2020, 129(2), 99-110.
[http://dx.doi.org/10.1007/s00412-020-00736-7] [PMID: 32417983]
[16]
Almahbobi, G.; Williams, L.J.; Hall, P.F. Attachment of steroidogenic lipid droplets to intermediate filaments in adrenal cells. J. Cell Sci., 1992, 101(Pt 2), 383-393.
[http://dx.doi.org/10.1242/jcs.101.2.383] [PMID: 1629251]
[17]
Almahbobi, G.; Silberzahn, N.; Fakhri, R.; Silberzahn, P. Steroidogenic characteristics of the adrenal cortex of the mare studied by electron microscopy. Arch. Anat. Microsc. Morphol. Exp., 1985, 74(3), 193-203.
[PMID: 3833057]
[18]
Wuttke, M.; Li, Y.; Li, M.; Sieber, K.B.; Feitosa, M.F.; Gorski, M.; Tin, A.; Wang, L.; Chu, A.Y.; Hoppmann, A.; Kirsten, H.; Giri, A.; Chai, J.F.; Sveinbjornsson, G.; Tayo, B.O.; Nutile, T.; Fuchsberger, C.; Marten, J.; Cocca, M.; Ghasemi, S.; Xu, Y.; Horn, K.; Noce, D.; van der Most, P.J.; Sedaghat, S.; Yu, Z.; Akiyama, M.; Afaq, S.; Ahluwalia, T.S.; Almgren, P.; Amin, N.; Ärnlöv, J.; Bakker, S.J.L.; Bansal, N.; Baptista, D.; Bergmann, S.; Biggs, M.L.; Biino, G.; Boehnke, M.; Boerwinkle, E.; Boissel, M.; Bottinger, E.P.; Boutin, T.S.; Brenner, H.; Brumat, M.; Burkhardt, R.; Butterworth, A.S.; Campana, E.; Campbell, A.; Campbell, H.; Canouil, M.; Carroll, R.J.; Catamo, E.; Chambers, J.C.; Chee, M.L.; Chee, M.L.; Chen, X.; Cheng, C.Y.; Cheng, Y.; Christensen, K.; Cifkova, R.; Ciullo, M.; Concas, M.P.; Cook, J.P.; Coresh, J.; Corre, T.; Sala, C.F.; Cusi, D.; Danesh, J.; Daw, E.W.; de Borst, M.H.; De Grandi, A.; de Mutsert, R.; de Vries, A.P.J.; Degen-hardt, F.; Delgado, G.; Demirkan, A.; Di Angelantonio, E.; Dittrich, K.; Divers, J.; Dorajoo, R.; Eckardt, K.U.; Ehret, G.; Elliott, P.; End-lich, K.; Evans, M.K.; Felix, J.F.; Foo, V.H.X.; Franco, O.H.; Franke, A.; Freedman, B.I.; Freitag-Wolf, S.; Friedlander, Y.; Froguel, P.; Gansevoort, R.T.; Gao, H.; Gasparini, P.; Gaziano, J.M.; Giedraitis, V.; Gieger, C.; Girotto, G.; Giulianini, F.; Gögele, M.; Gordon, S.D.; Gudbjartsson, D.F.; Gudnason, V.; Haller, T.; Hamet, P.; Harris, T.B.; Hartman, C.A.; Hayward, C.; Hellwege, J.N.; Heng, C.K.; Hicks, A.A.; Hofer, E.; Huang, W.; Hutri-Kähönen, N.; Hwang, S.J.; Ikram, M.A.; Indridason, O.S.; Ingelsson, E.; Ising, M.; Jaddoe, V.W.V.; Jakobsdottir, J.; Jonas, J.B.; Joshi, P.K.; Josyula, N.S.; Jung, B.; Kähönen, M.; Kamatani, Y.; Kammerer, C.M.; Kanai, M.; Kastarinen, M.; Kerr, S.M.; Khor, C.C.; Kiess, W.; Kleber, M.E.; Koenig, W.; Kooner, J.S.; Körner, A.; Kovacs, P.; Kraja, A.T.; Krajcoviechova, A.; Kra-mer, H.; Krämer, B.K.; Kronenberg, F.; Kubo, M.; Kühnel, B.; Kuokkanen, M.; Kuusisto, J.; La Bianca, M.; Laakso, M.; Lange, L.A.; Langefeld, C.D.; Lee, J.J.; Lehne, B.; Lehtimäki, T.; Lieb, W.; Lim, S.C.; Lind, L.; Lindgren, C.M.; Liu, J.; Liu, J.; Loeffler, M.; Loos, R.J.F.; Lucae, S.; Lukas, M.A.; Lyytikäinen, L.P.; Mägi, R.; Magnusson, P.K.E.; Mahajan, A.; Martin, N.G.; Martins, J.; März, W.; Mascal-zoni, D.; Matsuda, K.; Meisinger, C.; Meitinger, T.; Melander, O.; Metspalu, A.; Mikaelsdottir, E.K.; Milaneschi, Y.; Miliku, K.; Mishra, P.P.; Mohlke, K.L.; Mononen, N.; Montgomery, G.W.; Mook-Kanamori, D.O.; Mychaleckyj, J.C.; Nadkarni, G.N.; Nalls, M.A.; Nauck, M.; Nikus, K.; Ning, B.; Nolte, I.M.; Noordam, R.; O’Connell, J.; O’Donoghue, M.L.; Olafsson, I.; Oldehinkel, A.J.; Orho-Melander, M.; Ouwehand, W.H.; Padmanabhan, S.; Palmer, N.D.; Palsson, R.; Penninx, B.W.J.H.; Perls, T.; Perola, M.; Pirastu, M.; Pirastu, N.; Pistis, G.; Podgornaia, A.I.; Polasek, O.; Ponte, B.; Porteous, D.J.; Poulain, T.; Pramstaller, P.P.; Preuss, M.H.; Prins, B.P.; Province, M.A.; Rabelink, T.J.; Raffield, L.M.; Raitakari, O.T.; Reilly, D.F.; Rettig, R.; Rheinberger, M.; Rice, K.M.; Ridker, P.M.; Rivadeneira, F.; Rizzi, F.; Roberts, D.J.; Robino, A.; Rossing, P.; Rudan, I.; Rueedi, R.; Ruggiero, D.; Ryan, K.A.; Saba, Y.; Sabanayagam, C.; Salomaa, V.; Salvi, E.; Saum, K.U.; Schmidt, H.; Schmidt, R.; Schöttker, B.; Schulz, C.A.; Schupf, N.; Shaffer, C.M.; Shi, Y.; Smith, A.V.; Smith, B.H.; Soranzo, N.; Spracklen, C.N.; Strauch, K.; Stringham, H.M.; Stumvoll, M.; Svensson, P.O.; Szymczak, S.; Tai, E.S.; Tajuddin, S.M.; Tan, N.Y.Q.; Tay-lor, K.D.; Teren, A.; Tham, Y.C.; Thiery, J.; Thio, C.H.L.; Thomsen, H.; Thorleifsson, G.; Toniolo, D.; Tönjes, A.; Tremblay, J.; Tzoulaki, I.; Uitterlinden, A.G.; Vaccargiu, S.; van Dam, R.M.; van der Harst, P.; van Duijn, C.M.; Velez Edward, D.R.; Verweij, N.; Vogelezang, S.; Völker, U.; Vollenweider, P.; Waeber, G.; Waldenberger, M.; Wallentin, L.; Wang, Y.X.; Wang, C.; Waterworth, D.M.; Bin, Wei W.; White, H.; Whitfield, J.B.; Wild, S.H.; Wilson, J.F.; Wojczynski, M.K.; Wong, C.; Wong, T.Y.; Xu, L.; Yang, Q.; Yasuda, M.; Yerges-Armstrong, L.M.; Zhang, W.; Zonderman, A.B.; Rotter, J.I.; Bochud, M.; Psaty, B.M.; Vitart, V.; Wilson, J.G.; Dehghan, A.; Parsa, A.; Chasman, D.I.; Ho, K.; Morris, A.P.; Devuyst, O.; Akilesh, S.; Pendergrass, S.A.; Sim, X.; Böger, C.A.; Okada, Y.; Edwards, T.L.; Snieder, H.; Stefans-son, K.; Hung, A.M.; Heid, I.M.; Scholz, M.; Teumer, A.; Köttgen, A.; Pattaro, C. Lifelines Cohort Study; V. A. Million Veteran Program. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet., 2019, 51(6), 957-972.
[http://dx.doi.org/10.1038/s41588-019-0407-x] [PMID: 31152163]
[19]
Shen, W.J.; Zaidi, S.K.; Patel, S.; Cortez, Y.; Ueno, M.; Azhar, R.; Azhar, S.; Kraemer, F.B. Ablation of vimentin results in defective steroidogenesis. Endocrinology, 2012, 153(7), 3249-3257.
[http://dx.doi.org/10.1210/en.2012-1048] [PMID: 22535769]
[20]
Clifford, G.M.; Londos, C.; Kraemer, F.B.; Vernon, R.G.; Yeaman, S.J. Translocation of hormone-sensitive lipase and perilipin upon lipo-lytic stimulation of rat adipocytes. J. Biol. Chem., 2000, 275(7), 5011-5015.
[http://dx.doi.org/10.1074/jbc.275.7.5011] [PMID: 10671541]
[21]
Shen, W.J.; Patel, S.; Eriksson, J.E.; Kraemer, F.B. Vimentin is a functional partner of hormone sensitive lipase and facilitates lipolysis. J. Proteome Res., 2010, 9(4), 1786-1794.
[http://dx.doi.org/10.1021/pr900909t] [PMID: 20143880]
[22]
Papadopoulos, C.; Orso, G.; Mancuso, G.; Herholz, M.; Gumeni, S.; Tadepalle, N.; Jüngst, C.; Tzschichholz, A.; Schauss, A.; Höning, S.; Trifunovic, A.; Daga, A.; Rugarli, E.I. Spastin binds to lipid droplets and affects lipid metabolism. PLoS Genet., 2015, 11(4), e1005149.
[http://dx.doi.org/10.1371/journal.pgen.1005149] [PMID: 25875445]
[23]
Welte, M.A.; Gould, A.P. Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(10 Pt B), 1260-1272.
[http://dx.doi.org/10.1016/j.bbalip.2017.07.006] [PMID: 28735096]
[24]
Arora, G.K.; Tran, S.L.; Rizzo, N.; Jain, A.; Welte, M.A. Temporal control of bidirectional lipid-droplet motion in Drosophila depends on the ratio of kinesin-1 and its co-factor Halo. J. Cell Sci., 2016, 129(7), 1416-1428.
[25]
Guimaraes, S.C.; Schuster, M.; Bielska, E.; Dagdas, G.; Kilaru, S.; Meadows, B.R.; Schrader, M.; Steinberg, G. Peroxisomes, lipid droplets, and endoplasmic reticulum “hitchhike” on motile early endosomes. J. Cell Biol., 2015, 211(5), 945-954.
[http://dx.doi.org/10.1083/jcb.201505086] [PMID: 26620910]
[26]
Hafner, A.E.; Rieger, H. Spatial cytoskeleton organization supports targeted intracellular transport. Biophys. J., 2018, 114(6), 1420-1432.
[http://dx.doi.org/10.1016/j.bpj.2018.01.042] [PMID: 29590599]
[27]
Hafner, A.E.; Rieger, H. Spatial organization of the cytoskeleton enhances cargo delivery to specific target areas on the plasma membrane of spherical cells. Phys. Biol., 2016, 13(6), 066003.
[http://dx.doi.org/10.1088/1478-3975/13/6/066003] [PMID: 27845936]
[28]
Schwarz, K.; Schröder, Y.; Qu, B.; Hoth, M.; Rieger, H. Optimality of Spatially Inhomogeneous Search Strategies. Phys. Rev. Lett., 2016, 117(6), 068101.
[http://dx.doi.org/10.1103/PhysRevLett.117.068101] [PMID: 27541477]
[29]
Sackett, D.L.; Wolff, J. Cyclic AMP-independent stimulation of steroidogenesis in Y-1 adrenal tumor cells by antimitotic agents. Biochim. Biophys. Acta, 1986, 888(2), 163-170.
[http://dx.doi.org/10.1016/0167-4889(86)90017-0] [PMID: 2874835]
[30]
Benis, R.; Mattson, P. Microtubules, organelle transport, and steroidogenesis in cultured adrenocortical tumor cells. 1. An ultrastructural analysis of cells in which basal and ACTH-induced steroidogenesis was inhibited by taxol. Tissue Cell, 1989, 21(4), 479-494.
[http://dx.doi.org/10.1016/0040-8166(89)90001-3] [PMID: 2573965]
[31]
Feuilloley, M.; Contesse, V.; Lefebvre, H.; Delarue, C.; Vaudry, H. Effects of selective disruption of cytoskeletal elements on steroid se-cretion by human adrenocortical slices. Am. J. Physiol., 1994, 266(2 Pt 1), E202-E210.
[PMID: 8141278]
[32]
Sewer, M.B.; Li, D. Regulation of steroid hormone biosynthesis by the cytoskeleton. Lipids, 2008, 43(12), 1109-1115.
[http://dx.doi.org/10.1007/s11745-008-3221-2] [PMID: 18726632]
[33]
Shah, M.; Chacko, L.A.; Joseph, J.P.; Ananthanarayanan, V. Mitochondrial dynamics, positioning and function mediated by cytoskeletal interactions. Cell. Mol. Life Sci., 2021, 78(8), 3969-3986.
[http://dx.doi.org/10.1007/s00018-021-03762-5] [PMID: 33576841]
[34]
Cai, Q.; Sheng, Z.H. Mitochondrial transport and docking in axons. Exp. Neurol., 2009, 218(2), 257-267.
[http://dx.doi.org/10.1016/j.expneurol.2009.03.024] [PMID: 19341731]
[35]
Summerhayes, I.C.; Wong, D.; Chen, L.B. Effect of microtubules and intermediate filaments on mitochondrial distribution. J. Cell Sci., 1983, 61, 87-105.
[http://dx.doi.org/10.1242/jcs.61.1.87] [PMID: 6350334]
[36]
Sweeney, H.L.; Holzbaur, E.L.F. Motor proteins. Cold Spring Harb. Perspect. Biol., 2018, 10(5), a021931.
[http://dx.doi.org/10.1101/cshperspect.a021931] [PMID: 29716949]
[37]
Miki, H.; Okada, Y.; Hirokawa, N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol., 2005, 15(9), 467-476.
[http://dx.doi.org/10.1016/j.tcb.2005.07.006] [PMID: 16084724]
[38]
Yardeni, T.; Fine, R.; Joshi, Y.; Gradus-Pery, T.; Kozer, N.; Reichenstein, I.; Yanowski, E.; Nevo, S.; Weiss-Tishler, H.; Eisenberg-Bord, M.; Shalit, T.; Plotnikov, A.; Barr, H.M.; Perlson, E.; Hornstein, E. High content image analysis reveals function of miR-124 upstream of Vimentin in regulating motor neuron mitochondria. Sci. Rep., 2018, 8(1), 59.
[http://dx.doi.org/10.1038/s41598-017-17878-x] [PMID: 29311649]
[39]
Horvath, S.E.; Daum, G. Lipids of mitochondria. Prog. Lipid Res., 2013, 52(4), 590-614.
[http://dx.doi.org/10.1016/j.plipres.2013.07.002] [PMID: 24007978]
[40]
Clark, B.J.; Wells, J.; King, S.R.; Stocco, D.M. The purification, cloning, and expression of a novel luteinizing hormone-induced mito-chondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem., 1994, 269(45), 28314-28322.
[http://dx.doi.org/10.1016/S0021-9258(18)46930-X] [PMID: 7961770]
[41]
Kornmann, B.; Currie, E.; Collins, S.R.; Schuldiner, M.; Nunnari, J.; Weissman, J.S.; Walter, P. An ER-mitochondria tethering complex re-vealed by a synthetic biology screen. Science, 2009, 325(5939), 477-481.
[http://dx.doi.org/10.1126/science.1175088] [PMID: 19556461]
[42]
Vance, J.E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem., 1990, 265(13), 7248-7256.
[http://dx.doi.org/10.1016/S0021-9258(19)39106-9] [PMID: 2332429]
[43]
Merkwirth, C.; Langer, T. Mitofusin 2 builds a bridge between ER and mitochondria. Cell, 2008, 135(7), 1165-1167.
[http://dx.doi.org/10.1016/j.cell.2008.12.005] [PMID: 19109886]
[44]
Iwasawa, R.; Mahul-Mellier, A.L.; Datler, C.; Pazarentzos, E.; Grimm, S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J., 2011, 30(3), 556-568.
[http://dx.doi.org/10.1038/emboj.2010.346] [PMID: 21183955]
[45]
Vance, J.E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta, 2014, 1841(4), 595-609.
[http://dx.doi.org/10.1016/j.bbalip.2013.11.014] [PMID: 24316057]
[46]
Kilwein, M.D.; Welte, M.A. Lipid droplet motility and organelle contacts. Contact (Thousand Oaks), 2019, 22515256419895688
[47]
Valm, A.M.; Cohen, S.; Legant, W.R.; Melunis, J.; Hershberg, U.; Wait, E.; Cohen, A.R.; Davidson, M.W.; Betzig, E.; Lippincott-Schwartz, J. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature, 2017, 546(7656), 162-167.
[http://dx.doi.org/10.1038/nature22369] [PMID: 28538724]
[48]
Green, K.N.; Billings, L.M.; Roozendaal, B.; McGaugh, J.L.; LaFerla, F.M. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J. Neurosci., 2006, 26(35), 9047-9056.
[http://dx.doi.org/10.1523/JNEUROSCI.2797-06.2006] [PMID: 16943563]
[49]
Choi, G.E.; Lee, S.J.; Lee, H.J.; Ko, S.H.; Chae, C.W.; Han, H.J. Membrane-associated effects of glucocorticoid on bace1 upregulation and aβ generation: involvement of lipid raft-mediated creb activation. J. Neurosci., 2017, 37(35), 8459-8476.
[http://dx.doi.org/10.1523/JNEUROSCI.0074-17.2017] [PMID: 28855330]
[50]
Peng, J.; Wang, H.; Wang, X.; Sun, M.; Deng, S.; Wang, Y. YAP and TAZ mediate steroid-induced alterations in the trabecular meshwork cytoskeleton in human trabecular meshwork cells. Int. J. Mol. Med., 2018, 41(1), 164-172.
[PMID: 29115373]
[51]
Choi, G.E.; Oh, J.Y.; Lee, H.J.; Chae, C.W.; Kim, J.S.; Jung, Y.H.; Han, H.J. Glucocorticoid-mediated ER-mitochondria contacts reduce AMPA receptor and mitochondria trafficking into cell terminus via microtubule destabilization. Cell Death Dis., 2018, 9(11), 1137.
[http://dx.doi.org/10.1038/s41419-018-1172-y] [PMID: 30429451]
[52]
Almahbobi, G.; Korn, M.; Hall, P.F. Calcium/calmodulin induces phosphorylation of vimentin and myosin light chain and cell rounding in cultured adrenal cells. Eur. J. Cell Biol., 1994, 63(2), 307-315.
[PMID: 8082655]
[53]
Inagaki, M.; Nishi, Y.; Nishizawa, K.; Matsuyama, M.; Sato, C. Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature, 1987, 328(6131), 649-652.
[http://dx.doi.org/10.1038/328649a0] [PMID: 3039376]
[54]
Flynn, M.P.; Fiedler, S.E.; Karlsson, A.B.; Carr, D.W.; Maizels, E.T.; Hunzicker-Dunn, M. Dephosphorylation of MAP2D enhances its binding to vimentin in preovulatory ovarian granulosa cells. J. Cell Sci., 2016, 129(15), 2983-2996.
[http://dx.doi.org/10.1242/jcs.190397] [PMID: 27335427]
[55]
Karlsson, A.B.; Maizels, E.T.; Flynn, M.P.; Jones, J.C.; Shelden, E.A.; Bamburg, J.R.; Hunzicker-Dunn, M. Luteinizing hormone receptor-stimulated progesterone production by preovulatory granulosa cells requires protein kinase A-dependent activation/dephosphorylation of the actin dynamizing protein cofilin. Mol. Endocrinol., 2010, 24(9), 1765-1781.
[http://dx.doi.org/10.1210/me.2009-0487] [PMID: 20610540]
[56]
Wang, B.; Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol., 2018, 14(8), 452-463.
[http://dx.doi.org/10.1038/s41574-018-0037-x] [PMID: 29904174]
[57]
Tontonoz, P. Transcriptional and posttranscriptional control of cholesterol homeostasis by liver X receptors. Cold Spring Harb. Symp. Quant. Biol., 2011, 76, 129-137.
[http://dx.doi.org/10.1101/sqb.2011.76.010702] [PMID: 21859674]
[58]
Means, A.R.; Tash, J.S.; Chafouleas, J.G.; Lagace, L.; Guerriero, V. Regulation of the cytoskeleton by Ca2+-calmodulin and cAMP. Ann. N. Y. Acad. Sci., 1982, 383, 69-84.
[http://dx.doi.org/10.1111/j.1749-6632.1982.tb23162.x] [PMID: 6283996]
[59]
Jefcoate, C.R.; Lee, J. Cholesterol signaling in single cells: lessons from STAR and sm-FISH. J. Mol. Endocrinol., 2018, 60(4), R213-R235.
[http://dx.doi.org/10.1530/JME-17-0281] [PMID: 29691317]
[60]
Murray, S.A.; Polizotto, S. Characterization of the morphological, growth, and steroidogenic effect of TPA on mouse Y-1 adrenal cortical tumor cells in culture. Am. J. Anat., 1988, 183(2), 166-177.
[http://dx.doi.org/10.1002/aja.1001830207] [PMID: 2849297]
[61]
Wang, Y.; Chen, F.; Ye, L.; Zirkin, B.; Chen, H. Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction, 2017, 154(4), R111-R122.
[http://dx.doi.org/10.1530/REP-17-0064] [PMID: 28747539]
[62]
Hall, P.F. The roles of calmodulin, actin, and vimentin in steroid synthesis by adrenal cells. Steroids, 1997, 62(1), 185-189.
[http://dx.doi.org/10.1016/S0039-128X(96)00179-1] [PMID: 9029735]
[63]
Betz, G.; Hall, P.F. Steroidogenesis in adrenal tumor cells: influence of cell shape. Endocrinology, 1987, 120(6), 2547-2554.
[http://dx.doi.org/10.1210/endo-120-6-2547] [PMID: 3032596]
[64]
Jiu, Y.; Peränen, J.; Schaible, N.; Cheng, F.; Eriksson, J.E.; Krishnan, R.; Lappalainen, P. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J. Cell Sci., 2017, 130(5), 892-902.
[http://dx.doi.org/10.1242/jcs.196881] [PMID: 28096473]
[65]
Li, D.; Sewer, M.B. RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial traffick-ing. Endocrinology, 2010, 151(9), 4313-4323.
[http://dx.doi.org/10.1210/en.2010-0044] [PMID: 20591975]
[66]
Watanabe, N.; Madaule, P.; Reid, T.; Ishizaki, T.; Watanabe, G.; Kakizuka, A.; Saito, Y.; Nakao, K.; Jockusch, B.M.; Narumiya, S. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J., 1997, 16(11), 3044-3056.
[http://dx.doi.org/10.1093/emboj/16.11.3044] [PMID: 9214622]
[67]
Voorhees, H.L.; Aschenbrenner, J.; Carnes, J.; Mrotek, J.J. Rounding and steroidogenesis of enzyme- and ACTH-treated Y-l mouse adren-al tumor cells. Cell Biol. Int. Rep., 1984, 8(6), 483-497.
[http://dx.doi.org/10.1016/0309-1651(84)90169-3] [PMID: 6086155]
[68]
Peverelli, E.; Catalano, R.; Giardino, E.; Treppiedi, D.; Morelli, V.; Ronchi, C.L.; Vaczlavik, A.; Fusco, N.; Ferrero, S.; Bertherat, J.; Beuschlein, F.; Chiodini, I.; Arosio, M.; Spada, A.; Mantovani, G. Cofilin is a cAMP effector in mediating actin cytoskeleton reorganiza-tion and steroidogenesis in mouse and human adrenocortical tumor cells. Cancer Lett., 2017, 406, 54-63.
[http://dx.doi.org/10.1016/j.canlet.2017.07.025] [PMID: 28826686]
[69]
Weigand, I. Pathogenesis of benign unilateral adrenocortical tumors: focus on cAMP/PKA pathway. Minerva Endocrinol., 2019, 44(1), 25-32.
[PMID: 29963826]
[70]
Rizk-Rabin, M.; Chaoui-Ibadioune, S.; Vaczlavik, A.; Ribes, C.; Polak, M.; Ragazzon, B.; Bertherat, J. Link between steroidogenesis, the cell cycle, and PKA in adrenocortical tumor cells. Mol. Cell. Endocrinol., 2020, 500, 110636.
[http://dx.doi.org/10.1016/j.mce.2019.110636] [PMID: 31678420]
[71]
Sugawara, T.; Holt, J.A.; Kiriakidou, M.; Strauss, J.F. III Steroidogenic factor 1-dependent promoter activity of the human steroidogenic acute regulatory protein (StAR) gene. Biochemistry, 1996, 35(28), 9052-9059.
[http://dx.doi.org/10.1021/bi960057r] [PMID: 8703908]
[72]
Murayama, C.; Miyazaki, H.; Miyamoto, A.; Shimizu, T. Luteinizing hormone (LH) regulates production of androstenedione and proges-terone via control of histone acetylation of StAR and CYP17 promoters in ovarian theca cells. Mol. Cell. Endocrinol., 2012, 350(1), 1-9.
[http://dx.doi.org/10.1016/j.mce.2011.11.014] [PMID: 22155568]
[73]
Sandhoff, T.W.; Hales, D.B.; Hales, K.H.; McLean, M.P. Transcriptional regulation of the rat steroidogenic acute regulatory protein gene by steroidogenic factor 1. Endocrinology, 1998, 139(12), 4820-4831.
[http://dx.doi.org/10.1210/endo.139.12.6345] [PMID: 9832418]
[74]
Prucha, M.S.; Martyniuk, C.J.; Doperalski, N.J.; Kroll, K.J.; Barber, D.S.; Denslow, N.D. Steroidogenic acute regulatory protein transcrip-tion is regulated by estrogen receptor signaling in largemouth bass ovary. Gen. Comp. Endocrinol., 2020, 286, 113300.
[http://dx.doi.org/10.1016/j.ygcen.2019.113300] [PMID: 31678557]
[75]
Kocerha, J.; Prucha, M.S.; Kroll, K.J.; Steinhilber, D.; Denslow, N. Regulation of steroidogenic acute regulatory protein transcription in largemouth bass by orphan nuclear receptor signaling pathways. Endocrinology, 2010, 151(1), 341-349.
[http://dx.doi.org/10.1210/en.2009-0551] [PMID: 19906818]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy