Review Article

miRNAs as Modulators of Cholesterol in Breast Cancer Stem Cells: An Approach to Overcome Drug Resistance in Cancer

Author(s): Bernice Monchusi and Mandeep Kaur*

Volume 23, Issue 6, 2022

Published on: 08 October, 2021

Page: [656 - 677] Pages: 22

DOI: 10.2174/1389450122666211008140811

Price: $65

Abstract

It has been postulated that a small number of Cancer Stem Cells (CSCs) buried in tumour mass drive cancer growth and impart cancer drug resistance. However, their eradication has not been achieved so far as the mechanistic understanding of CSCs’ role in cancer development and growth is limited. The cholesterol accumulation and efflux processes have been shown to play an important role in maintaining cell’s integrity and its sensitivity towards drugs, as altered cholesterol pathways contribute to cancer drug resistance. Emerging pieces of evidence have indicated miRNAs as regulators of CSCs, and also as regulators of cholesterol pathways in cancer cells, but a link between the two has not been fully established so far. In this review, we have collated key signalling pathways and published evidence emphasising the involvement of miRNAs and cholesterol in CSCs related drug resistance. Additionally, we have used bioinformatics analysis to identify miRNAs that may modulate cholesterol pathways in CSCs at a molecular level to contribute to cancer drug resistance. Our results show that two miRNAs (hsa-miR-34a-5p and hsa-miR-373-3p) interact and bind to two known Breast CSC markers (CD44 and CD24) and mediate the expression of several cholesterol-related genes (INSIG2, APOL2, CYP51A1, HDLB, and DHCR7). Furthermore, survival analysis of the breast cancer patients’ gene expression data revealed that higher expression of these genes is associated with poor disease-free survival. We, therefore, propose that targeting these two miRNAs could possibly provide a way to alter cell’s response to drugs via modulating cholesterol pathways in CSCs.

Keywords: Cancer stem cells, breast cancer, miRNAs, cholesterol, cancer drug resistance, hematopoietic stem cells.

« Previous
Graphical Abstract
[1]
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017; 23(10): 1124-34.
[http://dx.doi.org/10.1038/nm.4409] [PMID: 28985214]
[2]
Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer 2018; 18(11): 669-80.
[http://dx.doi.org/10.1038/s41568-018-0056-x] [PMID: 30228301]
[3]
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8(10): 755-68.
[http://dx.doi.org/10.1038/nrc2499] [PMID: 18784658]
[4]
Golan H, Shukrun R, Caspi R, et al. In vivo expansion of cancer stemness affords novel cancer stem cell targets: malignant rhabdoid tumor as an example. Stem Cell Reports 2018; 11(3): 795-810.
[http://dx.doi.org/10.1016/j.stemcr.2018.07.010] [PMID: 30122444]
[5]
Ruiz i Altaba A, Sánchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2002; 2(5): 361-72.
[http://dx.doi.org/10.1038/nrc796] [PMID: 12044012]
[6]
Zhang D, Tang DG, Rycaj K. Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin Cancer Biol 2018; 52(Pt 2): 94-106.
[7]
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-84.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[8]
Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3(12): 895-902.
[http://dx.doi.org/10.1038/nrc1232] [PMID: 14737120]
[9]
Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 2014; 13(7): 497-512.
[http://dx.doi.org/10.1038/nrd4253] [PMID: 24981363]
[10]
Phi LTH, Sari IN, Yang Y-G, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018; 2018: 5416923.
[11]
López-Lázaro M. The migration ability of stem cells can explain the existence of cancer of unknown primary site. Rethinking metastasis. Oncoscience 2015; 2(5): 467-75.
[http://dx.doi.org/10.18632/oncoscience.159] [PMID: 26097879]
[12]
Till JE, McCULLOCH EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14(2): 213-22.
[http://dx.doi.org/10.2307/3570892] [PMID: 13776896]
[13]
Bruce WR, Van Der Gaag H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 1963; 199(4888): 79-80.
[http://dx.doi.org/10.1038/199079a0] [PMID: 14047954]
[14]
Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977; 197(4302): 461-3.
[http://dx.doi.org/10.1126/science.560061] [PMID: 560061]
[15]
Baccelli I, Trumpp A. The evolving concept of cancer and metastasis stem cells. J Cell Biol 2012; 198(3): 281-93.
[http://dx.doi.org/10.1083/jcb.201202014] [PMID: 22869594]
[16]
Friedmann-Morvinski D, Bushong EA, Ke E, et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 2012; 338(6110): 1080-4.
[http://dx.doi.org/10.1126/science.1226929] [PMID: 23087000]
[17]
Fábián Á, Vereb G, Szöllősi J. The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy. Cytometry A 2013; 83(1): 62-71.
[http://dx.doi.org/10.1002/cyto.a.22206] [PMID: 22997049]
[18]
Crabtree JS, Miele L. Breast cancer stem cells. Biomedicines 2018; 6(3): 77.
[http://dx.doi.org/10.3390/biomedicines6030077] [PMID: 30018256]
[19]
Fialkow PJ. Stem cell origin of human myeloid blood cell neoplasms. Verh Dtsch Ges Pathol 1990; 74: 43-7.
[PMID: 1708632]
[20]
Fialkow PJ. Advances in cancer research. Elsevier 1972; 15: pp. 191-226.
[21]
Cozzio A, Passegué E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17(24): 3029-35.
[http://dx.doi.org/10.1101/gad.1143403] [PMID: 14701873]
[22]
Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6(6): 587-96.
[http://dx.doi.org/10.1016/j.ccr.2004.10.015] [PMID: 15607963]
[23]
Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442(7104): 818-22.
[http://dx.doi.org/10.1038/nature04980] [PMID: 16862118]
[24]
Schüller U, Heine VM, Mao J, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 2008; 14(2): 123-34.
[http://dx.doi.org/10.1016/j.ccr.2008.07.005] [PMID: 18691547]
[25]
Greaves MF, Verbi W, Reeves BR, et al. “Pre-B” phenotypes in blast crisis of Ph1 positive CML: evidence for a pluripotential stem cell “target”. Leuk Res 1979; 3(4): 181-91.
[http://dx.doi.org/10.1016/0145-2126(79)90041-9] [PMID: 316485]
[26]
Martin PJ, Najfeld V, Fialkow PJ. B-lymphoid cell involvement in chronic myelogenous leukemia: implications for the pathogenesis of the disease. Cancer Genet Cytogenet 1982; 6(4): 359-68.
[http://dx.doi.org/10.1016/0165-4608(82)90092-9] [PMID: 6749282]
[27]
Vogler L, Crist W, Vinson P, Sarrif A, Brattain M, Coleman M. Philadelphia-chromosome-positive pre-B-cell leukemia presenting as blast crisis of chronic myelogenous leukemia. Blood 1979; 54(5): 1164-70.
[28]
Koschmieder S, Göttgens B, Zhang P, et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 2005; 105(1): 324-34.
[http://dx.doi.org/10.1182/blood-2003-12-4369] [PMID: 15331442]
[29]
Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature 1990; 344(6263): 251-3.
[http://dx.doi.org/10.1038/344251a0] [PMID: 2179728]
[30]
Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445(7123): 111-5.
[http://dx.doi.org/10.1038/nature05384] [PMID: 17122771]
[31]
Dalerba P, Dylla SJ, Park I-K, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104(24): 10158-63.
[http://dx.doi.org/10.1073/pnas.0703478104] [PMID: 17548814]
[32]
Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002; 39(3): 193-206.
[http://dx.doi.org/10.1002/glia.10094] [PMID: 12203386]
[33]
Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008; 68(11): 4311-20.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0364] [PMID: 18519691]
[34]
Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008; 15(3): 504-14.
[http://dx.doi.org/10.1038/sj.cdd.4402283] [PMID: 18049477]
[35]
Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67(3): 1030-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2030] [PMID: 17283135]
[36]
Zhao W, Ji X, Zhang F, Li L, Ma L. Embryonic stem cell markers. Molecules 2012; 17(6): 6196-236.
[http://dx.doi.org/10.3390/molecules17066196] [PMID: 22634835]
[37]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[38]
Ouhtit A, Rizeq B, Saleh HA, Rahman MM, Zayed H. Novel CD44-downstream signaling pathways mediating breast tumor invasion. Int J Biol Sci 2018; 14(13): 1782-90.
[http://dx.doi.org/10.7150/ijbs.23586] [PMID: 30443182]
[39]
Elkashty OA, Abu Elghanam G, Su X, Liu Y, Chauvin PJ, Tran SD. Cancer stem cells enrichment with surface markers CD271 and CD44 in human head and neck squamous cell carcinomas. Carcinogenesis 2020; 41(4): 458-66.
[http://dx.doi.org/10.1093/carcin/bgz182] [PMID: 31742606]
[40]
Witschen PM, Chaffee TS, Brady NJ, et al. Tumor cell associated hyaluronan-CD44 signaling promotes pro-tumor inflammation in breast cancer. Cancers (Basel) 2020; 12(5): 1325.
[http://dx.doi.org/10.3390/cancers12051325] [PMID: 32455980]
[41]
Schabath H, Runz S, Joumaa S, Altevogt P. CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 2006; 119(Pt 2): 314-25.
[http://dx.doi.org/10.1242/jcs.02741] [PMID: 16390867]
[42]
Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 2015; 7(9): 1150-84.
[PMID: 26516408]
[43]
Allan AL. Cancer stem cells in solid tumors. Springer 2011.
[http://dx.doi.org/10.1007/978-1-61779-246-5]
[44]
Kim MP, Fleming JB, Wang H, et al. ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One 2011; 6(6): e20636.
[http://dx.doi.org/10.1371/journal.pone.0020636] [PMID: 21695188]
[45]
Toledo-Guzmán ME, Hernández MI, Gómez-Gallegos ÁA, Ortiz-Sánchez E. ALDH as a stem cell marker in solid tumors. Curr Stem Cell Res Ther 2019; 14(5): 375-88.
[http://dx.doi.org/10.2174/1574888X13666180810120012] [PMID: 30095061]
[46]
Borah A, Raveendran S, Rochani A, Maekawa T, Kumar DS. Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis 2015; 4(11): e177-7.
[http://dx.doi.org/10.1038/oncsis.2015.35] [PMID: 26619402]
[47]
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5(1): 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[48]
Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980; 287(5785): 795-801.
[http://dx.doi.org/10.1038/287795a0] [PMID: 6776413]
[49]
Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001; 15(23): 3059-87.
[http://dx.doi.org/10.1101/gad.938601] [PMID: 11731473]
[50]
Byrne EF, Luchetti G, Rohatgi R, Siebold C. Multiple ligand binding sites regulate the Hedgehog signal transducer Smoothened in vertebrates. Curr Opin Cell Biol 2018; 51: 81-8.
[http://dx.doi.org/10.1016/j.ceb.2017.10.004] [PMID: 29268141]
[51]
Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432(7015): 324-31.
[http://dx.doi.org/10.1038/nature03100] [PMID: 15549094]
[52]
Ramsbottom SA, Pownall ME. Regulation of hedgehog signalling inside and outside the cell. J Dev Biol 2016; 4(3): 23.
[http://dx.doi.org/10.3390/jdb4030023] [PMID: 27547735]
[53]
Campbell V, Copland M. Hedgehog signaling in cancer stem cells: a focus on hematological cancers. Stem Cells Cloning 2015; 8: 27-38.
[PMID: 25691811]
[54]
Lee RTH, Zhao Z, Ingham PW. Hedgehog signalling. Development 2016; 143(3): 367-72.
[http://dx.doi.org/10.1242/dev.120154] [PMID: 26839340]
[55]
Ruiz i Altaba A, Mas C, Stecca B. The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 2007; 17(9): 438-47.
[http://dx.doi.org/10.1016/j.tcb.2007.06.007] [PMID: 17845852]
[56]
Allen BL, Tenzen T, McMahon AP. The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev 2007; 21(10): 1244-57.
[http://dx.doi.org/10.1101/gad.1543607] [PMID: 17504941]
[57]
Chen W, Ren X-R, Nelson CD, et al. Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science 2004; 306(5705): 2257-60.
[http://dx.doi.org/10.1126/science.1104135] [PMID: 15618519]
[58]
Wang B, Li Y. Evidence for the direct involvement of βTrCP in Gli3 protein processing. Proc Natl Acad Sci USA 2006; 103(1): 33-8.
[http://dx.doi.org/10.1073/pnas.0509927103] [PMID: 16371461]
[59]
Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003; 426(6962): 83-7.
[http://dx.doi.org/10.1038/nature02061] [PMID: 14603322]
[60]
Pearse RV II, Collier LS, Scott MP, Tabin CJ. Vertebrate homologs of Drosophila suppressor of fused interact with the gli family of transcriptional regulators. Dev Biol 1999; 212(2): 323-36.
[http://dx.doi.org/10.1006/dbio.1999.9335] [PMID: 10433824]
[61]
Garcia-Gonzalo FR, Phua SC, Roberson EC, et al. Phosphoinositides regulate ciliary protein trafficking to modulate hedgehog signaling. Dev Cell 2015; 34(4): 400-9.
[http://dx.doi.org/10.1016/j.devcel.2015.08.001] [PMID: 26305592]
[62]
Roessler E, Belloni E, Gaudenz K, et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 1996; 14(3): 357-60.
[http://dx.doi.org/10.1038/ng1196-357] [PMID: 8896572]
[63]
Kiesslich T, Berr F, Alinger B, et al. Current status of therapeutic targeting of developmental signalling pathways in oncology. Curr Pharm Biotechnol 2012; 13(11): 2184-220.
[http://dx.doi.org/10.2174/138920112802502114] [PMID: 21605074]
[64]
Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003; 425(6960): 846-51.
[http://dx.doi.org/10.1038/nature01972] [PMID: 14520411]
[65]
Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85(6): 841-51.
[http://dx.doi.org/10.1016/S0092-8674(00)81268-4] [PMID: 8681379]
[66]
Xie J, Johnson RL, Zhang X, et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 1997; 57(12): 2369-72.
[PMID: 9192811]
[67]
Pietsch T, Waha A, Koch A, et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 1997; 57(11): 2085-8.
[PMID: 9187099]
[68]
Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 2003; 3(12): 903-11.
[http://dx.doi.org/10.1038/nrc1229] [PMID: 14737121]
[69]
Taylor MD, Liu L, Raffel C, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet 2002; 31(3): 306-10.
[http://dx.doi.org/10.1038/ng916] [PMID: 12068298]
[70]
Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. science 2008; 321(5897): 1801-6.
[71]
Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 1987; 84(19): 6899-903.
[http://dx.doi.org/10.1073/pnas.84.19.6899] [PMID: 3477813]
[72]
Bangs F, Anderson KV. Primary cilia and mammalian hedgehog signaling. Cold Spring Harb Perspect Biol 2017; 9(5): a028175.
[http://dx.doi.org/10.1101/cshperspect.a028175] [PMID: 27881449]
[73]
Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458(7239): 776-9.
[http://dx.doi.org/10.1038/nature07737] [PMID: 19169242]
[74]
Ferretti E, De Smaele E, Miele E, et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 2008; 27(19): 2616-27.
[http://dx.doi.org/10.1038/emboj.2008.172] [PMID: 18756266]
[75]
Liao X, Siu MK, Au CW, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 2009; 30(1): 131-40.
[http://dx.doi.org/10.1093/carcin/bgn230] [PMID: 19028702]
[76]
Peacock CD, Wang Q, Gesell GS, et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007; 104(10): 4048-53.
[http://dx.doi.org/10.1073/pnas.0611682104] [PMID: 17360475]
[77]
Varnat F, Duquet A, Malerba M, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 2009; 1(6-7): 338-51.
[http://dx.doi.org/10.1002/emmm.200900039] [PMID: 20049737]
[78]
Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66(12): 6063-71.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0054] [PMID: 16778178]
[79]
Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17(2): 165-72.
[http://dx.doi.org/10.1016/j.cub.2006.11.033] [PMID: 17196391]
[80]
Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007; 25(10): 2524-33.
[http://dx.doi.org/10.1634/stemcells.2007-0166] [PMID: 17628016]
[81]
Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008; 4(2): 68-75.
[http://dx.doi.org/10.4161/org.4.2.5851] [PMID: 19279717]
[82]
Cai C, Zhu X. The Wnt/β-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer. Mol Med Rep 2012; 5(5): 1191-6.
[PMID: 22367735]
[83]
Mosimann C, Hausmann G, Basler K. β-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 2009; 10(4): 276-86.
[http://dx.doi.org/10.1038/nrm2654] [PMID: 19305417]
[84]
Kramps T, Peter O, Brunner E, et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear β-catenin-TCF complex. Cell 2002; 109(1): 47-60.
[http://dx.doi.org/10.1016/S0092-8674(02)00679-7] [PMID: 11955446]
[85]
Jessen S, Gu B, Dai X. Pygopus and the Wnt signaling pathway: a diverse set of connections. BioEssays 2008; 30(5): 448-56.
[http://dx.doi.org/10.1002/bies.20757] [PMID: 18404694]
[86]
Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene 2009; 433(1-2): 1-7.
[http://dx.doi.org/10.1016/j.gene.2008.12.008] [PMID: 19135507]
[87]
Reguart N, He B, Taron M, You L, Jablons DM, Rosell R. The role of Wnt signaling in cancer and stem cells. Future Oncol 2005; 1(6): 787-97.
[http://dx.doi.org/10.2217/14796694.1.6.787]
[88]
Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of β-catenin in mice. Genes Dev 2008; 22(17): 2308-41.
[http://dx.doi.org/10.1101/gad.1686208] [PMID: 18765787]
[89]
Nusse R, Fuerer C, Ching W, et al. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press 2008; 73: pp. 59-66.
[90]
Sherwood V. WNT signaling: an emerging mediator of cancer cell metabolism? Mol Cell Biol 2015; 35(1): 2-10.
[http://dx.doi.org/10.1128/MCB.00992-14] [PMID: 25348713]
[91]
Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351(7): 657-67.
[http://dx.doi.org/10.1056/NEJMoa040258] [PMID: 15306667]
[92]
Chan EF, Gat U, McNiff JM, Fuchs E. A common human skin tumour is caused by activating mutations in β-catenin. Nat Genet 1999; 21(4): 410-3.
[http://dx.doi.org/10.1038/7747] [PMID: 10192393]
[93]
Kolligs FT, Hu G, Dang CV, Fearon ER. Neoplastic transformation of RK3E by mutant β-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 1999; 19(8): 5696-706.
[http://dx.doi.org/10.1128/MCB.19.8.5696] [PMID: 10409758]
[94]
Morin PJ, Sparks AB, Korinek V, et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 1997; 275(5307): 1787-90.
[http://dx.doi.org/10.1126/science.275.5307.1787] [PMID: 9065402]
[95]
Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res 1998; 58(6): 1130-4.
[PMID: 9515795]
[96]
Palacios J, Gamallo C. Mutations in the β-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res 1998; 58(7): 1344-7.
[PMID: 9537226]
[97]
Gamallo C, Palacios J, Moreno G, Calvo de Mora J, Suárez A, Armas A. β-catenin expression pattern in stage I and II ovarian carcinomas : relationship with β-catenin gene mutations, clinicopathological features, and clinical outcome. Am J Pathol 1999; 155(2): 527-36.
[http://dx.doi.org/10.1016/S0002-9440(10)65148-6] [PMID: 10433945]
[98]
Liu J, Pan S, Hsieh MH, et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA 2013; 110(50): 20224-9.
[http://dx.doi.org/10.1073/pnas.1314239110] [PMID: 24277854]
[99]
Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev 2018; 62: 50-60.
[http://dx.doi.org/10.1016/j.ctrv.2017.11.002] [PMID: 29169144]
[100]
Ng M, Tan DS, Subbiah V, et al. American society of clinical oncology 2017.
[101]
Zhu Y, Sun Z, Han Q, et al. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 2009; 23(5): 925-33.
[http://dx.doi.org/10.1038/leu.2008.384] [PMID: 19148141]
[102]
González-Sancho JM, Aguilera O, García JM, et al. The Wnt antagonist DICKKOPF-1 gene is a downstream target of β-catenin/TCF and is downregulated in human colon cancer. Oncogene 2005; 24(6): 1098-103.
[http://dx.doi.org/10.1038/sj.onc.1208303] [PMID: 15592505]
[103]
Siekmann AF, Lawson ND. Notch signalling and the regulation of angiogenesis. Cell Adhes Migr 2007; 1(2): 104-6.
[http://dx.doi.org/10.4161/cam.1.2.4488] [PMID: 19329884]
[104]
Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284(5415): 770-6.
[http://dx.doi.org/10.1126/science.284.5415.770] [PMID: 10221902]
[105]
Venkatesh V, Nataraj R, Thangaraj GS, et al. Targeting notch signalling pathway of cancer stem cells. Stem Cell Investig 2018; 5: 5.
[http://dx.doi.org/10.21037/sci.2018.02.02] [PMID: 29682512]
[106]
Reedijk M, Odorcic S, Chang L, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 2005; 65(18): 8530-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1069] [PMID: 16166334]
[107]
Dickson BC, Mulligan AM, Zhang H, et al. High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol 2007; 20(6): 685-93.
[http://dx.doi.org/10.1038/modpathol.3800785] [PMID: 17507991]
[108]
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730-7.
[http://dx.doi.org/10.1038/nm0797-730] [PMID: 9212098]
[109]
Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63(18): 5821-8.
[PMID: 14522905]
[110]
Farnie G, Clarke RB. Mammary stem cells and breast cancer--role of Notch signalling. Stem Cell Rev 2007; 3(2): 169-75.
[http://dx.doi.org/10.1007/s12015-007-0023-5] [PMID: 17873349]
[111]
Sansone P, Storci G, Giovannini C, et al. p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells 2007; 25(3): 807-15.
[http://dx.doi.org/10.1634/stemcells.2006-0442] [PMID: 17158237]
[112]
Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9(5): 617-28.
[http://dx.doi.org/10.1016/j.devcel.2005.09.010] [PMID: 16256737]
[113]
Nakamura T, Largaespada DA, Lee MP, et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996; 12(2): 154-8.
[http://dx.doi.org/10.1038/ng0296-154] [PMID: 8563753]
[114]
Lawrence HJ, Helgason CD, Sauvageau G, et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 1997; 89(6): 1922-30.
[http://dx.doi.org/10.1182/blood.V89.6.1922] [PMID: 9058712]
[115]
Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5(4): 311-21.
[http://dx.doi.org/10.1038/nrc1592] [PMID: 15803157]
[116]
Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66(4): 649-61.
[http://dx.doi.org/10.1016/0092-8674(91)90111-B] [PMID: 1831692]
[117]
Wang YH, Li F, Luo B, et al. A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics. Neoplasma 2009; 56(5): 371-8.
[http://dx.doi.org/10.4149/neo_2009_05_371] [PMID: 19580337]
[118]
Wang Z, Li Y, Kong D, et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 2009; 69(6): 2400-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4312] [PMID: 19276344]
[119]
Long J, Zhang Y, Yu X, et al. Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets 2011; 15(7): 817-28.
[http://dx.doi.org/10.1517/14728222.2011.566216] [PMID: 21391891]
[120]
Zhao Z-L, Zhang L, Huang C-F, et al. NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Sci Rep 2016; 6(1): 24704.
[http://dx.doi.org/10.1038/srep24704] [PMID: 27108536]
[121]
Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell 2004; 118(4): 409-18.
[http://dx.doi.org/10.1016/j.cell.2004.08.005] [PMID: 15315754]
[122]
van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 1991; 65(5): 737-52.
[http://dx.doi.org/10.1016/0092-8674(91)90382-9] [PMID: 1904008]
[123]
Yang M-H, Hsu DS-S, Wang H-W, et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 2010; 12(10): 982-92.
[http://dx.doi.org/10.1038/ncb2099] [PMID: 20818389]
[124]
Guo B-H, Feng Y, Zhang R, et al. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol Cancer 2011; 10(1): 10.
[http://dx.doi.org/10.1186/1476-4598-10-10] [PMID: 21276221]
[125]
Dimri GP, Martinez J-L, Jacobs JJ, et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 2002; 62(16): 4736-45.
[PMID: 12183433]
[126]
Jiang L, Wu J, Yang Y, et al. Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway. BMC Cancer 2012; 12(1): 406.
[http://dx.doi.org/10.1186/1471-2407-12-406] [PMID: 22967049]
[127]
Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009; 10(10): 697-708.
[http://dx.doi.org/10.1038/nrm2763] [PMID: 19738629]
[128]
Jacobs JJ, Scheijen B, Voncken J-W, Kieboom K, Berns A, van Lohuizen M. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13(20): 2678-90.
[http://dx.doi.org/10.1101/gad.13.20.2678] [PMID: 10541554]
[129]
Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397(6715): 164-8.
[http://dx.doi.org/10.1038/16476] [PMID: 9923679]
[130]
Silva J, García V, García JM, et al. Circulating Bmi-1 mRNA as a possible prognostic factor for advanced breast cancer patients. Breast Cancer Res 2007; 9(4): R55.
[http://dx.doi.org/10.1186/bcr1760] [PMID: 17711569]
[131]
Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423(6937): 255-60.
[132]
Song L-B, Li J, Liao W-T, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 2009; 119(12): 3626-36.
[http://dx.doi.org/10.1172/JCI39374] [PMID: 19884659]
[133]
Bertolini G, Roz L, Perego P, et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 2009; 106(38): 16281-6.
[http://dx.doi.org/10.1073/pnas.0905653106] [PMID: 19805294]
[134]
Yin T, Wei H, Gou S, et al. Cancer stem-like cells enriched in Panc-1 spheres possess increased migration ability and resistance to gemcitabine. Int J Mol Sci 2011; 12(3): 1595-604.
[http://dx.doi.org/10.3390/ijms12031595] [PMID: 21673909]
[135]
Raaphorst FM. Deregulated expression of Polycomb-group oncogenes in human malignant lymphomas and epithelial tumors. Hum Mol Genet 2005; 14(Spec No 1)(Suppl. 1): R93-R100.
[http://dx.doi.org/10.1093/hmg/ddi111] [PMID: 15809278]
[136]
Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423(6937): 302-5.
[http://dx.doi.org/10.1038/nature01587] [PMID: 12714971]
[137]
Sawa M, Yamamoto K, Yokozawa T, et al. BMI-1 is highly expressed in M0-subtype acute myeloid leukemia. Int J Hematol 2005; 82(1): 42-7.
[http://dx.doi.org/10.1532/IJH97.05013] [PMID: 16105758]
[138]
van Leenders GJ, Dukers D, Hessels D, et al. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 2007; 52(2): 455-63.
[http://dx.doi.org/10.1016/j.eururo.2006.11.020] [PMID: 17134822]
[139]
Cui H, Hu B, Li T, et al. Bmi-1 is essential for the tumorigenicity of neuroblastoma cells. Am J Pathol 2007; 170(4): 1370-8.
[http://dx.doi.org/10.2353/ajpath.2007.060754] [PMID: 17392175]
[140]
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50(1): 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[141]
Tao Z, Shi A, Lu C, Song T, Zhang Z, Zhao J. Breast cancer: epidemiology and etiology. Cell Biochem Biophys 2015; 72(2): 333-8.
[http://dx.doi.org/10.1007/s12013-014-0459-6] [PMID: 25543329]
[142]
Boyle P. Breast cancer control: signs of progress, but more work required. Breast 2005; 14(6): 429-38.
[http://dx.doi.org/10.1016/j.breast.2005.10.001] [PMID: 16286232]
[143]
Thornton AA, Madlensky L, Flatt SW, Kaplan RM, Pierce JP. The impact of a second breast cancer diagnosis on health related quality of life. Breast Cancer Res Treat 2005; 92(1): 25-33.
[http://dx.doi.org/10.1007/s10549-005-1411-7] [PMID: 15980988]
[144]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[145]
Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98(19): 10869-74.
[http://dx.doi.org/10.1073/pnas.191367098] [PMID: 11553815]
[146]
Fialkow PJ. Clonal origin of human tumors. Annu Rev Med 1979; 30(1): 135-43.
[http://dx.doi.org/10.1146/annurev.me.30.020179.001031] [PMID: 400484]
[147]
Hahn WC, Weinberg RA. Rules for making human tumor cells. N Engl J Med 2002; 347(20): 1593-603.
[http://dx.doi.org/10.1056/NEJMra021902] [PMID: 12432047]
[148]
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-11.
[149]
Dey D, Saxena M, Paranjape AN, et al. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS One 2009; 4(4): e5329.
[http://dx.doi.org/10.1371/journal.pone.0005329] [PMID: 19390630]
[150]
Williams C, Helguero L, Edvardsson K, Haldosén L-A, Gustafsson J-Å. Gene expression in murine mammary epithelial stem cell-like cells shows similarities to human breast cancer gene expression. Breast Cancer Res 2009; 11(3): R26.
[http://dx.doi.org/10.1186/bcr2256] [PMID: 19426500]
[151]
Zucchi I, Sanzone S, Astigiano S, et al. The properties of a mammary gland cancer stem cell. Proc Natl Acad Sci USA 2007; 104(25): 10476-81.
[http://dx.doi.org/10.1073/pnas.0703071104] [PMID: 17566110]
[152]
Lawson JC, Blatch GL, Edkins AL. Cancer stem cells in breast cancer and metastasis. Breast Cancer Res Treat 2009; 118(2): 241-54.
[http://dx.doi.org/10.1007/s10549-009-0524-9] [PMID: 19731012]
[153]
Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 2008; 10(1): R10.
[http://dx.doi.org/10.1186/bcr1855] [PMID: 18241344]
[154]
Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11(3): 259-73.
[http://dx.doi.org/10.1016/j.ccr.2007.01.013] [PMID: 17349583]
[155]
Yu F, Li J, Chen H, et al. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 2011; 30(18): 2161-72.
[http://dx.doi.org/10.1038/onc.2010.591] [PMID: 21242971]
[156]
Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J Biol Chem 1996; 271(33): 20009-17.
[http://dx.doi.org/10.1074/jbc.271.33.20009] [PMID: 8702718]
[157]
Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev 2018; 69: 152-63.
[http://dx.doi.org/10.1016/j.ctrv.2018.07.004] [PMID: 30029203]
[158]
Clarke M, Collins R, Darby S, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 366(9503): 2087-106.
[http://dx.doi.org/10.1016/S0140-6736(05)67887-7] [PMID: 16360786]
[159]
Narod SA, Giannakeas V, Sopik V. Time to death in breast cancer patients as an indicator of treatment response. Breast Cancer Res Treat 2018; 172(3): 659-69.
[http://dx.doi.org/10.1007/s10549-018-4935-3] [PMID: 30168014]
[160]
Palomeras S, Ruiz-Martínez S, Puig T. Targeting breast cancer stem cells to overcome treatment resistance. Molecules 2018; 23(9): 2193.
[http://dx.doi.org/10.3390/molecules23092193] [PMID: 30200262]
[161]
Chen D, Bhat-Nakshatri P, Goswami C, Badve S, Nakshatri H. ANTXR1, a stem cell-enriched functional biomarker, connects collagen signaling to cancer stem-like cells and metastasis in breast cancer. Cancer Res 2013; 73(18): 5821-33.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1080] [PMID: 23832666]
[162]
Sansone P, Ceccarelli C, Berishaj M, et al. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat Commun 2016; 7(1): 10442.
[http://dx.doi.org/10.1038/ncomms10442] [PMID: 26858125]
[163]
Sansone P, Berishaj M, Rajasekhar VK, et al. Evolution of cancer stem-like cells in endocrine-resistant metastatic breast cancers is mediated by stromal microvesicles. Cancer Res 2017; 77(8): 1927-41.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2129] [PMID: 28202520]
[164]
Leis O, Eguiara A, Lopez-Arribillaga E, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2012; 31(11): 1354-65.
[http://dx.doi.org/10.1038/onc.2011.338] [PMID: 21822303]
[165]
Valenti G, Quinn HM, Heynen GJJE, et al. Cancer stem cells regulate cancer-associated fibroblasts via activation of hedgehog signaling in mammary gland tumors. Cancer Res 2017; 77(8): 2134-47.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3490] [PMID: 28202523]
[166]
Choy L, Hagenbeek TJ, Solon M, et al. Constitutive NOTCH3 signaling promotes the growth of basal breast cancers. Cancer Res 2017; 77(6): 1439-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1022] [PMID: 28108512]
[167]
Solzak JP, Atale RV, Hancock BA, et al. Dual PI3K and Wnt pathway inhibition is a synergistic combination against triple negative breast cancer. NPJ Breast Cancer 2017; 3(1): 17.
[http://dx.doi.org/10.1038/s41523-017-0016-8] [PMID: 28649657]
[168]
Pandolfi PP. Breast cancer--loss of PTEN predicts resistance to treatment. N Engl J Med 2004; 351(22): 2337-8.
[http://dx.doi.org/10.1056/NEJMcibr043143] [PMID: 15564551]
[169]
Ryoo IG, Choi BH, Kwak M-K. Activation of NRF2 by p62 and proteasome reduction in sphere-forming breast carcinoma cells. Oncotarget 2015; 6(10): 8167-84.
[http://dx.doi.org/10.18632/oncotarget.3047] [PMID: 25717032]
[170]
Leccia F, Del Vecchio L, Mariotti E, et al. ABCG2, a novel antigen to sort luminal progenitors of BRCA1- breast cancer cells. Mol Cancer 2014; 13(1): 213.
[http://dx.doi.org/10.1186/1476-4598-13-213] [PMID: 25216750]
[171]
Xu X, Zhang L, He X, et al. TGF-β plays a vital role in triple-negative breast cancer (TNBC) drug-resistance through regulating stemness, EMT and apoptosis. Biochem Biophys Res Commun 2018; 502(1): 160-5.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.139] [PMID: 29792857]
[172]
Mallini P, Lennard T, Kirby J, Meeson A. Epithelial-to-mesenchymal transition: what is the impact on breast cancer stem cells and drug resistance. Cancer Treat Rev 2014; 40(3): 341-8.
[http://dx.doi.org/10.1016/j.ctrv.2013.09.008] [PMID: 24090504]
[173]
Ryoo IG, Choi BH, Ku S-K, Kwak M-K. High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance. Redox Biol 2018; 17: 246-58.
[http://dx.doi.org/10.1016/j.redox.2018.04.015] [PMID: 29729523]
[174]
Kim J, Keum Y-S. NRF2, a key regulator of antioxidants with two faces towards cancer. Oxidative Medicine and Cellular Longevity Oxid Med Cell Longev 2016; 2016: 2746457.
[http://dx.doi.org/10.1155/2016/2746457]
[175]
Sun QL, Sha HF, Yang XH, Bao GL, Lu J, Xie YY. Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol. J Cancer Res Clin Oncol 2011; 137(3): 521-32.
[http://dx.doi.org/10.1007/s00432-010-0913-9] [PMID: 20499251]
[176]
Tanei T, Morimoto K, Shimazu K, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 2009; 15(12): 4234-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1479] [PMID: 19509181]
[177]
Croker AK, Allan AL. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res Treat 2012; 133(1): 75-87.
[http://dx.doi.org/10.1007/s10549-011-1692-y] [PMID: 21818590]
[178]
Januchowski R, Wojtowicz K, Zabel M. The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed Pharmacother 2013; 67(7): 669-80.
[http://dx.doi.org/10.1016/j.biopha.2013.04.005] [PMID: 23721823]
[179]
Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1(5): 555-67.
[http://dx.doi.org/10.1016/j.stem.2007.08.014] [PMID: 18371393]
[180]
Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res 2010; 16(3): 876-87.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1532] [PMID: 20103682]
[181]
Morimoto K, Kim SJ, Tanei T, et al. Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 2009; 100(6): 1062-8.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01151.x] [PMID: 19385968]
[182]
Teoh SL, Das S. The role of MicroRNAs in diagnosis, prognosis, metastasis and resistant cases in breast cancer. Curr Pharm Des 2017; 23(12): 1845-59.
[http://dx.doi.org/10.2174/1381612822666161027120043] [PMID: 28231756]
[183]
Zhang Y, Wang J. MicroRNAs are important regulators of drug resistance in colorectal cancer. Biol Chem 2017; 398(8): 929-38.
[http://dx.doi.org/10.1515/hsz-2016-0308] [PMID: 28095367]
[184]
Li M, Gao M, Xie X, et al. MicroRNA-200c reverses drug resistance of human gastric cancer cells by targeting regulation of the NER-ERCC3/4 pathway. Oncol Lett 2019; 18(1): 145-52.
[http://dx.doi.org/10.3892/ol.2019.10304] [PMID: 31289483]
[185]
Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138(3): 592-603.
[186]
Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ. The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci 2009; 66(10): 1682-99.
[http://dx.doi.org/10.1007/s00018-009-8750-1] [PMID: 19153653]
[187]
Monchusi B, Kaur M. microRNAs targeting cellular cholesterol: implications for combating anticancer drug resistance. Genes Cancer 2020; 11(1-2): 20-42.
[http://dx.doi.org/10.18632/genesandcancer.202] [PMID: 32577155]
[188]
Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer 2018; 17(1): 64.
[http://dx.doi.org/10.1186/s12943-018-0765-5] [PMID: 29471827]
[189]
Vishnoi A. MicroRNA Profiling. Springer 2017; pp. 1-10.
[http://dx.doi.org/10.1007/978-1-4939-6524-3_1]
[190]
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA 2019; 25(1): 1-16.
[http://dx.doi.org/10.1261/rna.068692.118] [PMID: 30333195]
[191]
Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 2005; 11(11): 1640-7.
[http://dx.doi.org/10.1261/rna.2191905] [PMID: 16177138]
[192]
Meister G, Landthaler M, Peters L, et al. Identification of novel argonaute-associated proteins. Curr Biol 2005; 15(23): 2149-55.
[http://dx.doi.org/10.1016/j.cub.2005.10.048] [PMID: 16289642]
[193]
Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122(4): 553-63.
[http://dx.doi.org/10.1016/j.cell.2005.07.031] [PMID: 16122423]
[194]
Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 2015; 16(7): 421-33.
[http://dx.doi.org/10.1038/nrg3965] [PMID: 26077373]
[195]
Beilharz TH, Humphreys DT, Clancy JL, et al. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS One 2009; 4(8): e6783.
[http://dx.doi.org/10.1371/journal.pone.0006783] [PMID: 19710908]
[196]
Huang-Doran I, Zhang C-Y, Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 2017; 28(1): 3-18.
[http://dx.doi.org/10.1016/j.tem.2016.10.003] [PMID: 27810172]
[197]
Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov 2016; 6(3): 235-46.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0893] [PMID: 26865249]
[198]
Rivera-Barahona A, Pérez B, Richard E, Desviat LR. Role of miRNAs in human disease and inborn errors of metabolism. J Inherit Metab Dis 2017; 40(4): 471-80.
[http://dx.doi.org/10.1007/s10545-017-0018-6] [PMID: 28229250]
[199]
Wang J, Yang M, Li Y, Han B. The role of microRNAs in the chemoresistance of breast cancer. Drug Dev Res 2015; 76(7): 368-74.
[http://dx.doi.org/10.1002/ddr.21275] [PMID: 26310899]
[200]
Asadzadeh Z, Mansoori B, Mohammadi A, et al. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J Cell Physiol 2019; 234(7): 10002-17.
[http://dx.doi.org/10.1002/jcp.27885] [PMID: 30537109]
[201]
Yan H, Bu P. Non-coding RNAs in cancer stem cells. Cancer Lett 2018; 421: 121-6.
[http://dx.doi.org/10.1016/j.canlet.2018.01.027] [PMID: 29331418]
[202]
Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010; 29(29): 4194-204.
[http://dx.doi.org/10.1038/onc.2010.167] [PMID: 20498642]
[203]
Liu C, Xing H, Guo C, Yang Z, Wang Y, Wang Y. MiR-124 reversed the doxorubicin resistance of breast cancer stem cells through STAT3/HIF-1 signaling pathways. Cell Cycle 2019; 18(18): 2215-27.
[http://dx.doi.org/10.1080/15384101.2019.1638182] [PMID: 31286834]
[204]
Wu D, Zhang J, Lu Y, et al. miR-140-5p inhibits the proliferation and enhances the efficacy of doxorubicin to breast cancer stem cells by targeting Wnt1. Cancer Gene Ther 2019; 26(3-4): 74-82.
[http://dx.doi.org/10.1038/s41417-018-0035-0] [PMID: 30032164]
[205]
Sharom FJ. The P-glycoprotein multidrug transporter. Essays Biochem 2011; 50(1): 161-78.
[http://dx.doi.org/10.1042/bse0500161] [PMID: 21967057]
[206]
Uhr M, Holsboer F, Müller MB. Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol 2002; 14(9): 753-9.
[http://dx.doi.org/10.1046/j.1365-2826.2002.00836.x] [PMID: 12213137]
[207]
Kang L, Mao J, Tao Y, et al. MicroRNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Sci 2015; 106(6): 700-8.
[http://dx.doi.org/10.1111/cas.12656] [PMID: 25783790]
[208]
Takahashi RU, Miyazaki H, Takeshita F, et al. Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nat Commun 2015; 6(1): 7318.
[http://dx.doi.org/10.1038/ncomms8318] [PMID: 26065921]
[209]
Peng F, Li T-T, Wang K-L, et al. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis 2017; 8(1): e2569-9.
[http://dx.doi.org/10.1038/cddis.2016.438] [PMID: 28102845]
[210]
Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol 1990; 10(1): 28-36.
[http://dx.doi.org/10.1128/MCB.10.1.28] [PMID: 1688465]
[211]
Yan L, Zhou J, Gao Y, et al. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene 2015; 34(23): 3076-84.
[http://dx.doi.org/10.1038/onc.2014.236] [PMID: 25088204]
[212]
Bazley FA, Liu CF, Yuan X, et al. Direct reprogramming of human primordial germ cells into induced pluripotent stem cells: efficient generation of genetically engineered germ cells. Stem Cells Dev 2015; 24(22): 2634-48.
[http://dx.doi.org/10.1089/scd.2015.0100] [PMID: 26154167]
[213]
Zhao J-J, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer. J Biol Chem 2008; 283(45): 31079-86.
[http://dx.doi.org/10.1074/jbc.M806041200] [PMID: 18790736]
[214]
Garofalo M, Di Leva G, Romano G, et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 2009; 16(6): 498-509.
[http://dx.doi.org/10.1016/j.ccr.2009.10.014] [PMID: 19962668]
[215]
Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C. microRNAs and cholesterol metabolism. Trends Endocrinol Metab 2010; 21(12): 699-706.
[http://dx.doi.org/10.1016/j.tem.2010.08.008] [PMID: 20880716]
[216]
Liu M, Xia Y, Ding J, et al. Transcriptional profiling reveals a common metabolic program in high-risk human neuroblastoma and mouse neuroblastoma sphere-forming cells. Cell Rep 2016; 17(2): 609-23.
[http://dx.doi.org/10.1016/j.celrep.2016.09.021] [PMID: 27705805]
[217]
Ehmsen S, Pedersen MH, Wang G, et al. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome. Cell Reports 2019; 27(13): 3927-38.
[http://dx.doi.org/10.1016/j.celrep.2019.05.104]
[218]
Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990; 343(6257): 425-30.
[http://dx.doi.org/10.1038/343425a0] [PMID: 1967820]
[219]
Gu L, Saha ST, Thomas J, Kaur M. Targeting cellular cholesterol for anticancer therapy. FEBS J 2019; 286(21): 4192-208.
[http://dx.doi.org/10.1111/febs.15018] [PMID: 31350867]
[220]
Kambach DM, Halim AS, Cauer AG, et al. Disabled cell density sensing leads to dysregulated cholesterol synthesis in glioblastoma. Oncotarget 2017; 8(9): 14860-75.
[http://dx.doi.org/10.18632/oncotarget.14740] [PMID: 28118603]
[221]
Hultsch S, Kankainen M, Paavolainen L, et al. Association of tamoxifen resistance and lipid reprogramming in breast cancer. BMC Cancer 2018; 18(1): 850.
[http://dx.doi.org/10.1186/s12885-018-4757-z] [PMID: 30143015]
[222]
Tiwary R, Yu W, deGraffenried LA, Sanders BG, Kline K. Targeting cholesterol-rich microdomains to circumvent tamoxifen-resistant breast cancer. Breast Cancer Res 2011; 13(6): R120.
[http://dx.doi.org/10.1186/bcr3063] [PMID: 22115051]
[223]
Borgquist S, Giobbie-Hurder A, Ahern TP, et al. Cholesterol, cholesterol-lowering medication use, and breast cancer outcome in the BIG 1-98 study. J Clin Oncol 2017; 35(11): 1179-88.
[http://dx.doi.org/10.1200/JCO.2016.70.3116] [PMID: 28380313]
[224]
Kong Y, Cheng L, Mao F, et al. Inhibition of cholesterol biosynthesis overcomes enzalutamide resistance in castration-resistant prostate cancer (CRPC). J Biol Chem 2018; 293(37): 14328-41.
[http://dx.doi.org/10.1074/jbc.RA118.004442] [PMID: 30089652]
[225]
Chaudhary PM, Roninson IB. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst 1993; 85(8): 632-9.
[http://dx.doi.org/10.1093/jnci/85.8.632] [PMID: 8096875]
[226]
Rudas M, Filipits M, Taucher S, et al. Expression of MRP1, LRP and Pgp in breast carcinoma patients treated with preoperative chemotherapy. Breast Cancer Res Treat 2003; 81(2): 149-57.
[http://dx.doi.org/10.1023/A:1025751631115] [PMID: 14572157]
[227]
Kamau SW, Krämer SD, Günthert M, Wunderli-Allenspach H. Effect of the modulation of the membrane lipid composition on the localization and function of P-glycoprotein in MDR1-MDCK cells. In Vitro Cell Dev Biol Anim 2005; 41(7): 207-16.
[http://dx.doi.org/10.1290/0502016.1] [PMID: 16223335]
[228]
Mack JT, Townsend DM, Beljanski V, Tew KD. The ABCA2 transporter: intracellular roles in trafficking and metabolism of LDL-derived cholesterol and sterol-related compounds. Curr Drug Metab 2007; 8(1): 47-57.
[http://dx.doi.org/10.2174/138920007779315044] [PMID: 17266523]
[229]
Rahgozar S, Moafi A, Abedi M, et al. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol Ther 2014; 15(1): 35-41.
[http://dx.doi.org/10.4161/cbt.26603] [PMID: 24145140]
[230]
Boonstra R, Timmer-Bosscha H, van Echten-Arends J, et al. Mitoxantrone resistance in a small cell lung cancer cell line is associated with ABCA2 upregulation. Br J Cancer 2004; 90(12): 2411-7.
[http://dx.doi.org/10.1038/sj.bjc.6601863] [PMID: 15150577]
[231]
Souchek JJ, Baine MJ, Lin C, et al. Unbiased analysis of pancreatic cancer radiation resistance reveals cholesterol biosynthesis as a novel target for radiosensitisation. Br J Cancer 2014; 111(6): 1139-49.
[http://dx.doi.org/10.1038/bjc.2014.385] [PMID: 25025965]
[232]
Kitahara CM, Berrington de González A, Freedman ND, et al. Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol 2011; 29(12): 1592-8.
[http://dx.doi.org/10.1200/JCO.2010.31.5200] [PMID: 21422422]
[233]
Liang Y, Goyette S, Hyder SM. Cholesterol biosynthesis inhibitor RO 48-8071 reduces progesterone receptor expression and inhibits progestin-dependent stem cell-like cell growth in hormone-dependent human breast cancer cells. Breast Cancer (Dove Med Press) 2017; 9: 487-94.
[http://dx.doi.org/10.2147/BCTT.S140265] [PMID: 28744156]
[234]
Dattilo R, Mottini C, Camera E, et al. Pyrvinium pamoate induces death of triple-negative breast cancer stem-like cells and reduces metastases through effects on lipid anabolism. Cancer Res 2020; 80(19): 4087-102.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1184] [PMID: 32718996]
[235]
Qiu T, Cao J, Chen W, et al. 24-Dehydrocholesterol reductase promotes the growth of breast cancer stem-like cells through the Hedgehog pathway. Cancer Sci 2020; 111(10): 3653-64.
[http://dx.doi.org/10.1111/cas.14587] [PMID: 32713162]
[236]
Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep 2017; 7(1): 13856.
[http://dx.doi.org/10.1038/s41598-017-14364-2] [PMID: 29062075]
[237]
Chang T-C, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26(5): 745-52.
[http://dx.doi.org/10.1016/j.molcel.2007.05.010] [PMID: 17540599]
[238]
Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 2010; 28(4): 341-7.
[http://dx.doi.org/10.1038/nbt.1618] [PMID: 20351690]
[239]
Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61(7): 1303-13.
[http://dx.doi.org/10.1016/0092-8674(90)90694-A] [PMID: 1694723]
[240]
Ahir M, Upadhyay P, Ghosh A, et al. Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy. Biomater Sci 2020; 8(10): 2939-54.
[http://dx.doi.org/10.1039/D0BM00015A] [PMID: 32319481]
[241]
Haghi M, Taha MF, Javeri A. Suppressive effect of exogenous miR-16 and miR-34a on tumorigenesis of breast cancer cells. J Cell Biochem 2019; 120(8): 13342-53.
[http://dx.doi.org/10.1002/jcb.28608] [PMID: 30916815]
[242]
Ma W, Xiao GG, Mao J, et al. Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget 2015; 6(12): 10432-44.
[http://dx.doi.org/10.18632/oncotarget.3394] [PMID: 25826085]
[243]
Wei B, Sun X, Geng Z, et al. Isoproterenol regulates CD44 expression in gastric cancer cells through STAT3/MicroRNA373 cascade. Biomaterials 2016; 105: 89-101.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.040] [PMID: 27512943]
[244]
Xu Y, Xu Y, Zhu Y, et al. Macrophage miR-34a is a key regulator of cholesterol efflux and atherosclerosis. Mol Ther 2020; 28(1): 202-16.
[http://dx.doi.org/10.1016/j.ymthe.2019.09.008] [PMID: 31604677]
[245]
Tian W-H, Wang Z, Yue Y-X, et al. miR-34a-5p increases hepatic triglycerides and total cholesterol levels by regulating ACSL1 protein expression in laying hens. Int J Mol Sci 2019; 20(18): 4420.
[http://dx.doi.org/10.3390/ijms20184420] [PMID: 31500376]
[246]
Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009; 37(Database issue)(Suppl. 1): D105-10.
[http://dx.doi.org/10.1093/nar/gkn851] [PMID: 18996891]
[247]
Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17(2): 211-5.
[http://dx.doi.org/10.1038/nm.2284] [PMID: 21240262]
[248]
Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008; 10(2): 202-10.
[http://dx.doi.org/10.1038/ncb1681] [PMID: 18193036]
[249]
Tokar T, Pastrello C, Rossos AEM, et al. mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res 2018; 46(D1): D360-70.
[http://dx.doi.org/10.1093/nar/gkx1144] [PMID: 29194489]
[250]
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[251]
Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 2010; 1(4): 274-8.
[http://dx.doi.org/10.4103/0974-7788.76794] [PMID: 21455458]
[252]
Sun S, Zhang G, Sun Q, et al. Insulin-induced gene 2 expression correlates with colorectal cancer metastasis and disease outcome. IUBMB Life 2016; 68(1): 65-71.
[http://dx.doi.org/10.1002/iub.1461] [PMID: 26662938]
[253]
Kayashima T, Nakata K, Ohuchida K, et al. Insig2 is overexpressed in pancreatic cancer and its expression is induced by hypoxia. Cancer Sci 2011; 102(6): 1137-43.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01936.x] [PMID: 21443541]
[254]
Bai F, Yu Z, Gao X, Gong J, Fan L, Liu F. Simvastatin induces breast cancer cell death through oxidative stress up-regulating miR-140-5p. Aging (Albany NY) 2019; 11(10): 3198-219.
[http://dx.doi.org/10.18632/aging.101974] [PMID: 31138773]
[255]
Liao W, Goh FY, Betts RJ, et al. A novel anti-apoptotic role for apolipoprotein L2 in IFN-γ-induced cytotoxicity in human bronchial epithelial cells. J Cell Physiol 2011; 226(2): 397-406.
[http://dx.doi.org/10.1002/jcp.22345] [PMID: 20665705]
[256]
Galindo-Moreno J, Iurlaro R, El Mjiyad N, Díez-Pérez J, Gabaldón T, Muñoz-Pinedo C. Apolipoprotein L2 contains a BH3-like domain but it does not behave as a BH3-only protein. Cell Death Dis 2014; 5(6): e1275-5.
[http://dx.doi.org/10.1038/cddis.2014.237] [PMID: 24901046]
[257]
Ludescher M, Stamm N, Fehm T, Neubauer H. PGRMC1 interacts with proteins of the cholesterol synthesis pathway resulting in altered cholesterol metabolism in breast cancer cells. Geburtshilfe Frauenheilkd 2018; 78(11): 1149.
[258]
Howell MC, Green R, Khalil R, et al. Lung cancer cells survive epidermal growth factor receptor tyrosine kinase inhibitor exposure through upregulation of cholesterol synthesis. FASEB Bioadv 2019; 2(2): 90-105.
[http://dx.doi.org/10.1096/fba.2019-00081] [PMID: 32123859]
[259]
Yang WL, Wei L, Huang WQ, et al. Vigilin is overexpressed in hepatocellular carcinoma and is required for HCC cell proliferation and tumor growth. Oncol Rep 2014; 31(5): 2328-34.
[http://dx.doi.org/10.3892/or.2014.3111] [PMID: 24676454]
[260]
Woo H-H, Yi X, Lamb T, et al. Posttranscriptional suppression of proto-oncogene c-fms expression by vigilin in breast cancer. Mol Cell Biol 2011; 31(1): 215-25.
[http://dx.doi.org/10.1128/MCB.01031-10] [PMID: 20974809]
[261]
de Medina P, Paillasse MR, Segala G, Poirot M, Silvente-Poirot S. Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc Natl Acad Sci USA 2010; 107(30): 13520-5.
[http://dx.doi.org/10.1073/pnas.1002922107] [PMID: 20615952]
[262]
Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 2005; 44(1): 1-51.
[http://dx.doi.org/10.1016/j.plipres.2004.10.001] [PMID: 15748653]
[263]
Yan A, Jia Z, Qiao C, Wang M, Ding X. Cholesterol metabolism in drug-resistant cancer (Review). Int J Oncol 2020; 57(5): 1103-15.
[PMID: 33491740]
[264]
Brindisi M, Fiorillo M, Frattaruolo L, Sotgia F, Lisanti MP, Cappello AR. Cholesterol and mevalonate: Two metabolites involved in breast cancer progression and drug resistance through the ERRα Pathway. Cells 2020; 9(8): 1819.
[http://dx.doi.org/10.3390/cells9081819] [PMID: 32751976]
[265]
Calcagno AM, Salcido CD, Gillet J-P, et al. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst 2010; 102(21): 1637-52.
[http://dx.doi.org/10.1093/jnci/djq361] [PMID: 20935265]
[266]
Van Phuc P, Nhan PLC, Nhung TH, et al. Downregulation of CD44 reduces doxorubicin resistance of CD44CD24 breast cancer cells. OncoTargets Ther 2011; 4: 71-8.
[http://dx.doi.org/10.2147/OTT.S21431] [PMID: 21792314]
[267]
Moon Y-A. The SCAP/SREBP pathway: a mediator of hepatic steatosis. Endocrinol Metab (Seoul) 2017; 32(1): 6-10.
[http://dx.doi.org/10.3803/EnM.2017.32.1.6] [PMID: 28116873]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy