Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Efficacy of Pulegone Pre-treatment in Mitigating the Oxidative Damage by NaCl Applied to Allium cepa L. Seeds

Author(s): Jailson Renato de Lima Silva, Larisse Bernardino dos Santos, Elayne Eally Silva de Oliveira, Carlos Vinícius Barros Oliveira, Adrielle Rodrigues Costa, Pedro Silvino Pereira, Luiz Marivando Barros, Antonio Ivanildo Pinho, Jean Paul Kamdem and Antonia Eliene Duarte*

Volume 12, Issue 6, 2022

Published on: 03 January, 2022

Article ID: e251021197386 Pages: 9

DOI: 10.2174/2210315511666211025154628

Price: $65

Abstract

Background: Saline stress is an important environmental factor that limits the productivity of numerous agricultural crops, such as onion (Allium cepa L.), a vegetable present in gardens and used in various ways. Pulegone has been identified as a component that has a large number of biological functions.

Objective: The aim of this study was to investigate the effect of pulegone (100 and 500 μg/mL) on the morphological and biochemical changes to onions induced by stressing seeds with NaCl.

Methods: Soil composition, emergence percentage and its inhibition, emergence speed index (ESI), leaf and root parameters, malondialdehyde (MDA) content, free iron content and chelation/oxidation capacity (Fe2+) were measured following 120 days of treatment.

Results: Pulegone was able to significantly improve the changes in ESI caused by saline stress, not restoring other emergence parameters. The leaf size was also improved by the pulegone, which did not affect the morphological changes of the roots.

Conclusion: Our results suggest that the use of pulegone is a viable treatment to mitigate the effects of salt stress on A. cepa seeds.

Keywords: Allium cepa, pulegone, emergence, saline stress, phytotoxicity, chelating activity.

Graphical Abstract
[1]
Flowers, T.J.; Garcia, A.; Koyama, M.; Yeo, A.R. Breeding for salt tolerance in crop plants — the role of molecular biology. Acta Physiol. Plant., 1997, 19, 427-433.
[http://dx.doi.org/10.1007/s11738-997-0039-0]
[2]
Zhu, J-K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol., 2002, 53, 247-273.
[http://dx.doi.org/10.1146/annurev.arplant.53.091401.143329] [PMID: 12221975]
[3]
Allakhverdiev, S.I.; Sakamoto, A.; Nishiyama, Y.; Inaba, M.; Murata, N. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol., 2000, 123(3), 1047-1056.
[http://dx.doi.org/10.1104/pp.123.3.1047] [PMID: 10889254]
[4]
Tanou, G.; Molassiotis, A.; Diamantidis, G. Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ. Exp. Bot., 2009, 65(2-3), 270-281.
[http://dx.doi.org/10.1016/j.envexpbot.2008.09.005]
[5]
Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 2002, 7(9), 405-410.
[http://dx.doi.org/10.1016/S1360-1385(02)02312-9] [PMID: 12234732]
[6]
Yasar, F.; Ellialtioglu, S.; Yildiz, K. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ. J. Plant Physiol., 2008, 55(6), 782.
[http://dx.doi.org/10.1134/S1021443708060071]
[7]
Elrys, A.S.; Abdo, A.I.E.; Abdel-Hamed, E.M.W.; Desoky, E.M. Integrative application of licorice root extract or lipoic acid with fulvic acid improves wheat production and defenses under salt stress conditions. Ecotoxicol. Environ. Saf., 2020, 190, 110144.
[http://dx.doi.org/10.1016/j.ecoenv.2019.110144] [PMID: 31901539]
[8]
Dixit, V.; Pandey, V.; Shyam, R. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ., 2002, 25(5), 687-693.
[http://dx.doi.org/10.1046/j.1365-3040.2002.00843.x]
[9]
Mittova, V.; Tal, M.; Volokita, M.; Guy, M. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ., 2003, 26(6), 845-856.
[http://dx.doi.org/10.1046/j.1365-3040.2003.01016.x] [PMID: 12803612]
[10]
FAO. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC/visualize
[11]
Leme, D.M.; Marin-Morales, M.A. Allium cepa test in environmental monitoring: a review on its application. Mutat. Res., 2009, 682(1), 71-81.
[http://dx.doi.org/10.1016/j.mrrev.2009.06.002] [PMID: 19577002]
[12]
Srivastava, A.K.; Singh, D. Assessment of malathion toxicity on cytophysiological activity, DNA damage and antioxidant enzymes in root of Allium cepa model. Sci. Rep., 2020, 10(1), 886.
[http://dx.doi.org/10.1038/s41598-020-57840-y] [PMID: 31964992]
[13]
Marques, H.M.C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragrance J., 2010, 25, 313-326.
[http://dx.doi.org/10.1002/ffj.2019]
[14]
Božović, M.; Ragno, R. Calamintha nepeta (L.) Savi and its Main Essential Oil Constituent Pulegone: Biological Activities and Chemistry. Molecules, 2017, 22(2), 290.
[http://dx.doi.org/10.3390/molecules22020290] [PMID: 28216606]
[15]
Lassila, T.; Mattila, S.; Turpeinen, M.; Pelkonen, O.; Tolonen, A. Tandem mass spectrometric analysis of S- and N-linked glutathione conjugates of pulegone and menthofuran and identification of P450 enzymes mediating their formation. Rapid Commun. Mass Spectrom., 2016, 30(7), 917-926.
[http://dx.doi.org/10.1002/rcm.7518] [PMID: 26969934]
[16]
Yang, Q.; Luo, J.; Lv, H.; Wen, T.; Shi, B.; Liu, X.; Zeng, N. Pulegone inhibits inflammation via suppression of NLRP3 inflammasome and reducing cytokine production in mice. Immunopharmacol. Immunotoxicol., 2019, 41(3), 420-427.
[http://dx.doi.org/10.1080/08923973.2019.1588292] [PMID: 31134844]
[17]
Krin, A.; Pérez, C.; Pinacho, P.; Quesada-Moreno, M.M.; López- González, J.J.; Avilés-Moreno, J.R.; Blanco, S.; López, J.C.; Schnell, M. Structure Determination, Conformational Flexibility, Internal Dynamics, and Chiral Analysis of Pulegone and Its Complex with Water. Chemistry, 2018, 24(3), 721-729.
[http://dx.doi.org/10.1002/chem.201704644] [PMID: 29024085]
[18]
Zárybnický, T.; Matoušková, P.; Lancošová, B.; Šubrt, Z.; Skálová, L.; Boušová, I. Inter-Individual Variability in Acute Toxicity of R-Pulegone and R-Menthofuran in Human Liver Slices and Their Influence on miRNA Expression Changes in Comparison to Acetaminophen. Int. J. Mol. Sci., 2018, 19(6), 1805.
[http://dx.doi.org/10.3390/ijms19061805] [PMID: 29921785]
[19]
Lemos, R.C.; Santos, R.D. Manual de descrição e coleta de solo no campo. Campinas. Rev. Bras. Ciênc. Solo, Rev. Bras. Ciênc. Solo1996.
[20]
Ralisch, R.; Debiasi, H.; Franchini, J.C.; Tomazi, M.; Hernani, L.C.; Melo, A.S.; Santi, A.; Martins, A.L.S.; de Bona, F.D. Diagnóstico rápido da estrutura do solo (DRES). Embrapa Solos-Capítulo em livro técnico (INFOTECA-E), 2017.http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1107195
[21]
Aguiar Neto, P.; Grangeiro, L.C.; Mendes, A.; Costa, N.D.; Marrocos, S.D.T.; de Sousa, V.F. Growth and accumulation of macronutrients in onion crop in Barauna (RN) and Petrolina. Rev. Bras. Eng. Agric. Ambient., 2014, 18(4), 370-380.
[http://dx.doi.org/10.1590/S1415-43662014000400003]
[22]
Karuku, G.N.; Mbindah, B. Validation Of Aquacrop Model For Simulation Of Rainfed. Trop. Subtrop. Agroecosystems, 2020, 23, 1-11.
[23]
Meena, R.P. Bio-efficacy of plant extracts for management of purple blotch disease of onion (Allium cepa). Indian Phytopathol., 2012, 65(3), 253-257.
[24]
Fiskesjö, G. The Allium test as a standard in environmental monitoring. Hereditas, 1985, 102(1), 99-112.
[http://dx.doi.org/10.1111/j.1601-5223.1985.tb00471.x] [PMID: 3988545]
[25]
De Oliveira, M.R.C.; Barros, L.M.; Duarte, A.E.; Lima Silva, M.G.; Da Silva, B.A.F.; Pereira Bezerra, A. A.O.B.; Oliveira Tintino, C.D.M.; De Oliveira, V.A.P.; Boligon, A.A.; Kamdem, J.P.; CoutinhO, H.D.M.; Menezes, I.R.A. GC-MS Chemical Characterization and In Vitro Evaluation of Antioxidant and Toxic Effects Using Drosophila melanogaster Model of the Essential Oil of Lantana montevidensis (Spreng) Briq. Medicina (B. Aires), 2019, 55(5), 194.
[http://dx.doi.org/10.3390/medicina55050194]
[26]
Barbosa Filho, V.M.; Waczuk, E.P.; Kamdem, J.P.; Abolaji, A.O.; Lacerda, S.R.; Da Costa, J.G.M.; Menezes, I.R.A.; Boligon, A.A.; Athayde, M.L.; Rocha, J.B.T.; Posser, T. Phytochemical constituents, antioxidant activity, cytotoxicity and osmotic fragility effects of Caju (Anacardium microcarpum). Ind. Crops Prod., 2014, 55, 280-288.
[http://dx.doi.org/10.1016/j.indcrop.2014.02.021]
[27]
Kamdem, J.P.; Adeniran, A.; Boligon, A.A.; Klimaczewski, C.V.; Elekofehinti, O.O.; Hassan, W.M.; Ibrahim, M.; Waczuk, E.P.; Meinerz, D.F.; Athayde, M.L. Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract: Its potential role in neuroprotection. Ind. Crops Prod., 2013, 51, 26-34.
[http://dx.doi.org/10.1016/j.indcrop.2013.08.056]
[28]
Klimaczewski, C.V.; Saraiva, R.A.; Roos, D.H.; Boligon, A.A.; Athayde, M.L.; Kamdem, J.P.; Barbosa, N.V.; Rocha, J.B.T. Antioxidant activity of Peumus boldus extract and alkaloid boldine against damage induced by Fe(II)-citrate in rat liver mitochondria in vitro. Ind. Crops Prod., 2014, 54, 240-247.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.051]
[29]
Pedersen, H.H.; Sørensen, C.G.; Oudshoorn, F.W. F.W.; Krogsgård, P.; Munkholm, L.J. Evaluation of onion production on sandy soils by use of reduced tillage and controlled traffic farming with wide span tractors. Acta Technol. Agric., 2015, 18(3), 74-82.
[http://dx.doi.org/10.1515/ata-2015-0015]
[30]
Nihayah, B.A. The response of growth rate in different husk biochar application of Allium cepa l in sandy soil. IOP Conference Series: Earth and Environmental Science, 2020.
[31]
Patidar, A.; Kumar, R. Kumar. U.; Kemro, I.K. A studies on the effect of different organic sources on onion (Allium cepa L.) productivity and soil health. J Pharmacogn. Phytochemistry, 2019, 8(3), 1069-1072.
[32]
Bhat, S.A.; Singh, J.; Vig, A.P. Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test. Environ. Sci. Pollut. Res. Int., 2015, 22(15), 11236-11254.
[http://dx.doi.org/10.1007/s11356-015-4302-4] [PMID: 25794577]
[33]
Khan, M.; Fatima, K.; Ahmad, R.; Younas, R.; Rizwan, M.; Azam, M.; Abadin, Z.U.; Ali, S. Comparative effect of mesquite biochar, farmyard manure, and chemical fertilizers on soil fertility and growth of onion (Allium cepa L.). Arab. J. Geosci., 2019, 12(18), 563.
[http://dx.doi.org/10.1007/s12517-019-4734-0]
[34]
Jat, M.K.; Tikkoo, A.; Yadav, P.K.; Yadav, S.S.; Yadav, P.V.S. Effect of integrated nutrient management on yield, soil fertility and economics in Abelmoschus esculentus-Allium cepa cropping system in semi arid zone of Haryana. J Pharmacogn. Phytochemistry, 2017, 6(4), 1142-1145.
[35]
Auge, K.D.; Assefa, T.M.; Woldeyohannes, W.H.; Asfaw, B.T. Potassium adsorption characteristics of five different textured soils under enset (Ensete ventricosom cheesman) farming systems of Sidama zone. South Ethiopia. J. Soil Sci. Environ. Manage., 2018, 9(1), 1-12.
[36]
Almeida, C.D.S.; Guariz, H.R.; Pinto, M.A.B.; Almeida, F.D. Germination Of Creole Maize And Fava Bean Seeds Under Salt Stress. Rev. Caatinga, 2020, 33(3), 853-859.
[http://dx.doi.org/10.1590/1983-21252020v33n329rc]
[37]
Zheng, C.; Jiang, D.; Liu, F.; Dai, T.; Liu, W.; Jing, Q.; Cao, W. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ. Exp. Bot., 2009, 67(1), 222-227.
[http://dx.doi.org/10.1016/j.envexpbot.2009.05.002]
[38]
Singh, P.; Gopal, J. Effect of water and salinity stress on germination and seedling characters in onion. Indian J. Hortic., 2019, 76(2), 368-372.
[http://dx.doi.org/10.5958/0974-0112.2019.00059.8]
[39]
Çavuşoğlu, D. The Effects of Green Tea Leaf Extract on Cytogenetical and Physiological Parameters of Allium cepa L. exposed to Salinity. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020, 24(2), 338-346.
[http://dx.doi.org/10.16984/saufenbilder.541835]
[40]
Yang, Y-Q.; Yin, H-X.; Yuan, H-B.; Jiang, Y-W.; Dong, C.W.; Deng, Y.L. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis. PLoS One, 2018, 13(3), e0193393.
[http://dx.doi.org/10.1371/journal.pone.0193393] [PMID: 29494626]
[41]
Ozhan, N.; Hajibabaei, M. Studies on Effectiveness of Plant Phytohormones in Reduction of Salinity Effects on Germination of Some cultivar of spring wheat. Int. J. Adv. Biol. Biomed. Res., 2014, 2(12), 2860-2866.
[42]
Qados, A.M.S.A. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agric. Sci., 2011, 10(1), 7-15.
[http://dx.doi.org/10.1016/j.jssas.2010.06.002]
[43]
Orsini, F.; Alnayef, M.; Bona, S.; Maggio, A.; Gianquinto, G. Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. Environ. Exp. Bot., 2012, 81, 1-10.
[http://dx.doi.org/10.1016/j.envexpbot.2012.02.005]
[44]
Shoaib, A.; Meraj, S.; Nafisa, ; Khan, K.A.; Javaid, M.A. Influence of salinity and Fusarium oxysporum as the stress factors on morpho-physiological and yield attributes in onion. Physiol. Mol. Biol. Plants, 2018, 24(6), 1093-1101.
[http://dx.doi.org/10.1007/s12298-018-0570-z] [PMID: 30425426]
[45]
Al-Tabbal, J.A.S.M. Research Article Re-using Diluted Reverse Osmosis Brine Water on the Growth of Two Varieties of Onion (Allium cepa L). Int. J. Soil Sci., 2017, 12(2), 72-83.
[http://dx.doi.org/10.3923/ijss.2017.72.83]
[46]
Sudha, G.S.; Riazunnisa, K. Effect of salt stress (NaCl) on morphological parameters of onion (Allium cepa L.) seedlings. Int. J. Plant Animal Environ. Sci., 2015, 5(4)
[47]
Mucciarelli, M.; Camusso, W.; Bertea, C.M.; Maffei, M.; Maffei, M. Effect of (+)-pulegone and other oil components of Mentha x Piperita on cucumber respiration. Phytochemistry, 2001, 57(1), 91-98.
[http://dx.doi.org/10.1016/S0031-9422(00)00393-9] [PMID: 11336266]
[48]
Anjum, N.A.; Aref, I.M.; Duarte, A.C.; Pereira, E.; Ahmad, I.; Iqbal, M. Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses. Front. Plant Sci., 2014, 5, 662.
[http://dx.doi.org/10.3389/fpls.2014.00662] [PMID: 25484889]
[49]
Espinosa-Vellarino, F.L.; Garrido, I.; Ortega, A.; Casimiro, I.; Espinosa, F. I.; Espinosa, F. Effects of Antimony on reactive oxygen and nitrogen species (ROS and RNS) and antioxidant mechanisms in tomato plants. Front. Plant Sci., 2020, 11, 674.
[http://dx.doi.org/10.3389/fpls.2020.00674] [PMID: 32547582]
[50]
Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot., 2012, 1-26.
[http://dx.doi.org/10.1155/2012/217037]
[51]
Hussein, M.M.; Faham, S.Y.; Alva, A.K. Role of foliar application of nicotinic acid and tryptophan on onion plants response to salinity stress. J. Agric. Sci., 2014, 6(8), 41.
[52]
Batista, V.C.V.; Pereira, I.M.C.; De Oliveira Paula-Marinho, S.; Canuto, K.M.; Pereira, R.C.A.; Rodrigues, T.H.S.; Daloso, D.M.; Gomes-Filho, E.; Carvalho, H.H. Salicylic acid modulates primary and volatile metabolites to alleviate salt stress induced photosynthesis impairment on medicinal plant Egletes viscosa. Environ. Exp. Bot., 2019, 167, 103870.
[http://dx.doi.org/10.1016/j.envexpbot.2019.103870]
[53]
Wakeel, A.; Xu, M.; Gan, Y. Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants. Int. J. Mol. Sci., 2020, 21(3), 728.
[http://dx.doi.org/10.3390/ijms21030728] [PMID: 31979101]
[54]
Lopez, P.; van Sisseren, M.; De Marco, S.; Jekel, A.; de Nijs, M.; Mol, H.G. A straightforward method to determine flavouring substances in food by GC-MS. Food Chem., 2015, 174, 407-416.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.011] [PMID: 25529699]
[55]
Rabinovich, A.; Romanoff, N.; Mordvinov, D.; Ivanov, M. The Effects of Oral Administration of Pulegone in Carbon Tetrachloride-Induced Oxidative Stress in Wistar Rats. GMJ Medicine, 2019, 3(1), 152-158.
[http://dx.doi.org/10.29088/GMJM.2019.132]
[56]
Yadav, K.; Patel, P.; Srivastava, A.K.; Ganapathi, T.R. Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants. PLoS One, 2017, 12(11), e0188933.
[http://dx.doi.org/10.1371/journal.pone.0188933] [PMID: 29190821]
[57]
Achary, V.M.M.; Jena, S.; Panda, K.K.; Panda, B.B. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol. Environ. Saf., 2008, 70(2), 300-310.
[http://dx.doi.org/10.1016/j.ecoenv.2007.10.022] [PMID: 18068230]
[58]
Ben Haj Yahia, I.; Bouslimi, W.; Messaoud, C.; Jaouadi, R.; Boussaid, M. Zaouali. Y. Comparative evaluation of Tunisian Mentha L. species essential oils: selection of potential antioxidant and antimicrobial agents. J. Essent. Oil Res., 2019, 31(3), 184-195.
[http://dx.doi.org/10.1080/10412905.2018.1550021]
[59]
Gülçin, İ.; Gören, A.C.; Taslimi, P.; Alwasel, S.; Kılıc, O.; Bursal, E. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium) -analysis of its polyphenol contents by LC-MS/MS. Biocatal. Agric. Biotechnol., 2020, 23, 101441.
[http://dx.doi.org/10.1016/j.bcab.2019.101441]
[60]
Begaa, S.; Messaoudi, M. Thermal neutron activation analysis of some toxic and trace chemical element contents in Mentha pulegium L. Radiochim. Acta, 2018, 106(9), 769-774.
[http://dx.doi.org/10.1515/ract-2018-2942]
[61]
Ouakouak, H.; Chohra, M.; Denane, M. Chemical composition, antioxidant activities of the essential oil of Mentha pulegium L, South East of Algeria. Int. Lett. Nat. Sci., 2015, 2015, 39.
[http://dx.doi.org/10.18052/www.scipress.com/ILNS.39.49]
[62]
Horvathova, E.; Navarova, J.; Galova, E.; Sevcovicova, A.; Chodakova, L.; Snahnicanova, Z.; Melusova, M.; Kozics, K.; Slamenova, D. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil. J. Agric. Food Chem., 2014, 62(28), 6632-6639.
[http://dx.doi.org/10.1021/jf501006y] [PMID: 24955655]
[63]
Askary, M.; Talebi, S.M.; Amini, F.; Dousti Balout Bangan, A. Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. Environ. Exp. Biol., 2016, 14(1), 27-32.
[http://dx.doi.org/10.22364/eeb.14.05]
[64]
Benabdallah, A.; Boumendjel, M.; Aissi, O.; Rahmoune, C.; Boussaid, M.; Messaoud, C. Chemical composition, antioxidant activity and acetylcholinesterase inhibitory of wild Mentha species from northeastern Algeria. S. Afr. J. Bot., 2018, 116, 131-139.
[http://dx.doi.org/10.1016/j.sajb.2018.03.002]
[65]
Gonçalves, R.S.; Battistin, A.; Pauletti, G.; Rota, L.; Serafini, L.A. Antioxidant properties of essential oils from Mentha species evidenced by electrochemical methods. Rev. Bras. Pl. Med., 2009, 11(4), 372-38.
[http://dx.doi.org/10.1590/S1516-05722009000400004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy