Generic placeholder image

Current Chinese Chemistry


ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

MnO, Co and Ni Nanoparticle Synthesis by Oleylamie and Oleic Acid

Author(s): Wencai He, Yifang Qi, Uppalaiah Erugu, Jaiden Moore, Xianchun Zhu, Fengxiang Han, Jinke Tang and Qilin Dai*

Volume 2, 2022

Published on: 14 December, 2021

Article ID: e101121197856 Pages: 8

DOI: 10.2174/2666001601666211110093947


Background: Magnetic nanoparticles are attracting much attention toward easy operation and size controllable synthesis methods. We develop a method to synthesize MnO, Co, CoO, and Ni nanoparticles by thermal decomposition of metal 2,4-pentanedionates in the presence of oleylamine (OLA), oleic acid (OA), and 1octadecene (ODE).

Methods: Similar experimental conditions are used to prepare nanoparticles except for the metal starting materials (manganese 2,4-pentanedionate, nickel 2,4-pentanedionate, and cobalt 2,4- pentanedionate), leading to different products. For the manganese 2,4-pentanedionate starting material, MnO nanoparticles are always obtained as the reaction is controlled with different temperatures, precursor concentrations, ligand ratios, and reaction time. For the cobalt 2,4- pentanedionate starting material, only three experimental conditions can produce pure phase CoO and Co nanoparticles. For the nickel 2,4-pentanedionate starting material, only three experimental conditions lead to the production of pure phase Ni nanoparticles.

Results: The nanoparticle sizes increase with the increase of reaction temperatures. It is observed that the reaction time affects nanoparticle growth. The nanoparticles are studied by XRD, TEM, and magnetic measurements.

Conclusion: This work presents a facile method to prepare nanoparticles with different sizes, which provides a fundamental understanding of nanoparticle growth in solution.

Keywords: Magnetic Nanoparticles, Ni nanoparticles, MnO nanoparticles, Co nanoparticles, XRD, TEM.

Graphical Abstract
Robinson, I.; Volk, M.; Tung, L.D.; Caruntu, G.; Kay, N.; Thanh, N.T. Synthesis of Co nanoparticles by pulsed laser irradiation of Cobalt Carbonyl in organic solution. J. Phys. Chem. C, 2009, 113(22), 9497-9501.
Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co. J. Electrochem. Soc., 1999, 146(10), 3750.
Sun, H.; Lee, S.Y.; Lee, C.S. Physical chemistry research articles published in the bulletin of the Korean Chemical Society: 2003-2007. Bull. Korean Chem. Soc., 2008, 29(2), 450-462.
Jordan, A.; Scholz, R.; Wust, P.; Fähling, H.; Felix, R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater., 1999, 201(1-3), 413-419.
Tartaj, P.M. a del P. Morales, S. Veintemillas-Verdaguer, T.G. lez-Carre o, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. Appl. Phys., 2003, 36(13), R182-R197.
Hoehn, M.; Küstermann, E.; Blunk, J.; Wiedermann, D.; Trapp, T.; Wecker, S.; Föcking, M.; Arnold, H.; Hescheler, J.; Fleischmann, B.K.; Schwindt, W.; Bührle, C. Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat Proc. Natl. Acad. Sci. USA, 2002, 99(25), 16267-16272.
[] [PMID: 12444255]
Todorovic, M.; Schultz, S.; Wong, J.; Scherer, A. Writing and reading of single magnetic domain per bit perpendicular patterned media. Appl. Phys. Lett., 1999, 74(17), 2516-2518.
Verelst, M.; Ely, T.O.; Amiens, C.; Snoeck, E.; Lecante, P.; Mosset, A.; Respaud, M.; Broto, J.M.; Chaudret, B. Synthesis and characterization of CoO, Co3O4, and mixed Co/CoO nanoparticules. Chem. Mater., 1999, 11(10), 2702-2708.
Ye, Y.; Yuan, F.; Li, S. Synthesis of CoO nanoparticles by esterification reaction under solvothermal conditions. Mater. Lett., 2006, 60(25-26), 3175-3178.
Sun, X.; Zhang, Y-W.; Si, R.; Yan, C-H. Metal (Mn, Co, and Cu) oxide nanocrystals from simple formate precursors. Small, 2005, 1(11), 1081-1086.
[] [PMID: 17193400]
Murray, C.B.; Sun, S.; Gaschler, Doyle, H.; Betley, T.A.; Kagan, C.R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev., 2001, 45(1), 47-56.
Lu, L.T.; Tung, L.D.; Robinson, I.; Ung, D.; Tan, B.; Long, J.; Cooper, A.I.; Fernig, D.G.; Thanh, N.T.K. Size and shape control for water-soluble magnetic cobalt nanoparticles using polymer ligands. J. Mater. Chem., 2008, 18(21), 2453-2458.
Jiao, J.; Seraphin, S.; Wang, X.; Withers, J.C. Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles. J. Appl. Phys., 1996, 80(103), 103-108.
Li, D.; Komarneni, S. Microwave-assisted polyol process for synthesis of Ni nanoparticles. J. Am. Ceram. Soc., 2006, 89(5), 1510-1517.
Tzitzios, V.; Basina, G.; Gjoka, M.; Alexandrakis, V.; Georgakilas, V.; Niarchos, D.; Boukos, N.; Petridis, D. Chemical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology, 2006, 17(15), 3750-3755.
Jeon, Y.T.; Moon, J.Y.; Lee, G.H.; Park, J.; Chang, Y. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J. Phys. Chem. B, 2006, 110(3), 1187-1191.
[] [PMID: 16471662]
Chandra, S.; Kumar, A.; Tomar, P.K. Synthesis of Ni nanoparticles and their characterizations. J. Saudi Chem. Soc., 2014, 18(5), 437-442.
Dai, Q.; Tang, J. The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique. Nanoscale, 2013, 5(16), 7512-7519.
[] [PMID: 23832010]
Dai, Q.; Tang, J. Magnetic properties of CoO nanocrystals prepared with a controlled reaction atmosphere. RSC Advances, 2013, 3(24), 9228-9233.
Madras, G.; McCoy, B.J. Temperature effects on the transition from nucleation and growth to Ostwald ripening. Chem. Eng. Sci., 2004, 59(13), 2753-2765.
Madras, G.; McCoy, B.J. Temperature effects during Ostwald ripening. J. Chem. Phys., 2003, 119(3), 1683-1693.
Xue, X.; Penn, R.L.; Leite, E.R.; Huang, F.; Lin, Z. Crystal growth by oriented attachment: kinetic models and control factors. Cryst. Eng. Comm., 2014, 16(8), 1419-1429.
Dehsari, H.S.; Ribeiro, A.H.; Ersöz, B.; Tremel, W.; Jakob, G.; Asadi, K. Effect of precursor concentration on size evolution of iron oxide nanoparticles. Cryst. Eng. Comm., 2017, 19(44), 6694-6702.
Harris, R.A.; Shumbula, P.M.; van der Walt, H. Analysis of the interaction of surfactants oleic acid and oleylamine with iron oxide nanoparticles through molecular mechanics modeling. Langmuir, 2015, 31(13), 3934-3943.
[] [PMID: 25768034]
Panda, A.B.; Glaspell, G.; El-Shall, M.S. Microwave synthesis and optical properties of uniform nanorods and nanoplates of rare earth oxides. J. Phys. Chem. C, 2007, 111(5), 1861-1864.
Mohamed, M.B.; AbouZeid, K.M.; Abdelsayed, V.; Aljarash, A.A.; El-Shall, M.S. Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: Formation of dioleamide by gold nanocatalysis. ACS Nano, 2010, 4(5), 2766-2772.
[] [PMID: 20392051]
Litwinowicz, A-A.; Takami, S.; Asahina, S.; Hao, X.; Yoko, A.; Seong, G.; Tomai, T.; Adschiri, T. Formation dynamics of mesocrystals composed of organically modified CeO2 nanoparticles: Analogy to a particle formation model. Cryst. Eng. Comm., 2019, 21(25), 3836-3843.
Zulkifli, Z.A.; Razak, K.A.; Rahman, W.N.W.A. Effect of hydrothermal reaction time on size of bismuth oxide nanoparticles synthesized via hydrothermal method. AIP Conf. Proc., 2017, 1901(1), 020011.
Duan, C.; Meng, Y.; Wang, Y.; Zhang, Z.; Ge, Y.; Li, X.; Guo, Y.; Xiao, D. High-crystallinity and high-rate Prussian Blue analogues synthesized at the oil–water interface. Inorg. Chem. Front., 2021, 8(8), 2008-2016.
Chen, N.; Shao, C.; Qu, Y.; Li, S.; Gu, W.; Zheng, T.; Ye, L.; Yu, C. Folic Acid-Conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas. ACS Appl. Mater. Interfaces, 2014, 6(22), 19850-19857.
Lin, C-C.; Chen, C-J.; Chiang, R-K. Facile synthesis of monodisperse MnO nanoparticles from bulk MnO. J. Cryst. Growth, 2012, 338(1), 152-156.
Sun, X.; Gutierrez, A.; Yacaman, M.J.; Dong, X.; Jin, S. Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni. Mater. Sci. Eng. A, 2000, 286(1), 157-160.
Lu, X.; Tuan, H-Y.; Korgel, B.A.; Xia, Y. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chemistry, 2008, 14(5), 1584-1591.
[] [PMID: 18058964]
Treadwell, L.J.; Boyle, T.J.; Bell, N.S. Mark.A. Rodriguez, B.R. Muntifering, K. Hattar, Impact of oleylamine: Oleic acid ratio on the morphology of yttria nanomaterials. J. Mater. Sci., 2017, 52, 8268-8279.
Ben Aissa, M.A.; Tremblay, B.; Andrieux-Ledier, A.; Maisonhaute, E.; Raouafi, N.; Courty, A. Copper nanoparticles of well-controlled size and shape: A new advance in synthesis and self-organization. Nanoscale, 2015, 7(7), 3189-3195.
[] [PMID: 25615699]
Lan, F.; Bai, J.; Wang, H. The preparation of oleylamine modified micro-size sphere silver particles and its application in crystalline silicon solar cells. RSC Advances, 2018, 8, 16866-16872.
Dai, Q.; Patel, K.; Donatelli, G.; Ren, S. Magnetic cobalt ferrite nanocrystals for an energy storage concentration cell. Angew. Chem. Int. Ed. Engl., 2016, 55(35), 10439-10443.
[] [PMID: 27440206]
Zhang, Y.; Rimal, G.; Tang, J.; Dai, Q. Synthesis of NiFe2O4 nanoparticles for energy and environment applications. Mater. Res. Express, 2018, 5, 025023.

© 2023 Bentham Science Publishers | Privacy Policy