Generic placeholder image

Protein & Peptide Letters


ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Exploring the Molecular Level Interaction of Human Serum Albumin with Calcium Oxalate Monohydrate Crystals

Author(s): Priyadarshini*, Abhishek Negi, Chetna Faujdar, Lokesh Nigam and Naidu Subbarao

Volume 28, Issue 11, 2021

Published on: 30 September, 2021

Page: [1281 - 1289] Pages: 9

DOI: 10.2174/0929866528666210930165426

Price: $65


Background: Human serum albumin (HSA) is one of the most abundant proteins in the blood plasma, urine as well as in the organic matrix of renal calculi. Macromolecules present in the urine modulate kidney stone formation either by stimulating or inhibiting the crystallization process.

Objective: In the present study, the effect of HSA protein on the growth of calcium oxalate monohydrate crystal (COM) was investigated.

Methods: Crystal growth assay was used to measure oxalate depletion in the crystal seeded solution in the presence of HSA. HSA concentrations exhibiting effect on crystal growth were selected for FTIR and XRD analysis. In silico docking was performed on seven different binding sites of HSA.

Results: Albumin plays dual role in the growth of calcium oxalate crystallization. FTIR and XRD studies further revealed HSA exerted strain over crystal thus affecting its structure by interacting with amino acids of its pocket 1. Docking results indicate that out of 7 binding pocket in protein, calcium oxalate interacts with Arg-186 and Lys-190 amino acids of pocket 1.

Conclusion: Our study confirms the role of HSA in calcium oxalate crystallization where acidic amino acids arginine and lysine bind to COM crystals, revealing molecular interaction of macromolecule and crystal in urolithiasis.

Keywords: Human serum albumin, calcium oxalate monohydrate crystals, molecular docking, crystallization, X-ray diffraction, fourier-transform infrared spectroscopy.

Graphical Abstract
Hesse, A.; Brändle, E.; Wilbert, D.; Köhrmann, K.U.; Alken, P. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur. Urol., 2003, 44(6), 709-713.
[] [PMID: 14644124]
Pearle, M.S.; Calhoun, E.A.; Curhan, G.C. Urologic diseases in America project: Urolithiasis. J. Urol., 2005, 173(3), 848-857.
[] [PMID: 15711292]
Coe, F.L.; Parks, J.H.; Asplin, J.R. The pathogenesis and treatment of kidney stones. N. Engl. J. Med., 1992, 327(16), 1141-1152.
[] [PMID: 1528210]
Tsujihata, M. Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int. J. Urol., 2008, 15(2), 115-120.
[] [PMID: 18269444]
Jain, M.; Yadav, P. Priyadarshini. Proteomics study in urolithiasis. Curr. Proteomics, 2020, 17(2), 88-94.
Basavaraj, D.; Biyani, C.; Browning, A.; Cartledge, J. The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones. EAU-EBU Update Ser., 2007, 5, 126-136.
Priyadarshini, ; Singh, S.K.; Tandon, C. Mass spectrometric identification of human phosphate cytidyltransferse 1 as a novel calcium oxalate crystal growth inhibitor purified from human renal stone matrix. Clin. Chim. Acta, 2009, 408, 34-38.
[] [PMID: 19595683]
Priyadarshini, Identification and characterization of a calcium oxalate crystal growth protein inhibitor from human renal stone matrix., PhD Thesis Jaypee University of Information Technology. 2010.
Hallson, P.C.; Rose, G.A. Crystalluria in normal subjects and in stone formers with and without thiazide and cellulose phosphate treatment. Br. J. Urol., 1976, 48(7), 515-524.
[] [PMID: 13904]
Hess, B.; Nakagawa, Y.; Parks, J.H.; Coe, F.L. Molecular abnormality of Tamm-Horsfall glycoprotein in calcium oxalate nephrolithiasis. Am. J. Physiol., 1991, 260(4 Pt 2), F569-F578.
[PMID: 2012207]
Hess, B.; Zipperle, L.; Jaeger, P. Citrate and calcium effects on Tamm-Horsfall glycoprotein as a modifier of calcium oxalate crystal aggregation. Am. J. Physiol., 1993, 265(6 Pt 2), F784-F791.
[PMID: 8285211]
Edyvane, K.A.; Ryall, R.L.; Marshall, V.R. The contribution of bladder secretions to the crystal growth inhibitory activity of urine. In: Urinary stone; Ryall, R.L.; Brockis, J.G.; Marshall, V.R.; Finlayson, B., Eds.; Churchill Livingstone: London, 1984; pp. 198-201.
Cerini, C.; Geider, S.; Dussol, B.; Hennequin, C.; Daudon, M.; Veesler, S.; Nitsche, S.; Boistelle, R.; Berthézène, P.; Dupuy, P.; Vazi, A.; Berland, Y.; Dagorn, J.C.; Verdier, J.M. Nucleation of calcium oxalate crystals by albumin: Involvement in the prevention of stone formation. Kidney Int., 1999, 55(5), 1776-1786.
[] [PMID: 10231440]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215.
[] [PMID: 1630489]
Varshney, A.; Sen, P.; Ahmad, E.; Rehan, M.; Subbarao, N.; Khan, R.H. Ligand binding strategies of human serum albumin: How can the cargo be utilized? Chirality, 2010, 22(1), 77-87.
[] [PMID: 19319989]
Thongboonkerd, V.; Semangoen, T.; Chutipongtanate, S. Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin. Chim. Acta, 2006, 367(1-2), 120-131.
[] [PMID: 16458875]
Chutipongtanate, S.; Nakagawa, Y.; Sritippayawan, S.; Pittayamateekul, J.; Parichatikanond, P.; Westley, B.R.; May, F.E.; Malasit, P.; Thongboonkerd, V. Identification of human urinary trefoil factor 1 as a novel calcium oxalate crystal growth inhibitor. J. Clin. Invest., 2005, 115(12), 3613-3622.
[] [PMID: 16308573]
Ahmed, M.; Byrne, J.; McLaughlin, J.; Ahmed, W. Study of human serum albumin adsorption and conformational change on DLC and silicon doped DLC using XPS and FTIR spectroscopy. J. Biomater. Nanobiotechnol., 2013, 4, 194-203.
Bamane, R.; Chitre, T.; Rakholiya, V.K. Molecular docking studies of quinoline-3-carbohydrazide as novel PTP1B inhibitors as potential antihyperglycemic agents. Der Pharma Chem, 2011, 3, 227-237.
Ishtikhar, M.; Ali, M.S.; Atta, A.M.; Nigam, L.; Subbarao, N.; Khan, R.H. Interaction of biocompatible natural rosin-based surfactants with human serum albumin: A biophysical study. J. Lumin., 2015, 167, 399-407.
Brennan, S.O.; Carrell, R.W. Alpha 1-Antitrypsin Christchurch, 363 Glu-Lys: Mutation at the P’5 position does not affect inhibitory activity. Biochim. Biophys. Acta, 1986, 873(1), 13-19.
[] [PMID: 3527273]
Cherepanov, D.A.; Bibikov, S.I.; Bibikova, M.V.; Bloch, D.A.; Drachev, L.A.; Gopta, O.A.; Oesterhelt, D.; Semenov, A.Y.; Mulkidjanian, A.Y. Reduction and protonation of the secondary quinone acceptor of Rhodobacter sphaeroides photosynthetic reaction center: Kinetic model based on a comparison of wild-type chromatophores with mutants carrying Arg-->Ile substitution at sites 207 and 217 in the L-subunit. Biochim. Biophys. Acta, 2000, 1459(1), 10-34.
[] [PMID: 10924896]
Nishizawa, K.; Nishizawa, M.; Gnanasambandam, R.; Sachs, F.; Sukharev, S.I.; Suchyna, T.M. Effects of Lys to Glu mutations in GsMTx4 on membrane binding, peptide orientation, and self-association propensity, as analyzed by molecular dynamics simulations. Biochim. Biophys. Acta, 2015, 1848(11 Pt A), 2767-2778.
[] [PMID: 26342676]
Shinbrot, E.; Henninger, E.E.; Weinhold, N.; Covington, K.R.; Göksenin, A.Y.; Schultz, N.; Chao, H.; Doddapaneni, H.; Muzny, D.M.; Gibbs, R.A.; Sander, C.; Pursell, Z.F.; Wheeler, D.A. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Res., 2014, 24(11), 1740-1750.
[] [PMID: 25228659]
Priyadarshini, ; Raizada, D.; Kumar, P.; Singh, T.; Pruthi, T.; Negi, A.; Nigam, L.; Subbarao, N. Exploring the modulatory effect of albumin on calcium phosphate crystallization. Curr. Sci., 2019, 117, 1983-1989.
Priyadarshini, ; Naik, P.K.; Sengupta, D.; Singh, S.K.; Tandon, C. Mode of interaction of calcium oxalate crystal with human phosphate cytidylyltransferase 1: a novel inhibitor purified from human renal stone matrix. JBSE, 2011, 4, 591-598.

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy