Review Article

Potential Implications of Angiotensin-converting Enzyme 2 Blockades on Neuroinflammation in SARS-CoV-2 Infection

Author(s): Deepraj Paul, Suresh K. Mohankumar*, Rhian S. Thomas, Chai B. Kheng and Duraiswamy Basavan

Volume 23, Issue 4, 2022

Page: [364 - 372] Pages: 9

DOI: 10.2174/1389450122666211103165837

Price: $65


Background: Angiotensin-converting enzyme 2 (ACE2) has been reported as a portal for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Consequently, scientific strategies to combat coronavirus disease of 2019 (COVID-19) were targeted to arrest SARS-CoV-2 invasion by blocking ACE2. While blocking ACE2 appears a beneficial approach to treat COVID-19, clinical concerns have been raised primarily due to the various intrinsic roles of ACE2 in neurological functions. Selective reports indicate that angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) upregulate ACE2 levels. ACE2 metabolizes angiotensin II and several peptides, including apelin-13, neurotensin, kinetensin, dynorphin, (des-Arg9) bradykinin, and (Lys-des-Arg9)-bradykinin, which may elicit neuroprotective effects. Since ARBs and ACEIs upregulate ACE2, it may be hypothesized that patients with hypertension receiving ARBs and ACEIs may have higher expression of ACE2 and thus be at a greater risk of severe disease from the SARS-CoV-2 infections. However, recent clinical reports indicate the beneficial role of ARBs/ACEIs in reducing COVID-19 severity. Together, this warrants a further study of the effects of ACE2 blockades in hypertensive patients medicated with ARBs/ACEIs, and their consequential impact on neuronal health. However, the associations between their blockade and any neuroinflammation also warrant further research.

Objective: This review collates mechanistic insights into the dichotomous roles of ACE2 in SARSCoV- 2 invasion and neurometabolic functions and the possible impact of ACE2 blockade on neuroinflammation.

Conclusion: It has been concluded that ACE2 blockade imposes neuroinflammation.

Keywords: COVID-19, SARS-CoV-2, angiotensin-converting enzyme 2, neuroinflammation, hypertension, ACEIs.

Graphical Abstract
WHO report 2021. 2021. Available from: (Accessed Mar 12 2021).
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ Res 2020; 126(10): 1456-74.
[] [PMID: 32264791]
McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020; 157: 104859.
[] [PMID: 32360480]
Ou T, Mou H, Zhang L, Ojha A, Choe H, Farzan M. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog 2021; 17(1): e1009212.
[] [PMID: 33465165]
Hong W. Combating COVID-19 with Chloroquine. J Mol Cell Biol 2020; 12(4): 249-50.
[] [PMID: 32236561]
Clarke NE, Turner AJ. Angiotensin-converting enzyme 2: the first decade. Int J Hypertens 2012; 2012: 307315.
[] [PMID: 22121476]
Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors-lessons from available evidence and insights into COVID-19. Hypertens Res 2020; 43(7): 648-54.
[] [PMID: 32341442]
Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012; 2012
Sukumaran V, Veeraveedu PT, Gurusamy N, et al. Olmesartan attenuates the development of heart failure after experimental autoimmune myocarditis in rats through the modulation of ANG 1-7 mas receptor. Mol Cell Endocrinol 2012; 351(2): 208-19.
[] [PMID: 22200414]
Pedrosa MA, Valenzuela R, Garrido-Gil P, et al. Experimental data using candesartan and captopril indicate no double-edged sword effect in COVID-19. Clin Sci (Lond) 2021; 135(3): 465-81.
[] [PMID: 33479758]
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020; 87: 18-22.
[] [PMID: 32240762]
Bahat G. Covid-19 and the renin angiotensin system: implications for the older adults. J Nutr Health Aging 2020; 24(7): 699-704.
[] [PMID: 32744564]
Cavalcanti DD, Raz E, Shapiro M, et al. Cerebral venous thrombosis associated with COVID-19. AJNR Am J Neuroradiol 2020; 41(8): 1370-6.
[] [PMID: 32554424]
Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract 2020; 162: 108142.
[] [PMID: 32278764]
WHO report 2019. 2019. Available from: (Accessed Jan 25 2021).
Kim MJ, Lim NK, Choi SJ, Park HY. Hypertension is an independent risk factor for type 2 diabetes: the Korean genome and epidemiology study. Hypertens Res 2015; 38(11): 783-9.
[] [PMID: 26178151]
Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem 2008; 107(6): 1482-94.
[] [PMID: 19014390]
Xiao L, Haack KK, Zucker IH. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am J Physiol Cell Physiol 2013; 304(11): C1073-9.
[] [PMID: 23535237]
Feng Y, Hans C, McIlwain E, Varner KJ, Lazartigues E. Angiotensin-converting enzyme 2 over-expression in the central nervous system reduces angiotensin-II-mediated cardiac hypertrophy. PLoS One 2012; 7(11): e48910.
[] [PMID: 23155428]
Chen J, Zhao Y, Chen S, et al. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology 2014; 79: 550-8.
[] [PMID: 24440367]
Guimond MO, Gallo-Payet N. The angiotensin II type 2 receptor in brain functions: An update. Int J Hypertens 2012; 2012: 351758.
[] [PMID: 23320146]
Xia H, Suda S, Bindom S, et al. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. PLoS One 2011; 6(7): e22682.
[] [PMID: 21818366]
Singh G, Pachouri UC, Khaidem DC, Kundu A, Chopra C, Singh P. Mitochondrial DNA damage and diseases. F1000 Res 2015; 4: 176.
[] [PMID: 27508052]
Yan C, Duanmu X, Zeng L, Liu B, Song Z. Mitochondrial DNA: Distribution, mutations, and elimination. Cells 2019; 8(4): 379.
[] [PMID: 31027297]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25A years. EMBO Mol Med 2016; 8(6): 595-608.
[] [PMID: 27025652]
Cai Q, Tammineni P. Mitochondrial aspects of synaptic dysfunction in Alzheimer's disease. J Alzheimers Dis 2017; 57(4): 1087-103.
[] [PMID: 27767992]
Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 2001; 98(13): 7004-11.
[] [PMID: 11416179]
Errea O, Moreno B, Gonzalez-Franquesa A, Garcia-Roves PM, Villoslada P. The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation 2015; 12(1): 152.
[] [PMID: 26310930]
Kamel AS, Abdelkader NF, Abd El-Rahman SS, Emara M, Zaki HF, Khattab MM. Stimulation of ACE2/ANG (1-7)/Mas axis by diminazene ameliorates Alzheimer's disease in the D-galactose-ovariectomized rat model: Role of PI3K/Akt pathway. Mol Neurobiol 2018; 55(10): 8188-202.
[] [PMID: 29516284]
Sommerstein R, Kochen MM, Messerli FH, GrAni C. Coronavirus disease 2019 (COVID-19): Do angiotensin-converting enzyme inhibitors/angiotensin receptor blockers have a biphasic effect? J Am Heart Assoc 2020; 9(7): e016509.
[] [PMID: 32233753]
Chen D, Xu W, Lei Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. Int J Infect Dis 2020; 93: 297-9.
[] [PMID: 32147538]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[] [PMID: 32125455]
Tripathy S, Dassarma B, Roy S, Chabalala H, Matsabisa MG. A review on possible modes of action of chloroquine/hydroxychloroquine: repurposing against SAR-CoV-2 (COVID-19) pandemic. Int J Antimicrob Agents 2020; 56(2): 106028.
[] [PMID: 32450198]
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[] [PMID: 15141377]
Duan J, Cui J, Yang Z, et al. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3Iy/Nrf2 signaling. J Neuroinflammation 2019; 16(1): 1-6.
[] [PMID: 30606213]
Xu W, Li T, Gao L, et al. Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. J Neuroinflammation 2019; 16(1): 247.
[] [PMID: 31791369]
Sato T, Kadowaki A, Suzuki T, et al. Loss of apelin augments angiotensin II-induced cardiac dysfunction and pathological remodeling. Int J Mol Sci 2019; 20(2): 239.
[] [PMID: 30634441]
Wang W, McKinnie SM, Farhan M, et al. Angiotensin-converting enzyme 2 metabolizes and partially inactivates pyr-apelin-13 and apelin-17: physiological effects in the cardiovascular system. Hypertension 2016; 68(2): 365-77.
[] [PMID: 27217402]
St-Gelais F, Jomphe C, Trudeau LA. The role of neurotensin in central nervous system pathophysiology: what is the evidence? J Psychiatry Neurosci 2006; 31(4): 229-45.
[PMID: 16862241]
Patel AB, Tsilioni I, Leeman SE, Theoharides TC. Neurotensin stimulates sortilin and mTOR in human microglia inhibitable by methoxyluteolin, a potential therapeutic target for autism. Proc Natl Acad Sci USA 2016; 113(45): E7049-58.
[] [PMID: 27663735]
Read D, Shulkes A, Fletcher D, Hardy K. Pharmacokinetics and biological activity of kinetensin in conscious sheep. Agents Actions 1993; 38(3-4): 231-9.
[] [PMID: 8213349]
Wang Q, Shin EJ, Nguyen XK, et al. Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. J Neuroinflammation 2012; 9(1): 124.
[] [PMID: 22695044]
Hauser KF, Aldrich JV, Anderson KJ, et al. Pathobiology of dynorphins in trauma and disease. Front Biosci 2005; 10: 216-35.
[] [PMID: 15574363]
Bregola G, Varani K, Gessi S, et al. Changes in hippocampal and cortical B1 bradykinin receptor biological activity in two experimental models of epilepsy. Neuroscience 1999; 92(3): 1043-9.
[] [PMID: 10426544]
Sarker MH, Hu DE, Fraser PA. Acute effects of bradykinin on cerebral microvascular permeability in the anaesthetized rat. J Physiol 2000; 528(Pt 1): 177-87.
[] [PMID: 11018116]
Ni A, Yin H, Agata J, Yang Z, Chao L, Chao J. Overexpression of kinin B1 receptors induces hypertensive response to des-Arg9-bradykinin and susceptibility to inflammation. J Biol Chem 2003; 278(1): 219-25.
[] [PMID: 12411434]
GrAger M, Lebesgue D, Pruneau D, et al. Release of bradykinin and expression of kinin B2 receptors in the brain: role for cell death and brain edema formation after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2005; 25(8): 978-89.
[] [PMID: 15815587]
Claesson-Welsh L. Vascular permeability--the essentials. Ups J Med Sci 2015; 120(3): 135-43.
[] [PMID: 26220421]
Qadri F, Rimmele F, Mallis L, et al. Acute hypothalamo-pituitary-adrenal axis response to LPS-induced endotoxemia: expression pattern of kinin type B1 and B2 receptors. Biol Chem 2016; 397(2): 97-109.
[] [PMID: 26468906]
Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019; 15(8): 459-72.
[] [PMID: 31263255]
Wang J, Kaplan N, Wysocki J, et al. The ACE2-deficient mouse: A model for a cytokine storm-driven inflammation. FASEB J 2020; 34(8): 10505-15.
[] [PMID: 32725927]
Obukhov AG, Stevens BR, Prasad R, et al. SARS-CoV-2 infections and ACE2: Clinical outcomes linked with increased morbidity and mortality in individuals with diabetes. Diabetes 2020; 69(9): 1875-86.
[] [PMID: 32669391]
Liu X, Long C, Xiong Q, et al. Association of renin-angiotensin-aldosterone system inhibition with risk of COVID-19, inflammation level severity and death in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. medRxiv 2020.
Quitterer U, AbdAlla S. Improvements of symptoms of Alzheimer's disease by inhibition of the angiotensin system. Pharmacol Res 2020; 154: 104230.
[] [PMID: 30991105]
Jarrahi A, Ahluwalia M, Khodadadi H, et al. Neurological consequences of COVID-19: what have we learned and where do we go from here? J Neuroinflammation 2020; 17(1): 286.
[] [PMID: 32998763]
Vaira LA, Salzano G, Fois AG, Piombino P, De Riu G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int Forum Allergy Rhinol 2020; 10(9): 1103-4.
[] [PMID: 32342636]
Chen M, Shen W, Rowan NR, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J 2020; 56(3): 2001948.
[] [PMID: 32817004]
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020; 53: 13-24.
[] [PMID: 32475759]
Zhao Y, Qin Y, Liu T, Hao D. Chronic nerve injury-induced Mas receptor expression in dorsal root ganglion neurons alleviates neuropathic pain. Exp Ther Med 2015; 10(6): 2384-8.
[] [PMID: 26668645]
Wang XL, Iwanami J, Min LJ, et al. Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging Mech Dis 2016; 2(1): 16024.
[] [PMID: 28721275]
Kim JD, Yoon NA, Jin S, Diano S. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding. Cell Metab 2019; 30(5): 952-962.e5.
[] [PMID: 31495690]
Sanchis-Gomar F, Lavie CJ, Mehra MR, Henry BM, Lippi G. Obesity and Outcomes in COVID-19: when an epidemic and pandemic collide. Mayo Clin Proc 2020; 95(7): 1445-53.
[] [PMID: 32622449]
Patel VB, Mori J, McLean BA, et al. ACE2 Deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes 2016; 65(1): 85-95.
[PMID: 26224885]
Kotchen TA. Obesity-related hypertension: epidemiology, pathophysiology, and clinical management. Am J Hypertens 2010; 23(11): 1170-8.
[] [PMID: 20706196]
Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020; 76: 14-20.
[] [PMID: 32336612]
Ruschitzka F, Taddei S. Angiotensin-converting enzyme inhibitors: first-line agents in cardiovascular protection? Eur Heart J 2012; 33(16): 1996-8.
[] [PMID: 22659198]
Abiodun OA, Ola MS. Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J Biol Sci 2020; 27(3): 905-12.
[] [PMID: 32127770]
Malik RA. Can diabetic neuropathy be prevented by angiotensin-converting enzyme inhibitors? Ann Med 2000; 32(1): 1-5.
[] [PMID: 10711571]
Stern EM, Johnson JS, Mazzulla DA. Highly accelerated onset of hydroxychloroquine macular retinopathy. Ochsner J 2017; 17(3): 280-3.
[PMID: 29026363]
Cermak S, Kosicek M, Mladenovic-Djordjevic A, Smiljanic K, Kanazir S, Hecimovic S. Loss of Cathepsin B and L Leads to Lysosomal Dysfunction, NPC-Like cholesterol sequestration and accumulation of the key Alzheimer's Proteins. PLoS One 2016; 11(11): e0167428.
[] [PMID: 27902765]
Ulivi L, Squitieri M, Cohen H, Cowley P, Werring DJ. Cerebral venous thrombosis: A practical guide. Pract Neurol 2020; 20(5): 356-67.
[] [PMID: 32958591]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy