Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Synthesis of 1,2,3-triazole Compounds by Click Chemistry in Aqueous Medium and Evaluation of Bactericidal and Antitumoral Properties

Author(s): Lucas Lima Zanin, David Esteban Quintero Jimenez, Willian Garcia Birolli, Tiago Venâncio, Talita Alvarenga Valdes, Andrei Leitão and André Luiz Meleiro Porto*

Volume 18, Issue 4, 2022

Published on: 24 January, 2022

Article ID: e191121198117 Pages: 10

DOI: 10.2174/1573407217666211119092038

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Triazoles are heterocyclic synthetic compounds that have gained relevance after studies by Sharpless on regioselective methodologies for the synthesis of 1,2,3-triazole derivatives. In addition, they have a wide range of biological properties.

Objective: The objective of this study is to develop a synthetic methodology aligned with the principles of click chemistry for the synthesis of 1,2,3-triazole derivatives and verify the profile of these compounds in biological assays.

Methods: Initially, a model reaction was selected and an optimization study involving synthetic conditions was carried out. Using the most efficient condition, a series of compounds was developed by the reactions between 2-azido-1-phenylethan-1-one derivatives and terminal alkynes. In sequence, bactericidal and antitumoral assays were performed.

Results: It was possible to synthesise ten examples using water as a sustainable solvent, in 1 hour, with good yields of 73-99%, including three compounds described for the first time. Two products presented bactericidal activity, one against the gram-negative Escherichia coli ATCC 25922 and other against the gram-positive Paenibacillus alvei CBMAI 2221. Moreover, other two triazole derivatives presented antitumoral activity for prostate and pancreas cancer cells in this screening study with the bioactivity quantified for compound 1-([1,1'-biphenyl]-4-yl)-2-(4-(p-tolyl)- 1H-1,2,3-triazol-1-yl)ethan-1-one (IC50 = 132 μM).

Conclusion: Herein, an efficient methodology for the synthesis of 1,2,3-triazole derivatives with high yields and using water as solvent was developed. Furthermore, some compounds presented positive results to bactericidal and antitumoral assays, justifying further exploration of these novel compounds and their biological properties.

Keywords: Heterocycles, green chemistry, regioselective catalysis, 1, 3-dipolar cycloaddition, antitumoral, bactericidal, biological applications.

Graphical Abstract
[1]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1905.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[2]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[3]
Freitas, L.B. de O.; Ruela, F.A.; Pereira, G.R.; Alves, R.B.; Freitas, R.P. The “click” reaction in the synthesis of 1,2,3-triazoles: chemical aspects and applications. Chem. New, 2011, 34, 1791-1804.
[http://dx.doi.org/10.1590/S0100-40422011001000012]
[4]
Lakkakula, R.; Roy, A.; Mukkanti, K.; Sridhar, G. Synthesis and anticancer activity of 1,2,3-triazole fused N-arylpyrazole derivatives. Russ. J. Gen. Chem., 2019, 89, 831-835.
[http://dx.doi.org/10.1134/S1070363219040315]
[5]
Ye, G.J.; Lan, T.; Huang, Z.X.; Cheng, X.N.; Cai, C.Y.; Ding, S.M.; Xie, M.L.; Wang, B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion. Eur. J. Med. Chem., 2019, 177, 362-373.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.045] [PMID: 31158750]
[6]
Thanh, N.D.; Hai, D.S.; Ngoc Bich, V.T.; Thu Hien, P.T.; Ky Duyen, N.T.; Mai, N.T.; Dung, T.T.; Toan, V.N.; Kim Van, H.T.; Dang, L.H.; Toan, D.N.; Thanh Van, T.T. Efficient click chemistry towards novel 1H-1,2,3-triazole-tethered 4H-chromene-d-glucose conjugates: Design, synthesis and evaluation of in vitro antibacterial, MRSA and antifungal activities. Eur. J. Med. Chem., 2019, 167, 454-471.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.060] [PMID: 30784879]
[7]
Boshra, A.N.; Abdu-Allah, H.H.M.; Mohammed, A.F.; Hayallah, A.M. Click chemistry synthesis, biological evaluation and docking study of some novel 2′-hydroxychalcone-triazole hybrids as potent anti-inflammatory agents. Bioorg. Chem., 2020, 95, 103505.
[http://dx.doi.org/10.1016/j.bioorg.2019.103505] [PMID: 31901755]
[8]
Dai, Z-C.; Chen, Y.F.; Zhang, M.; Li, S.K.; Yang, T.T.; Shen, L.; Wang, J.X.; Qian, S.S.; Zhu, H.L.; Ye, Y.H. Synthesis and antifungal activity of 1,2,3-triazole phenylhydrazone derivatives. Org. Biomol. Chem., 2015, 13(2), 477-486.
[http://dx.doi.org/10.1039/C4OB01758G] [PMID: 25374053]
[9]
Huo, J.; Hu, H.; Zhang, M.; Hu, X.; Chen, M.; Chen, D.; Liu, J.; Xiao, G.; Wang, Y.; Wen, Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Advances, 2017, 7, 2281-2287.
[http://dx.doi.org/10.1039/C6RA27012C]
[10]
Da Silva Lessa, R.C. 1,2,3-triazole nucleus as a versatile tool for the obtainment of novel biologically active compounds: an overview. Rev. Virtual Quim., 2021, 13, 74-89.
[http://dx.doi.org/10.21577/1984-6835.20200132]
[11]
Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery. RSC Advances, 2020, 10, 5610-5635.
[http://dx.doi.org/10.1039/C9RA09510A]
[12]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[13]
Grant, E.M.; Kuti, J.L.; Nicolau, D.P.; Nightingale, C.; Quintiliani, R. Clinical efficacy and pharmacoeconomics of a continuous-infusion piperacillin-tazobactam program in a large community teaching hospital. Pharmacotherapy, 2002, 22(4), 471-483.
[http://dx.doi.org/10.1592/phco.22.7.471.33665] [PMID: 11939682]
[14]
Fonseca, A.P.; Extremina, C.; Fonseca, A.F.; Sousa, J.C. Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J. Med. Microbiol., 2004, 53(Pt 9), 903-910.
[http://dx.doi.org/10.1099/jmm.0.45637-0] [PMID: 15314198]
[15]
Lodise, T.P., Jr; Lomaestro, B.; Drusano, G.L. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin. Infect. Dis., 2007, 44(3), 357-363.
[http://dx.doi.org/10.1086/510590] [PMID: 17205441]
[16]
Sudeep, P.; Vagish, C.B.; Kumar, A.D.; Kumar, K.A. 1,2,3-Triazoles: a review on current trends in synthetic and biological applications. J. Appl. Chem, 2020, 13, 22-40.
[17]
Dias, C.S.; Lima, T.M.; Lima, C.G.S.; Zuekrman-Schpector, J.; Schwab, R.S. CuO nanoparticles as an efficient heterogeneous catalyst for the 1,3-dipolar cycloaddition of dicarbonyl compounds to azides. ChemistrySelect, 2018, 3, 6195-6202.
[http://dx.doi.org/10.1002/slct.201800816]
[18]
Costa, E.R.; Andrade, F.C.D.; De Albuquerque, D.Y.; Ferreira, L.E.M.; Lima, T.M.; Lima, C.G.S.; Silva, D.S.A.; Urquieta- González, E.A.; Paixão, M.W.; Schwab, R.S. Greener synthesis of 1,2,3-triazoles using a copper(I)-exchanged magnetically recoverable β-zeolite as catalyst. New J. Chem., 2020, 44, 15046-15053.
[http://dx.doi.org/10.1039/D0NJ02473B]
[19]
Castillo, J.C.; Bravo, N.F.; Tamayo, L.V.; Mestizo, P.D.; Hurtado, J.; Macías, M.; Portilla, J. Water-compatible synthesis of 1,2,3-triazoles under ultrasonic conditions by a Cu(I) complex-mediated click reaction. ACS Omega, 2020, 5(46), 30148-30159.
[http://dx.doi.org/10.1021/acsomega.0c04592] [PMID: 33251449]
[20]
Alvarenga, N.; Porto, A.L.M. Stereoselective reduction of 2-azido-1-phenylethanone derivatives by whole cells of marine-derived fungi applied to synthesis of enantioenriched β-hydroxy-1,2,3-triazoles. Biocatal. Biotransform., 2017, 35, 388-396.
[http://dx.doi.org/10.1080/10242422.2017.1352585]
[21]
Rocha, L.C.; Rosset, I.G.; Melgar, G.Z.; Raminelli, C.; Porto, A.L.M.; Jeller, A.H. Chemoenzymatic resolution of β-azidophenylethanols by Candida antarctica and their application for the synthesis of chiral benzotriazoles. J. Braz. Chem. Soc., 2013, 24, 1427-1432.
[22]
Quilles, J.C., Jr; Bernardi, M.D.L.; Batista, P.H.J.; Silva, S.C.M.; Rocha, C.M.R.; Montanari, C.A.; Leitão, A. Biological activity and physicochemical properties of pipeptidyl nitrile derivatives against pancreatic ductal adenocarcinoma cells. Anticancer Agents Med. Chem., 2019, 19(1), 112-120.
[http://dx.doi.org/10.2174/1871520618666181029141649] [PMID: 30370859]
[23]
Ghanem, A. Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds. Tetrahedron, 2007, 63, 1721-1754.
[http://dx.doi.org/10.1016/j.tet.2006.09.110]
[24]
Bilyi, A.K.; Antypenko, L.M.; Ivchuk, V.V.; Kamyshnyi, O.M.; Polishchuk, N.M.; Kovalenko, S.I. 2-heteroaryl-[1,2,4]triazolo[1,5-c]quinazoline-5(6H)-thiones and their S-substituted derivatives: synthesis, spectroscopic data, and biological activity. ChemPlusChem, 2015, 80(6), 980-989.
[http://dx.doi.org/10.1002/cplu.201500051] [PMID: 31973251]
[25]
Panda, S.S.; Malik, R.; Chand, M.; Jain, S.C. Synthesis and antimicrobial activity of some new 4-triazolylmethoxy-2H- chromen-2-one derivatives. Med. Chem. Res., 2012, 21, 3750-3756.
[http://dx.doi.org/10.1007/s00044-011-9881-0]
[26]
Sumrra, S.H.; Sahrish, I.; Raza, M.A.; Ahmad, Z.; Zafar, M.N.; Chohan, Z.H.; Khalid, M.; Ahmed, S. Efficient synthesis, characterization, and in vitro bactericidal studies of unsymmetrically substituted triazole-derived Schiff base ligand and its transition metal complexes. Monatsh. Chem., 2020, 151, 549-557.
[http://dx.doi.org/10.1007/s00706-020-02571-z]
[27]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[28]
Penthala, N.R.; Madhukuri, L.; Thakkar, S.; Madadi, N.R.; Lamture, G.; Eoff, R.L.; Crooks, P.A. Synthesis and anti-cancer screening of novel heterocyclic-(2H)-1,2,3-triazoles as potential anti- cancer agents. MedChemComm, 2015, 6(8), 1535-1543.
[http://dx.doi.org/10.1039/C5MD00219B] [PMID: 27066215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy