Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Green and Sustainable Technology: Efficient Strategy for the Synthesis of Biologically Active Pyrimidine Derivatives

Author(s): Biswa Mohan Sahoo*, B.V.V Ravi Kumar, Krishna Chandra Panda, Jammula Sruti, Abhishek Tiwari and Srimanta Patra

Volume 9, Issue 1, 2022

Published on: 06 December, 2021

Page: [34 - 45] Pages: 12

DOI: 10.2174/2213337208666211006143134

Price: $65

Abstract

Green chemistry is also referred to as sustainable technology, which involves the design, synthesis, processing and the use of chemical substances by reducing or eliminating the chemical hazards. This strategy focuses on atom economy, use of safer solvents or chemicals, use of raw materials from renewable resources, consumption of energy and decomposition of the chemical substances to non-toxic material which are eco-friendly. So, this technology is utilized for the sustainable development of novel heterocyclic scaffold like pyrimidine derivatives. Pyrimidine is a six membered heterocyclic aromatic compound with two nitrogen atoms at positions 1 and 3 in the ring system. Among the other heterocyclic compounds, pyrimidine derivatives play a major role due to their diverse promising biological activities, such as antimicrobial, antifungal, anti-viral, anti- tubercular, anti-diabetic, anti-hypertensive, anticancer, anthelmintic, antioxidant, anti-epileptic, antipsychotic, anti-anxiety, antimalarial, antihistaminic, anti-parkinsonian, analgesic and anti-inflammatory etc. The various green methods used for the synthesis of pyrimidine derivatives include microwave assisted synthesis, ultrasound induced synthesis, ball milling technique, grinding technique and photo-catalysis. These processes enhance the rate of the reaction that leads to high selectivity with improved product yields as compared to the conventional synthetic methods. This review is focused on the green synthesis of biologically active pyrimidine derivatives.

Keywords: Microwave, ultrasound, green chemistry, biological activity, pyrimidine, pyrimidine derivatives.

Graphical Abstract
[1]
Tauro, S.J.; Gawad, J.B. Green chemistry: A boon to pharmaceutical synthesis. Int. J. Sci. Res., 2013, 2(7), 67-69.
[2]
Clark, J.H. Green chemistry: Challenges and opportunities. Green Chem., 1999, 1, 1-8.
[http://dx.doi.org/10.1039/a807961g]
[3]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[4]
Bhandari, M.; Raj, S. Practical approach to green chemistry. Int. J. Pharm. Pharm. Sci., 2017, 9, 10-26.
[http://dx.doi.org/10.22159/ijpps.2017v9i4.15640]
[5]
Brown, D.J.; Mason, S.F. Chemistry of heterocyclic compounds: The pyrimidines. John Wiley & Sons, USA. 2008.
[6]
Maji, P.K. Recent progress in the synthesis of pyrimidine heterocycles: A review. Curr. Org. Chem., 2020, 24(10), 1055-1096.
[http://dx.doi.org/10.2174/1385272824999200507123843]
[7]
Gupta, J.K.; Chaudhary, A.; Dudhe, R.; Varuna, K. A review on the synthesis and therapeutic potential of pyrimidine derivatives. Int. J. Pharm. Sci. Res., 2010, 1(5), 34-49.
[8]
Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem., 2014, 2014, 202784.
[http://dx.doi.org/10.1155/2014/202784] [PMID: 25383216]
[9]
Kumar, S.; Deep, A.; Narasimhan, B. Pyrimidine derivatives as potential agents acting on central nervous system. Cent. Nerv. Syst. Agents Med. Chem., 2015, 15(1), 5-10.
[http://dx.doi.org/10.2174/1871524914666140923130138] [PMID: 25756819]
[10]
Verma, A.; Sahu, L.; Chaudhary, N.; Dutta, T.; Dewangan, D.; Tripathi, D.K.A. Review: Pyrimidine their chemistry and pharmacological potentials. Asian J. Biochem. Pharmac. Res., 2012, 1(2), 1-15.
[11]
Stadler, A.; Kappe, C.O. Microwave-mediated Biginelli reactions revisited. On the nature of rate and yield enhancements. J. Chem. Soc., 2000, 2, 1363-1368.
[12]
Alimenla, B.; Kumar, A.; Jamir, L.; Sinha, D.; Sinha, U.B. Microwave-induced reactions: An alternative route for chemical synthesis. Rad. Eff. Def. Sol., 2006, 161, 687-693.
[http://dx.doi.org/10.1080/10420150600907657]
[13]
Strauss, C.R.; Trainor, R.W. Developments in microwave assisted organic chemistry. Aust. J. Chem., 1995, 48, 1665-1692.
[http://dx.doi.org/10.1071/CH9951665]
[14]
Krstenansky, J.L.; Cotterill, I. Recent advances in microwave-assisted organic syntheses. Curr. Opin. Drug Discov. Devel., 2000, 3(4), 454-461.
[PMID: 19649876]
[15]
Larhed, M.; Hallberg, A. Microwave-assisted high-speed chemistry: A new technique in drug discovery. Drug Discov. Today, 2001, 6(8), 406-416.
[http://dx.doi.org/10.1016/S1359-6446(01)01735-4] [PMID: 11301285]
[16]
Sandhu, J.S.; Dhruv, K. Microwave enhanced, solvent free green protocol for the production of 3,4-dihydropyrimidine-2-(1H)-ones using AlCl3.6H2O as a catalyst. Indian J. Chem., 2010, 49B, 360-363.
[17]
Dabiri, M.; Nezhad, H.A.; Khavasi, H.R.; Bazgir, A. A facile three components, one-pot synthesis of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives under microwave assisted conditions. J. Heterocycl. Chem., 2007, 44, 1009-1011.
[http://dx.doi.org/10.1002/jhet.5570440505]
[18]
Jain, S.K.; Chaudhari, S.K.; More, N.S. A facile synthesis of 2-amino-5-cyano-4,6-disubstituted-pyrimidines under MWI. Int. J. Org. Chem. (Irvine), 2011, 1, 47-52.
[http://dx.doi.org/10.4236/ijoc.2011.12009]
[19]
Jain, K.S.; Phoujdar, M.S.; Kathiravan, M.K.; Bariwal, J.B.; Shah, A.K. Microwave-based synthesis of novel thienopyrimidine bioisosteres of gefitinib. Tetrahedron Lett., 2008, 49, 1269-1273.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.135]
[20]
Borisagar, M.; Joshi, K.; Ram, H.; Vyas, K.; Nimavat, K. A one-pot microwave irradiation synthesis of 1,2,4-triazolo[1,5-a]pyrimidines. Acta Chim. Pharmaceut. Indica, 2012, 2(2), 101-105.
[21]
Pai, N.; Waghmode, K.; Khandekar, D. Microwave promoted solvent free Biginelli reaction for the one pot synthesis of dihydropyrimidin-2-(1H)-ones catalyzed by sulfamic acid. Asian J. Chem., 2011, 23(12), 5217-5219.
[22]
Polshettiwar, V.; Varma, R.S. Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Pure Appl. Chem., 2008, 80(4), 777-790.
[http://dx.doi.org/10.1351/pac200880040777]
[23]
Jiang, B.; Cao, L.J.; Tu, S.J.; Zheng, W.R.; Yu, H.Z. Highly diastereoselective domino synthesis of 6-spirosubstituted pyrido[2,3-d]pyrimidine derivatives in water. J. Comb. Chem., 2009, 11(4), 612-616.
[http://dx.doi.org/10.1021/cc900038g] [PMID: 19537742]
[24]
Dehbi, O.; Esam, A.I.; Mohammed, A.B.; Mohammed, H.G.; Mohammed, B.A.; Vincent, C.; Abdellah, K.L.; Yassine, R. Water- mediated synthesis of disubstituted 5-aminopyrimidines from vinyl azides under microwave irradiation. Green Chem. Lett. Rev., 2018, 11(2), 62-66.
[http://dx.doi.org/10.1080/17518253.2018.1437225]
[25]
Chen, Q.; Liu, Q.; Wang, H. Methyl-6-Methyl-1-(4-methylphenyl)-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate. Molbank, 2012, M752.
[http://dx.doi.org/10.3390/M752]
[26]
Shaikh, T.M.; Nagarajan, S.; Kandasamy, E. One pot multicomponent biginelli reaction employing ionic liquids as an organocatalyst. Curr. Organocatal., 2020, 7, 96-107.
[http://dx.doi.org/10.2174/2213337206666191001214521]
[27]
Kategaonkar, A.H.; Sadaphal, S.A.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Microwave assisted synthesis of pyrimido[4,5-d]pyrimidine derivatives in dry media. Ukr. Bioorg. Acta, 2009, 1, 3-7.
[28]
Miethchen, R.M. Selected applications of sonochemistry in organic chemistry. Ultrasonics, 1992, 30(3), 173-179.
[http://dx.doi.org/10.1016/0041-624X(92)90069-X]
[29]
Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Applications of ultrasound in organic synthesis-A Green approach. Curr. Org. Chem., 2013, 17, 1790-1828.
[http://dx.doi.org/10.2174/13852728113179990018]
[30]
Bonrath, W. Ultrasound supported catalysis. Ultrason. Sonochem., 2005, 12(1-2), 103-106.
[http://dx.doi.org/10.1016/j.ultsonch.2004.03.008] [PMID: 15474961]
[31]
Zhao, Y.; Bao, C.; Feng, R. New advances in applied research of sonochemistry. Chin. J. Chem., 2014, 8, 26-29.
[32]
Ligia, P.; Marcus, V.N.; de, S. Sonochemistry as a general procedure for the synthesis of Coumarins including multigram synthesis. Synthesis, 2017, 49(12), 2677-2682.
[http://dx.doi.org/10.1055/s-0036-1590201]
[33]
Maleki, A.; Rahimi, J.; Demchuk, O.M.; Wilczewska, A.Z.; Jasiński, R. Green in water sonochemical synthesis of tetrazolopyrimidine derivatives by a novel core-shell magnetic nanostructure catalyst. Ultrason. Sonochem., 2018, 43, 262-271.
[http://dx.doi.org/10.1016/j.ultsonch.2017.12.047] [PMID: 29555283]
[34]
Vidal, M.; García-Arriagada, M.; Rezende, M.C.; Domínguez, M. Ultrasound-promoted synthesis of 4-pyrimidinols and their tosyl derivatives. Synthesis, 2016, 48, 4246-4252.
[http://dx.doi.org/10.1055/s-0035-1562788]
[35]
Singhal, S.; Jomy, K.; Joseph, S.; Jain, L.; Sain, B. Synthesis of 3,4-dihydro-pyrimidinones in the presence of water under solvent free conditions using conventional heating, microwave irradiation/ultrasound. Green Chem. Lett. Rev., 2010, 3(1), 23-26.
[http://dx.doi.org/10.1080/17518250903490126]
[36]
Kumar, H.; Das, R.; Choithramani, A.; Gupta, A.; Khude, D.; Bothra, G.; Shard, A. Efficient green protocols for the preparation of pyrazolopyrimidines. Chem. Select, 2021, 6(23), 5807-5837.
[37]
Burkhard, K. Photocatalysis in organic synthesis-past, present and future. Eur. J. Org. Chem., 2017, 15, 1979-1981.
[38]
Obst, M.; König, B. Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst. Beilstein J. Org. Chem., 2016, 12, 2358-2363.
[http://dx.doi.org/10.3762/bjoc.12.229] [PMID: 28144303]
[39]
Mohamadpour, F. Visible light irradiation promoted catalyst-free and solvent-free synthesis of pyrano[2,3-d]pyrimidine scaffolds at room temperature. J. Saudi Chem. Soc., 2020, 24, 636-641.
[http://dx.doi.org/10.1016/j.jscs.2020.06.006]
[40]
Bakherad, M.; Bagherian, G.; Rezaeifard, A. Synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines in the magnetized deionized water based on UV-visible study. J. Iran Chem. Soc., 2021, 18, 839-852.
[41]
Geng, L.J.; Li, J.; Wang, S.X. Application of grinding method to solid-state organic synthesis. Youji Huaxue, 2005, 25(5), 608-613.
[42]
Baig, R.B.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[43]
Li, J.T.; Dai, H.; Liu, D.; Li, T.S. Efficient method for synthesis of the derivatives of 5-arylidene barbituric acid catalyzed by aminosulfonic acid with grinding. Synth. Commun., 2006, 36(6), 789-794.
[http://dx.doi.org/10.1080/00397910500451324]
[44]
Abdelrazek, F.M.; Gomha, S.M.; Farghaly, M.S.; Metz, P. One-pot, three-component synthesis of pyrido[2,3-d]pyrimidinones using aluminate sulfonic acid nanocatalyst under grinding technique. Polycyc. Aromat. Comp., 2021, 42(7), 1472-1482.
[http://dx.doi.org/10.1080/10406638.2019.1684327]
[45]
Maury, S.K.; Kumari, S.; Kushwaha, A.K.; Kamal, A.; Singh, H.K.; Kumar, D.; Singh, S. Grinding induced catalyst free, multicomponent synthesis of Indoloindole pyrimidine. Tetrahedron Lett., 2020, 61(41), 152383.
[http://dx.doi.org/10.1016/j.tetlet.2020.152383]
[46]
Stolle, A.; Szuppa, T.; Leonhardt, S.E.; Ondruschka, B. Ball milling in organic synthesis: Solutions and challenges. Chem. Soc. Rev., 2011, 40(5), 2317-2329.
[http://dx.doi.org/10.1039/c0cs00195c] [PMID: 21387034]
[47]
Brindaban, R. Ball milling towards Green synthesis: Applications, projects, challenges. Johnson Matthey Technol. Rev., 2016, 60(2), 148-150.
[http://dx.doi.org/10.1595/205651316X691375]
[48]
Wang, G.W. Mechanochemical organic synthesis. Chem. Soc. Rev., 2013, 42(18), 7668-7700.
[http://dx.doi.org/10.1039/c3cs35526h] [PMID: 23660585]
[49]
Mashkouri, S.; Naimi-Jamal, M.R. Mechanochemical solvent-free and catalyst-free one-pot synthesis of pyrano[2,3-d]pyrimidine-2,4(1H,3H)-diones with quantitative yields. Molecules, 2009, 14(1), 474-479.
[http://dx.doi.org/10.3390/molecules14010474] [PMID: 19158656]
[50]
Shahid, A.; Ahmed, N.; Saleh, T.; Mohamed, S.M. Solvent free Biginelli reactions catalyzed by hierarchical zeolite utilizing a ball mill technique: A green sustainable process. Catalysts, 2017, 7(3), 1-18.
[http://dx.doi.org/10.3390/catal7030084]
[51]
Ould, M.M. Ball Milling for heterocyclic compounds synthesis in green chemistry: A review. Synth. Commun., 2015, 45(22), 2511-2528.
[http://dx.doi.org/10.1080/00397911.2015.1058396]
[52]
Mohan, S.B.; Ravi Kumar, B.V.V.; Dinda, S.C.; Naik, D.; Prabu Seenivasan, S.; Kumar, V.; Rana, D.N.; Brahmkshatriya, P.S. Microwave-assisted synthesis, molecular docking and antitubercular activity of 1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Bioorg. Med. Chem. Lett., 2012, 22(24), 7539-7542.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.032] [PMID: 23122523]
[53]
Singh, N.; Kshirsagar, S.S.; Nimje, H.M.; Chaudhari, P.S. Microwave assisted synthesis of 4-substituted 1,2,3,4-tetrahydropyrimidine derivatives. Int. J. Pharm. Pharm. Sci., 2011, 3(1), 109-111.
[54]
Patil, P.A.; Bhole, R.P.; Chikhale, R.V.; Bhusari, K.P. Synthesis of 3,4-dihydropyrimidine-2(1H)-one derivatives using microwave for their biological screening. Int. J. Chemtech. Res., 2009, 1(2), 373-384.
[55]
Bhat, A.R.; Shalla, A.H.; Dongre, R.S. Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 2015, 6(6), 941-948.
[http://dx.doi.org/10.1016/j.jare.2014.10.007] [PMID: 26644932]
[56]
Xavier, A.; Alfredo, M.S.; Emerson, P.; Falcao, S.; Janaina, V.A. Antinociceptive pyrimidine derivatives: Aqueous multicomponent microwave assisted synthesis. Tetrahedron Lett., 2013, 54(26), 3462-3465.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.099]
[57]
Sharma, C.; Yerande, S.; Chavan, R.; Bhosale, A.V. Synthesis of thienopyrimidines and their antipsychotic activity. E-J. Chem., 2010, 7(2), 655-664.
[http://dx.doi.org/10.1155/2010/369141]
[58]
Lalpara, J.N.; Hadiyal, S.D.; Radia, A.J.; Dhalani, J.M.; Dubal, G.G. Design and rapid microwave irradiated one-pot synthesis of tetrahydropyrimidine derivatives and their screening in-vitro antidiabetic activity. Polycycl. Aromat. Comp., 2020, 1-15.
[http://dx.doi.org/10.1080/10406638.2020.1852586]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy