Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Review on Coumarin Derivatives as Potent Anti-tuberculosis Agents

Author(s): Samar Mujeeb, Kuldeep Singh*, Bhumika Yogi, Vaseem Ansari and Shweta Sinha

Volume 22, Issue 7, 2022

Published on: 13 January, 2022

Page: [1064 - 1080] Pages: 17

DOI: 10.2174/1389557521666210927124511

Price: $65

Abstract

Background: Tuberculosis (TB) is an acute or chronic infectious disease caused by several species of Mycobacterium, collectively called tubercle bacilli or Mycobacterium tuberculosis complex. Around 10 million people get sick with tuberculosis (TB) each year. TB is the second leading cause of death today after HIV/AIDS. A serious problem in the context of MDR-TB is the extensively drug-resistant TB, which is an important reason for the restricted chemotherapy in TB. Therefore, there is a need to explore new antitubercular (anti-TB) agents. Coumarin is an oxygencontaining heterocyclic compound and can be widely found in many natural products, and many of them display diverse biological activities. The wide spectrum of activities of coumarin molecules has intrigued the scientists to explore the natural coumarins and their synthetic derivatives for their potential as anti-TB drugs.

Objective: The objective of this review is to emphasize important coumarin analogs with anti-TB activities and their structure-activity relationships (SAR) for designing better anti-TB agents.

Method: Latest, authentic and published reports on various synthetic and natural coumarin derivatives and their anti-TB activities is being thoroughly studied and analyzed. The structural requirements of coumarins as anti-TB drugs have also been studied.

Result: Collection and compilation of reports on various synthetic and natural coumarin derivatives and their anti-TB activities are being performed.

Conclusion: The study provides the latest report on coumarin derivatives synthesized as anti-TB agent and whether their activity depends on structural changes or not.

Keywords: Coumarin, synthesis, Mycobacterium tuberculosis, antitubercular, tubercle bacillus, (SAR) for designing better anti-TB agents SAR, anti-TB.

Graphical Abstract
[1]
Global tuberculosis report 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. 2019. Available from: https://www.who.int/publications/i/item/global-tuberculosis-report
[2]
Agrawal, Y.K.; Bhatt, H.G.; Rava, H.G.; Oza, P.M.; Vaidya, H.B.; Manna, K.; Gogoi, P. Emerging trends in tuberculosis therapy. J. Sci. Ind. Res. (India), 2007, 66, 191-208.
[3]
de Souza, M.V. Promising drugs against tuberculosis. Rec. Pat. Antiinfect. Drug Discov., 2006, 1(1), 33-44.
[http://dx.doi.org/10.2174/157489106775244163] [PMID: 18221132]
[4]
de Souza, M.V. Current status and future prospects for new therapies for pulmonary tuberculosis. Curr. Opin. Pulm. Med., 2006, 12(3), 167-171.
[http://dx.doi.org/10.1097/01.mcp.0000219264.42686.c9] [PMID: 16582670]
[5]
Goletti, D.; Weissman, D.; Jackson, R.W.; Graham, N.M.; Vlahov, D.; Klein, R.S.; Munsiff, S.S.; Ortona, L.; Cauda, R.; Fauci, A.S. Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation. J. Immunol., 1996, 157(3), 1271-1278.
[PMID: 8757635]
[6]
Mariani, F.; Goletti, D.; Ciaramella, A.; Martino, A.; Colizzi, V.; Fraziano, M. Macrophage response to Mycobacterium tuberculosis during HIV infection: Relationships between macrophage activation and apoptosis. Curr. Mol. Med., 2001, 1(2), 209-216.
[http://dx.doi.org/10.2174/1566524013363933] [PMID: 11899072]
[7]
WHO Global tuberculosis report.. 2013.
[8]
Kaur, P.; Arora, R.; Gill, N.S. Review on oxygen heterocycles. Indo Am. J. Pharm. Sci., 2013, 9067-9084.
[9]
Wawzonek, S. Heterocyclic compounds; Elderfield, R.C., Ed.; John Wiley: NY, 1951, p. 217.
[10]
Feuer, G. Progress in medicinal chemistry; Eillis, G.P.; G.B., Eds.; West North Holland (NY), , 1974; 10, p. 86.
[11]
Sashidhara, K.V.; Kumar, A.; Chatterjee, M.; Rao, K.B.; Singh, S.; Verma, A.K.; Palit, G. Discovery and synthesis of novel 3-phenylcoumarin derivatives as antidepressant agents. Bioorg. Med. Chem. Lett., 2011, 21(7), 1937-1941.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.040] [PMID: 21377878]
[12]
Palmer, C.J.; Josephs, J.L. Synthesis of the calophyllum coumarins. J. Chem. Soc. Perkin Trans., 1995, 1(24), 3135-3152.
[http://dx.doi.org/10.1039/p19950003135]
[13]
Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951.
[http://dx.doi.org/10.2174/092986711803414395] [PMID: 21824098]
[14]
El-Wahab, H.A.; El-Fattah, M.A.; El-Khalik, N.A.; Nassar, H.S.; Abdelall, M.M. Synthesis and characterization of coumarin thiazole derivative 2-(2-amino-1,3-thiazol-4-yl)-3H benzo[f]chromen-3-one with anti-microbial activity and its potential application in antimicrobial polyurethane coating. Prog. Org. Coat., 2014, 77(9), 1506-1511.
[http://dx.doi.org/10.1016/j.porgcoat.2014.04.026]
[15]
Lad, H.B.; Giri, R.R.; Brahmbhatt, D.I. An efficient synthesis of some new 3-bipyridinyl substituted coumarins as potent antimicrobial agents. Chin. Chem. Lett., 2013, 24(3), 227-229.
[http://dx.doi.org/10.1016/j.cclet.2013.01.041]
[16]
Keri, R.S.; Hosamani, K.M.; Reddy, H.S.; Shingalapur, R.V. Synthesis, in-vitro antimicrobial and cytotoxic studies of novel azetidinone derivatives. Arch. Pharm. (Weinheim), 2010, 343(4), 237-247.
[PMID: 20205197]
[17]
Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese, A.; Carradori, S.; Rivanera, D.; Zicari, A.; Scaltrito, M.M.; Sisto, F. Synthesis, selective anti-Helicobacter pylori activity, and cytotoxicity of novel N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides. Bioorg. Med. Chem. Lett., 2010, 20(16), 4922-4926.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.048] [PMID: 20630755]
[18]
Lee, S.J.; Lee, U.S.; Kim, W.J.; Moon, S.K. Inhibitory effect of esculetin on migration, invasion and matrix metalloproteinase-9 expression in TNF-α-induced vascular smooth muscle cells. Mol. Med. Rep., 2011, 4(2), 337-341.
[PMID: 21468574]
[19]
Barros, T.A.; de Freitas, L.A.; Filho, J.M.; Nunes, X.P.; Giulietti, A.M.; de Souza, G.E.; dos Santos, R.R.; Soares, M.B.; Villarreal, C.F. Antinociceptive and anti-inflammatory properties of 7-hydroxycoumarin in experimental animal models: Potential therapeutic for the control of inflammatory chronic pain. J. Pharm. Pharmacol., 2010, 62(2), 205-213.
[http://dx.doi.org/10.1211/jpp.62.02.0008] [PMID: 20487200]
[20]
Yeh, J.Y.; Coumar, M.S.; Horng, J.T.; Shiao, H.Y.; Kuo, F.M.; Lee, H.L.; Chen, I.C.; Chang, C.W.; Tang, W.F.; Tseng, S.N.; Chen, C.J.; Shih, S.R.; Hsu, J.T.; Liao, C.C.; Chao, Y.S.; Hsieh, H.P. Anti-influenza drug discovery: Structure-activity relationship and mechanistic insight into novel angelicin derivatives. J. Med. Chem., 2010, 53(4), 1519-1533.
[http://dx.doi.org/10.1021/jm901570x] [PMID: 20092255]
[21]
Huang, X.Y.; Shan, Z.J.; Zhai, H.L.; Su, L.; Zhang, X.Y. Study on the anticancer activity of coumarin derivatives by molecular modeling. Chem. Biol. Drug Des., 2011, 78(4), 651-658.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01195.x] [PMID: 21791009]
[22]
Neyts, J.; De Clercq, E.; Singha, R.; Chang, Y.H.; Das, A.R.; Chakraborty, S.K.; Hong, S.C.; Tsay, S.C.; Hsu, M.H.; Hwu, J.R. Structure-activity relationship of new anti-hepatitis C virus agents: Heterobicycle-coumarin conjugates. J. Med. Chem., 2009, 52(5), 1486-1490.
[http://dx.doi.org/10.1021/jm801240d] [PMID: 19193060]
[23]
Olomola, T.O.; Klein, R.; Mautsa, N.; Sayed, Y.; Kaye, P.T. Synthesis and evaluation of coumarin derivatives as potential dual-action HIV-1 protease and reverse transcriptase inhibitors. Bioorg. Med. Chem., 2013, 21(7), 1964-1971.
[http://dx.doi.org/10.1016/j.bmc.2013.01.025] [PMID: 23415084]
[24]
Manvar, A.; Bavishi, A.; Radadiya, A.; Patel, J.; Vora, V.; Dodia, N.; Rawal, K.; Shah, A. Diversity oriented design of various hydrazides and their in vitro evaluation against Mycobacterium tuberculosis H37Rv strains. Bioorg. Med. Chem. Lett., 2011, 21(16), 4728-4731.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.074] [PMID: 21752642]
[25]
Sun, Q.; Peng, D.Y.; Yang, S.G.; Zhu, X.L.; Yang, W.C.; Yang, G.F. Syntheses of coumarin-tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorg. Med. Chem., 2014, 22(17), 4784-4791.
[http://dx.doi.org/10.1016/j.bmc.2014.06.057] [PMID: 25088549]
[26]
Piazzi, L.; Cavalli, A.; Colizzi, F.; Belluti, F.; Bartolini, M.; Mancini, F.; Recanatini, M.; Andrisano, V.; Rampa, A. Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg. Med. Chem. Lett., 2008, 18(1), 423-426.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.100] [PMID: 17998161]
[27]
Yuce, B.; Danis, O.; Ogan, A.; Sener, G.; Bulut, M.; Yarat, A. Antioxidative and lipid lowering effects of 7,8-dihydroxy-3- (4-methylphenyl) coumarin in hyperlipidemic rats. Arzneimittelforschung, 2009, 59(3), 129-134.
[PMID: 19402343]
[28]
Keri, R.S.; Hosamani, K.M.; Shingalapur, R.V.; Hugar, M.H. Analgesic, anti-pyretic and DNA cleavage studies of novel pyrimidine derivatives of coumarin moiety. Eur. J. Med. Chem., 2010, 45(6), 2597-2605.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.048] [PMID: 20356657]
[29]
Vasconcelos, J.F.; Teixeira, M.M.; Barbosa-Filho, J.M.; Agra, M.F.; Nunes, X.P.; Giulietti, A.M.; Ribeiro-Dos-Santos, R.; Soares, M.B. Effects of umbelliferone in a murine model of allergic airway inflammation. Eur. J. Pharmacol., 2009, 609(1-3), 126-131.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.027] [PMID: 19289114]
[30]
Keri, R.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem., 2015, 100, 257-269.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.017] [PMID: 26112067]
[31]
Singh, H.; Singh, J.V.; Bhagat, K.; Gulati, H.K.; Sanduja, M.; Kumar, N.; Kinarivala, N.; Sharma, S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg. Med. Chem., 2019, 27(16), 3477-3510.
[http://dx.doi.org/10.1016/j.bmc.2019.06.033] [PMID: 31255497]
[32]
Stanley, S.A.; Kawate, T.; Iwase, N.; Shimizu, M.; Clatworthy, A.E.; Kazyanskaya, E.; Sacchettini, J.C.; Ioerger, T.R.; Siddiqi, N.A.; Minami, S.; Aquadro, J.A.; Grant, S.S.; Rubin, E.J.; Hung, D.T. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32. Proc. Natl. Acad. Sci. USA, 2013, 110(28), 11565-11570.
[http://dx.doi.org/10.1073/pnas.1302114110] [PMID: 23798446]
[33]
Pires, C.T.A.; Scodro, R.B.L.; Cortez, D.A.G.; Brenzan, M.A.; Siqueira, V.L.D.; Caleffi-Ferracioli, K.R.; Vieira, L.C.; Monteiro, J.L.; Corrêa, A.G.; Cardoso, R.F. Structure-activity relationship of natural and synthetic coumarin derivatives against Mycobacterium tuberculosis. Future Med. Chem., 2020, 12(17), 1533-1546.
[http://dx.doi.org/10.4155/fmc-2018-0281] [PMID: 32820960]
[34]
Somagond, S.M.; Kamble, R.R.; Bayannavar, P.K.; Shaikh, S.K.J.; Joshi, S.D.; Kumbar, V.M.; Nesaragi, A.R.; Kariduraganavar, M.Y. Click chemistry based regioselective one-pot synthesis of coumarin-3-yl-methyl-1,2,3-triazolyl-1,2,4-triazol-3(4H)-ones as newer potent antitubercular agents. Arch. Pharm. (Weinheim), 2019, 352(10), e1900013.
[http://dx.doi.org/10.1002/ardp.201900013] [PMID: 31397503]
[35]
Hassan, M.Z.; Alsayari, A.; Osman, H.; Ali, M.A.; Muhsinah, A.; Ahsan, M.J. Synthesis and evaluation of coumarin hybrids as antimycobacterial agents. Acta Poloniae Pharmaceuticañ. Drug Res., 2019, 76(6), 1029-1036.
[36]
Shaikh, F.; Shastri, S.L.; Naik, N.S.; Kulkarni, R.J.; Madar, M.L.; Shastri, A.S.; Joshi, D.; Sunagar, V. Synthesis, antitubercular and antimicrobial activity of 1,2,4-Triazolidine-3-thione functionalized coumarin and phenyl derivatives and molecular docking studies. ChemistrySelect, 2019, 4(1), 105-115.
[http://dx.doi.org/10.1002/slct.201802395]
[37]
Yusufzai, S.K.; Osman, H.; Khan, M.S.; Razik, B.M.A.; Mohamad, S.; Sulaiman, O.; Gansau, J.A.; Johansah, N.; Ezzat, M.O.; Parumasivam, T.; Rosli, M.M.; Razak, I.A. Synthesis, X-ray crystallographic study, pharmacology and docking of hydrazinyl thiazolyl coumarins as dengue virus NS2B/NS3 serine protease inhibitors. Med. Chem. Res., 2018, 27, 1647-1665.
[http://dx.doi.org/10.1007/s00044-018-2179-8]
[38]
Osman, H.; Yusufzai, S.K.; Khan, M.S.; Abd Razik, B.M.; Sulaiman, O.; Mohamad, S.; Gansau, J.A.; Ezzat, M.O.; Parumasivam, T.; Hassan, M.Z. New thiazolyl-coumarin hybrids: Design, synthesis, characterization, X-ray crystal structure, antibacterial and antiviral evaluation. J. Mol. Struct., 2018, 1166, 147-154.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.031]
[39]
Mali, H.M.; Sabale, S.S.; Degani, M.S.; Borkute, R.; Choudhari, A.S.; Sarkar, D.; Krishna, V.S.; Sriram, D. Rational design of coumarin derivatives as antituberculosis agents. Future Med. Chem., 2018, 10(20), 2431-2444.
[http://dx.doi.org/10.4155/fmc-2018-0015] [PMID: 30325198]
[40]
Reddy, D.S.; Kongot, M.; Netalkar, S.P.; Kurjogi, M.M.; Kumar, R.; Avecilla, F.; Kumar, A. Synthesis and evaluation of novel coumarin-oxime ethers as potential anti-tubercular agents: Their DNA cleavage ability and BSA interaction study. Eur. J. Med. Chem., 2018, 150(150), 864-875.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.042] [PMID: 29597169]
[41]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G.; Bathini, R.; Manga, V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct., 2018, 1157, 312-321.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.080]
[42]
Mangasuli, S.N.; Hosamani, K.M.; Devarajegowda, H.C.; Kurjogi, M.M.; Joshi, S.D. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Eur. J. Med. Chem., 2018, 146, 747-756.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.025] [PMID: 29407993]
[43]
Yusufzai, S.K.; Osman, H.; Khan, M.S.; Abd Razik, B.M.; Ezzat, M.O.; Mohamad, S.; Sulaiman, O.; Gansau, J.A.; Parumasivam, T. 4-Thiazolidinone coumarin derivatives as two-component NS2B/NS3 DENV flavivirus serine protease inhibitors: Synthesis, molecular docking, biological evaluation and structure-activity relationship studies. Chem. Cent. J., 2018, 12(1), 69.
[http://dx.doi.org/10.1186/s13065-018-0435-0] [PMID: 29896651]
[44]
Chauhan, N.B.; Patel, N.B.; Patel, V.M. Synthesis and biological evaluation of coumarin clubbed thiazines scaffolds as antimicrobial and antioxidant. Med. Chem. Res., 2018, 27, 2141-2149.
[http://dx.doi.org/10.1007/s00044-018-2222-9]
[45]
Danne, A.B.; Choudhari, A.S.; Sarkar, D.; Sangshetti, J.N.; Khedkar, V.M.; Shingate, B.B. Synthesis and biological evaluation of novel triazole-biscoumarin conjugates as potential antitubercular and anti-oxidant agents. Res. Chem. Intermed., 2018, 44, 6283-6310.
[http://dx.doi.org/10.1007/s11164-018-3490-1]
[46]
Khan, G.A.; Naikoo, G.A.; War, J.A.; Sheikh, I.A.; Pandit, U.J.; Khan, I.; Harit, A.K.; Das, R. An efficient green synthesis of some functionalized spiro chromene based scaffolds as potential antitubercular agents. J. Heterocycl. Chem., 2018, 55(3), 699-708.
[http://dx.doi.org/10.1002/jhet.3091]
[47]
Singh, A.; Bimal, D.; Kumar, R.; Maikhuri, V.K.; Thirumal, M.; Senapati, N.N.; Prasad, A.K. Synthesis and antitubercular activity evaluation of 4-furano-coumarins and 3-furano-chromones. Synth. Commun., 2018, 48(18), 2339-2346.
[http://dx.doi.org/10.1080/00397911.2018.1480041]
[48]
Madar, J.M.; Shastri, L.A.; Shastri, S.L.; Holiyachi, M.; Naik, N.S.; Shaikh, F.; Sungar, V.A.; Joshi, S.D. Synthesis and characterization of coumarin-4-thiazolidinone scaffolds as new class of anti-tuberculosis and antibacterial agents. OSR-JAC., 2018, 11(7), 77-101.
[49]
Godge, R.; Kunkulol, R. Synthesis of coumarin heterocyclic derivatives with in-vitro anti-tubercular activity. J. Drug Deliv. Ther., 2018, 8(5), 217-223.
[http://dx.doi.org/10.22270/jddt.v8i5.1859]
[50]
Gao, T.; Zeng, Z.; Wang, G.; Sun, S.; Liu, Y. Synthesis of ethylene tethered isatin‐coumarin hybrids and evaluation of their in vitro antimycobacterial activities. J. Heterocycl. Chem., 2018, 55(6), 1484-1488.
[http://dx.doi.org/10.1002/jhet.3161]
[51]
Xu, Y.; Dang, R.; Guan, J.; Xu, Z.; Zhao, S.; Hu, Y. Isatin‐(thio) semicarbazide/oxime‐1H‐1,2,3‐triazole‐coumarin hybrids: Design, synthesis, and in vitro anti‐ mycobacterial evaluation. J. Heterocycl. Chem., 2018, 55, 1069-1073.
[http://dx.doi.org/10.1002/jhet.3104]
[52]
Liu, B.; Hu, G.; Tang, X.; Wang, G.; Xu, Z. 1H‐1,2,3‐triazole‐tethered isatin–coumarin hybrids: Design, synthesis and in vitro anti‐mycobacterial evaluation. J. Heterocycl. Chem., 2018, 55(3), 775-780.
[http://dx.doi.org/10.1002/jhet.3093]
[53]
Huang, G.C.; Xu, Y.; Xu, Z.; Lv, Z.S.; Zhang, J.; Guo, H.Y.; Hu, Y.Q.; Liu, M.L.; Guan, J.; Lu, Y. Propylene‐1h‐1,2,3‐triazole‐4‐methylene‐tethered isatin‐coumarin hybrids: Design, synthesis, and in vitro anti‐tubercular evaluation. J. Heterocycl. Chem., 2018, 55(4), 830-835.
[http://dx.doi.org/10.1002/jhet.3106]
[54]
Joubert, J.; Foka, G.B.; Repsold, B.P.; Oliver, D.W.; Kapp, E.; Malan, S.F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 853-864.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.041] [PMID: 27744252]
[55]
Kapp, E.; Visser, H.; Sampson, S.L.; Malan, S.F.; Streicher, E.M.; Foka, G.B.; Warner, D.F.; Omoruyi, S.I.; Enogieru, A.B.; Ekpo, O.E.; Zindo, F.T.; Joubert, J. Versatility of 7-substituted coumarin molecules as antimycobacterial agents, neuronal enzyme inhibitors and neuroprotective agents. Molecules, 2017, 22(10), 1644.
[http://dx.doi.org/10.3390/molecules22101644] [PMID: 28973990]
[56]
Khan, Y.S.; Osman, H.; Khan, M.S.; Mohamad, S.; Sulaiman, O.; Parumasivam, T.; Gansau, J.A.; Johansah, N. Noviany. Design, characterization, in vitro antibacterial, antitubercular evaluation and structure–activity relationships of new hydrazinyl thiazolyl coumarin derivatives. Med. Chem. Res., 2017, 26, 1139-1148.
[http://dx.doi.org/10.1007/s00044-017-1820-2]
[57]
Pattanashetty, H.S.; Kallappa, M.H.; Satapute, P.; Joshi, D.S.; Obelannavar, K. Discovery of new drugs and computational studies of coumarin- carprofen scaffolds as a novel class of anti-tubercular, anti- inflammatory and anti-bacterial agents. Eur. J. Pharm. Sci., 2017, 4(11), 486-498.
[58]
Vimala, G.; Hoskeri, J.; Basanagouda, M. Coumarin-furoquinoline conjugates as potential antitubercular agents: Synthesis, biological evaluation and molecular docking studies. J. Chem. Pharm. Res., 2017, 9(10), 212-222.
[59]
Rathod, S.A.; Godipurge, S.S.; Biradar, S. Jaiprakash, Synthesis of indole, coumarinyl and pyridinyl derivatives of isoniazid as potent antitubercular and antimicrobial agents and their molecular docking studies. Int. J. Pharm. Pharm. Sci., 2017, 9(12), 233.
[http://dx.doi.org/10.22159/ijpps.2017v9i12.21970]
[60]
Angelova, V.T.; Valcheva, V.; Vassilev, N.G.; Buyukliev, R.; Momekov, G.; Dimitrov, I.; Saso, L.; Djukic, M.; Shivachev, B. Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorg. Med. Chem. Lett., 2017, 27(2), 223-227.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.071] [PMID: 27914798]
[61]
Angelova, V.T.; Buyukliev, R.; Dimitrov, I.; Valcheva, V.; Vassilev, N.; Shivachev, B.; Momekov, G. Antimycobacterial activity and QSAR studies of 2H-chromene and coumarin based hydrazones. Chem. Sci. J., 2016, 7(2), 105.
[62]
Shaikh, M.H.; Subhedar, D.D.; Shingate, B.B.; Khan, F.A.K.; Sangshetty, J.N.; Khedkar, V.M.; Nawale, L.; Sarkar, D.; Navale, G.R.; Shinde, S.S. Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med. Chem. Res., 2016, 25, 790-804.
[http://dx.doi.org/10.1007/s00044-016-1519-9]
[63]
Reddy, D.S.; Hosamani, K.M.; Devarajegowda, H.C. Design, synthesis of benzocoumarin-pyrimidine hybrids as novel class of antitubercular agents, their DNA cleavage and X-ray studies. Eur. J. Med. Chem., 2015, 101, 705-715.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.056] [PMID: 26210508]
[64]
Hosamani, M.K.; Reddy, S.D.; Rangappa, S.K. Microwave assisted synthesis of benzocoumarin- benzothiazepine hybrids as potent anti-tubercular agents and their DNA cleavage study. Europ. J. Biomed. Pharm., 2015, 2(3), 576-592.
[65]
Rakesh, G.R.; Lad, H.B.; Varun, G.; Chirag, P.V.; Brahmbhatt, D.I. Modified pyridine-substituted coumarins: A new class of anti-microbial and anti-tubercular agents. Synth. Commun., 2014, 45(3), 363-375.
[66]
Basanagouda, M.; Jambagi, V.B.; Barigidad, N.N.; Laxmeshwar, S.S.; Devaru, V. Narayanachar, Synthesis, structure-activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents. Eur. J. Med. Chem., 2014, 74, 225-233.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.061] [PMID: 24463645]
[67]
Bhila, V.G.; Patel, C.V.; Patel, N.H.; Brahmbhatt, D.I. One pot synthesis of some novel coumarins containing 5-(substituted-2-hydroxybenzoyl) pyridine as a new class of antimicrobial and anti-tuberculosis agents. Med. Chem. Res., 2013, 22, 4338-4346.
[http://dx.doi.org/10.1007/s00044-012-0437-8]
[68]
Jeyachandran, M.; Ramesh, P.; Sriram, D.; Senthilkumar, P.; Yogeeswari, P. Synthesis and in vitro antitubercular activity of 4-aryl/alkylsulfonylmethylcoumarins as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2012, 22(14), 4807-4809.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.054] [PMID: 22726933]
[69]
Rezayan, A.H.; Azerang, P.; Sardari, S.; Sarvary, A. Synthesis and biological evaluation of coumarin derivatives as inhibitors of Mycobacterium bovis (BCG). Chem. Biol. Drug Des., 2012, 80(6), 929-936.
[http://dx.doi.org/10.1111/cbdd.12044] [PMID: 22943459]
[70]
Patel, V. Synthesis of coumarin-based 1,3,4-oxadiazol-2ylthio-N-phenyl/benzothiazolyl acetamides as antimicrobial and anti-tuberculosis agents. Med. Chem. Res., 2013, 22, 195-210.
[http://dx.doi.org/10.1007/s00044-012-0026-x]
[71]
Guo, Q.; Liu, M.L.; Feng, L.S.; Lv, K.; Guan, Y.; Guo, H.Y.; Xiao, C.L. Synthesis and in-vitro antimycobacterial activity of fluoroquinolone derivatives containing a coumarin moiety. Arch. Pharm. (Weinheim), 2011, 344(12), 802-809.
[http://dx.doi.org/10.1002/ardp.201000256] [PMID: 21989627]
[72]
Upadhyay, K.; Bavishi, A.; Thakrar, S.; Radadiya, A.; Vala, H.; Parekh, S.; Bhavsar, D.; Savant, M.; Parmar, M.; Adlakha, P.; Shah, A. Synthesis and biological evaluation of 4-styrylcoumarin derivatives as inhibitors of TNF-α and IL-6 with anti-tubercular activity. Bioorg. Med. Chem. Lett., 2011, 21(8), 2547-2549.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.016] [PMID: 21396814]
[73]
Cardoso, S.H.; Barreto, M.B.; Lourenço, M.C.S.; Henriques, Md.; Candéa, A.L.P.; Kaiser, C.R.; de Souza, M.V.N. Antitubercular activity of new coumarins. Chem. Biol. Drug Des., 2011, 77(6), 489-493.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01120.x] [PMID: 21414146]
[74]
Virsdoia, V.; Shaikh, M.S.; Manvar, A.; Desai, B.; Parecha, A.; Loriya, R.; Dholariya, K.; Patel, G.; Vora, V.; Upadhyay, K.; Denish, K.; Shah, A.; Coutinho, E.C. Screening for in vitro antimycobacterial activity and three-dimensional quantitative structure-activity relationship (3D-QSAR) study of 4-(arylamino)coumarin derivatives. Chem. Biol. Drug Des., 2010, 76(5), 412-424.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00997.x] [PMID: 20925693]
[75]
Manvar, A.; Malde, A.; Verma, J.; Virsodia, V.; Mishra, A.; Upadhyay, K.; Acharya, H.; Coutinho, E.; Shah, A. Synthesis, anti-tubercular activity and 3D-QSAR study of coumarin-4-acetic acid benzylidene hydrazides. Eur. J. Med. Chem., 2008, 43(11), 2395-2403.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.016] [PMID: 18328603]
[76]
Soine, T.O. Naturally occurring coumarins and related physiological activities. J. Pharm. Sci., 1964, 53, 231-264.
[77]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013, 2013, 963248.
[http://dx.doi.org/10.1155/2013/963248] [PMID: 23586066]
[78]
Chiang, C.C.; Cheng, M.J.; Peng, C.F.; Huang, H.Y.; Chen, I.S. A novel dimeric coumarin analog and antimycobacterial constituents from Fatoua pilosa. Chem. Biodivers., 2010, 7(7), 1728-1736.
[http://dx.doi.org/10.1002/cbdv.200900326] [PMID: 20658660]
[79]
Esquivel-Ferriño, P.C.; Favela-Hernández, J.M.J.; Garza-González, E.; Waksman, N.; Ríos, M.Y.; del Rayo Camacho-Corona, M. Antimycobacterial activity of constituents from Foeniculum vulgare var. dulce grown in Mexico. Molecules, 2012, 17(7), 8471-8482.
[http://dx.doi.org/10.3390/molecules17078471] [PMID: 22797778]
[80]
Sunthitikawinsakul, A.; Kongkathip, N.; Kongkathip, B.; Phonnakhu, S.; Daly, J.W.; Spande, T.F.; Nimit, Y.; Rochanaruangrai, S. Coumarins and carbazoles from Clausena excavata exhibited antimycobacterial and antifungal activities. Planta Med., 2003, 69(2), 155-157.
[http://dx.doi.org/10.1055/s-2003-37716] [PMID: 12624822]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy