Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Synthesis of Antibacterial Oxide of Copper for Potential Application as Antifouling Agent

Author(s): Neeru Bhagat* and Brajesh Pandey

Volume 18, Issue 6, 2022

Published on: 13 January, 2022

Page: [726 - 732] Pages: 7

DOI: 10.2174/1573413717666211118105842

Price: $65

Abstract

Background: Copper oxide nanoparticles have become very important due to their numerous applications and ease of synthesis. Out of the two oxides of copper, cuprous oxide exhibits better antibacterial, antimicrobial, and antifouling properties.

Objective: The study aimed to find a way of synthesizing stable and eco-friendly oxide of copper and test it for antibacterial properties.

Methods: The precipitation method was employed for the synthesis of nanoparticles. NaOH and Moringa oleifera leaves extract were used as the reducing agents to obtain two different sets of samples.

Results: Good phases of copper oxides were formed for all the samples (cuprous as well as cupric oxides). SEM studies showed that the structure of cupric oxide (CuO), formed at higher calcination temperatures, is well defined when synthesized using a hybrid method.

Conclusion: Our studies indicate that the hybrid method of synthesis used by us is a more effective and quicker way of synthesizing cuprous oxide (Cu2O), which exhibits higher antibacterial properties as compared to cupric oxide (CuO).

Keywords: XRD, SEM, TEM, Raman, hybrid synthesis, Moringa oleifera extract, plant extract, antibacterial, cuprous oxide.

Graphical Abstract
[1]
Siddiqui, A.A.; Turkyilmazoglu, M. A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines (Basel), 2019, 10(6), 373.
[http://dx.doi.org/10.3390/mi10060373] [PMID: 31167483]
[2]
Turkyilmazoglu, M. Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus, 2020, 135, 781.
[http://dx.doi.org/10.1140/epjp/s13360-020-00812-y]
[3]
Marabelli, F.; Parravicini, G.B.; Salghetti-Drioli, F. Optical gap of CuO. Phys. Rev. B Condens. Matter, 1995, 52(3), 1433-1436.
[http://dx.doi.org/10.1103/PhysRevB.52.1433] [PMID: 9981187]
[4]
El-Trass, A.; Elshamy, H.; El-Mehasseb, I.; El-Kemary, M. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci., 2012, 258(7), 2997-3001.
[http://dx.doi.org/10.1016/j.apsusc.2011.11.025]
[5]
Filipič, G.; Cvelbar, U. Copper oxide nanowires: a review of growth. Nanotechnology, 2012, 23(19), 194001.
[http://dx.doi.org/10.1088/0957-4484/23/19/194001] [PMID: 22538410]
[6]
Li, J.; Sun, F.; Gu, K.; Wu, T.; Zhai, W.; Li, W. Preparation of spindly CuO micro-particles for photodegradation of dye pollutants under a halogen tungsten lamp. Applied Catalysis A, 2011, 406(1-2), 51-58.
[http://dx.doi.org/10.1016/j.apcata.2011.08.007]
[7]
Flohre, J.; Nuys, M.; Leidinger, C.; Köhler, F.; Carius, R. CuO and Cu2O nanoparticles for thin film photovoltaics. Proc. MRS, 2013, 1538, 197-202.
[http://dx.doi.org/10.1557/opl.2013.1025]
[8]
Hsieh, C.; Chen, J.; Lin, H.; Shih, H. Field emission from various CuO nanostructures. Appl. Phys. Lett., 2003, 83, 3383.
[http://dx.doi.org/10.1063/1.1619229]
[9]
Wang, H.; Pan, Q.; Zhao, J.; Yin, G.; Zuo, P. Fabrication of CuO film network-like architecture through solution-immersion and their application in lithium-ion battery. J. Power Sources, 2007, 167, 206.
[http://dx.doi.org/10.1016/j.jpowsour.2007.02.008]
[10]
Switzer, J.A.; Kothari, H.M.; Poizot, P.; Nakanishi, S.; Bohannan, E.W. Enantiospecific electrodeposition of a chiral catalyst. Nature, 2003, 425(6957), 490-493.
[http://dx.doi.org/10.1038/nature01990] [PMID: 14523441]
[11]
Vigil, E.; González, B.; Zumeta, I.; Domingo, C.; Doménech, X.; Ayllón, J. Preparation of photoelectrodes with spectral response in the visible without applied bias based on photochemically deposited copper oxide inside a porous titanium dioxide film. Thin Solid Films, 2005, 489, 50.
[http://dx.doi.org/10.1016/j.tsf.2005.04.098]
[12]
Turkyilmazoglu, M. Natural convective flow of nanofluids past a radiative and impulsive vertical plate. J. Aerosp. Eng., 2016, 6.
[13]
Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents, 2009, 33(6), 587-590.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.12.004] [PMID: 19195845]
[14]
Selim, M.S.; Sherif, A. El-Safty, Maher A. El-Sockary, Ahmed I. Hashem, Ossama M. Abo Elenien, Ashraf M. EL-Saeed and Nesreen A. Fatthallahe, Tailored design of Cu2O nanocube/silicone composites as efficient foul-release coatings. RSC Advances, 2015, 5, 19933-19943.
[http://dx.doi.org/10.1039/C5RA01597A]
[15]
Selim, M.S.; Sherif, A. El-Safty, Maher A. El-Sockary, Ahmed I. Hashem, Ossama M. Abo Elenien, Ashraf M. EL-Saeed and Nesreen A. Fatthallahe, Modeling of spherical silver nanoparticles in silicone-based nanocomposites for marine antifouling. RSC Advances, 2015, 5, 63175-63185.
[http://dx.doi.org/10.1039/C5RA07400B]
[16]
Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater., 2006, 18, 867-871.
[http://dx.doi.org/10.1021/cm052256f]
[17]
Zhu, H.; Wang, J.; Xu, G. Fast Synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus. Cryst. Growth Des., 2009, 9, 633-638.
[http://dx.doi.org/10.1021/cg801006g]
[18]
Lee, W.; Lim, Y.S.; Kim, S.; Jung, J.; Han, Y-K.; Yoon, S.; Pioa, L.; Kim, S-H. Crystal-to-crystal conversion of Cu2O nanoparticles to Cu crystals and applications in printed electronics. J. Mater. Chem., 2011, 21, 6928-6933.
[http://dx.doi.org/10.1039/c1jm10110b]
[19]
Hou, C.; Quan, H.; Duan, Y.; Zhang, Q.; Wang, H.; Li, Y. Facile synthesis of water-dispersible Cu2O nanocrystal-reduced graphene oxide hybrid as a promising cancer therapeutic agent. Nanoscale, 2013, 5(3), 1227-1232.
[http://dx.doi.org/10.1039/c2nr32938g] [PMID: 23302950]
[20]
Shen, X.; Chen, S.; Mu, D.; Wu, B.; Wu, F. Novel synthesis, and electrochemical performance of nano-structured composite with Cu2O embedment in porous carbon as anode material for lithium-ion batteries. J. Power Sources, 2013, 238, 173-179.
[http://dx.doi.org/10.1016/j.jpowsour.2013.03.085]
[21]
Shin, J.H.; Park, S.H.; Hyun, S.M.; Kim, J.W.; Park, H.M.; Song, J.Y. Electrochemical flow-based solution-solid growth of the Cu2O nanorod array: potential application to lithium ion batteries. Phys. Chem. Chem. Phys., 2014, 16(34), 18226-18232.
[http://dx.doi.org/10.1039/C4CP02049A] [PMID: 25055242]
[22]
Bhosale, M.A.; Sasaki, T.; Bhanage, B.M. A facile and rapid route for the synthesis of Cu/Cu2O nanoparticles and their application in the Sonogashira coupling reaction of acyl chlorides with terminal alkynes. Catal. Sci. Technol., 2014, 4, 4274-4280.
[http://dx.doi.org/10.1039/C4CY00868E]
[23]
Mohamed, R.M.; Aazam, E.S. Preparation and characterization of core–shell polyaniline/mesoporous Cu2O nanocomposites for the photocatalytic oxidation of thiophene. Appl. Catal. A, 2014, 480, 100-107.
[http://dx.doi.org/10.1016/j.apcata.2014.04.039]
[24]
Wang, G.; Berg, R.; Donegab, C.M.; Jong, K.P.; Jongh, P.E. Silica-supported Cu2O nanoparticles with tunable size for sustainable hydrogen generation. Appl. Catal. B, 2016, 192, 199-207.
[http://dx.doi.org/10.1016/j.apcatb.2016.03.044]
[25]
Bezza, F.A.; Tichapondwa, S.M.; Chirwa, E.M.N. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci. Rep., 2020, 10(1), 16680.
[http://dx.doi.org/10.1038/s41598-020-73497-z] [PMID: 33028867]
[26]
Badr, L.; Epstein, I.R. Size-controlled synthesis of Cu2O nanoparticles via reaction-diffusion. Chem. Phys. Lett., 2017, 669, 17.
[http://dx.doi.org/10.1016/j.cplett.2016.11.050]
[27]
Xiu, F-R.; Zhang, F-S. Size-controlled preparation of Cu2O nanoparticles from waste printed circuit boards by supercritical water combined with electrokinetic process. J. Hazard. Mater., 2012, 233-234, 200-206.
[http://dx.doi.org/10.1016/j.jhazmat.2012.07.019] [PMID: 22835773]
[28]
Choi, D.J.; Jeong-Ki Kim, H. Seong, Min-Seok Jang, Young-Ho Kim, The formation of Cu2O nanoparticles in polyimide using Cu electrodes via chemical curing, and their application in flexible polymer memory devices. Org. Electron., 2015, 27, 65.
[http://dx.doi.org/10.1016/j.orgel.2015.09.007]
[29]
Bhosale, M.A.; Bhanage, B.M. A simple approach for sonochemical synthesis of Cu2O nanoparticles with high catalytic properties. Adv. Powder Technol., 2016, 27(1), 238-244.
[http://dx.doi.org/10.1016/j.apt.2015.12.008]
[30]
Gou, L.; Murphy, C.J. Solution-phase synthesis of Cu2O nanocubes. Nano Lett., 2003, 3(2), 231.
[http://dx.doi.org/10.1021/nl0258776]
[31]
Zhao, H.Y.; Wang, Y.F.; Zeng, J.H. Hydrothermal synthesis of uniform cuprous oxide microcrystals with controlled morphology. Cryst. Growth Des., 2008, 8(10), 3731.
[http://dx.doi.org/10.1021/cg8003678]
[32]
Pan, L.; Zou, J-J.; Zhang, T.; Wang, S.; Li, Z.; Wang, L.; Zhang, X. Cu2O film via hydrothermal redox approach: morphology and photocatalytic performance. J. Phys. Chem. C, 2014, 118(30), 16335.
[http://dx.doi.org/10.1021/jp408056k]
[33]
Wang, Z.; Wang, H.; Wang, L.; Pan, L. Controlled synthesis of Cu2O cubic and octahedral nano- and microcrystals. Cryst. Res. Technol., 2009, 44(6), 624.
[http://dx.doi.org/10.1002/crat.200900136]
[34]
Bhosale, M.A.; Bhatte, K.D.; Bhanage, B.M. A rapid, one pot microwave assisted synthesis of nanosize cuprous oxide. Powder Technol., 2013, 235, 516.
[http://dx.doi.org/10.1016/j.powtec.2012.11.006]
[35]
Mohamed, R.M.; Aazam, E.S. Preparation and characterization of core–shell polyaniline/mesoporous Cu2O nanocomposites for the photocatalytic oxidation of thiophene. Appl. Catal. A Gen., 2014, 480, 100.
[http://dx.doi.org/10.1016/j.apcata.2014.04.039]
[36]
Pang, H.; Gaob, F.; Lu, Q. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities. CrystEngComm, 2010, 12, 406.
[http://dx.doi.org/10.1039/B904705K]
[37]
Liu, P.; Li, Z.; Cai, W.; Fang, M.; Luo, X. Fabrication of cuprous oxide nanoparticles by laser ablation in PVP aqueous solution. RSC Advances, 2011, 1, 847.
[http://dx.doi.org/10.1039/c1ra00261a]
[38]
Chena, D.; Ni, S.; Fang, J.J.; Xiao, T. Preparation of Cu2O nanoparticles in cupric chloride solutions with a simple mechanochemical approach. J. Alloys Compd., 2010, 504S, S345.
[http://dx.doi.org/10.1016/j.jallcom.2010.02.138]
[39]
Vijaya Kumar, R.; Mastai, Y.; Diamant, Y.; Gedanken, A. Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. J. Mater. Chem., 2001, 11, 1209.
[http://dx.doi.org/10.1039/b005769j]
[40]
Mancier, V.; Daltin, A.L.; Leclercq, D. Synthesis and characterization of copper oxide (I) nanoparticles produced by pulsed sonoelectrochemistry. Ultrason. Sonochem., 2008, 15(3), 157-163.
[http://dx.doi.org/10.1016/j.ultsonch.2007.02.007] [PMID: 17462940]
[41]
Åsbrink, S.; Norrby, L.J. A refinement of the crystal structure of copper (II) oxide with a discussion of some exceptional E.s.d.'s. Acta Crystallogr. B, 1970, 26, 8.
[http://dx.doi.org/10.1107/S0567740870001838]
[42]
Yeshchenko, O.A.; Dmitruk, I.; Dmytruk, A.; Alexeenko, A. Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater. Sci. Eng. B, 2007, 137, 247-254.
[http://dx.doi.org/10.1016/j.mseb.2006.11.030]
[43]
Balkanski, M.; Nusimovici, M.A.; Reydellet, J. First order Raman spectrum of Cu2O. Solid State Commun., 1969, 7, 815-818.
[http://dx.doi.org/10.1016/0038-1098(69)90768-6]
[44]
Surapaneni, M.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Advances, 2015, 15, 12293-12299.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy