Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Computational Exploration of Functional Nanoscale Carbonaceous Materials

Author(s): Grigoriy Sereda*, Md Tusar Uddin and Jacob Wente

Volume 18, Issue 4, 2022

Published on: 06 January, 2022

Page: [478 - 486] Pages: 9

DOI: 10.2174/1573413717666210924163449

Price: $65

Abstract

Background: The unique ability of carbon to form a wide variety of allotropic modifications has ushered in a new era in material science. Tuning the properties of these materials by functionalization is a must-have tool for their design customized for a specific practical use. The exponentially growing computational power available to researchers allows for the prediction and thorough understanding of the underlying physicochemical processes responsible for the practical properties of pristine and modified carbons using the methods of quantum chemistry.

Methods: This review focuses on the computational assessment of the influence of functionalization on the properties of carbons and enabling desired practical properties of the new materials. The first section of each part of this review focuses on graphene with nearly planar units built from sp2- carbons. The second section discusses patterns of sp2-carbons rolled up into curved 3D structures in a variety of ways (fullerenes). The overview of other types of carbonaceous materials, including those with a high abundance of sp3-carbons, including nanodiamonds, can be found in the third section of each manuscript’s part.

Conclusion: The computational methods are especially critical for predicting electronic properties of materials such as the bandgap, conductivity, optical and photoelectronic properties, solubility, adsorptivity, the potential for catalysis, sensing, imaging, and biomedical applications. We expect that introduction of defects to carbonaceous materials as a type of their functionalization will be a point of growth in this area of computational research.

Keywords: Computation, functionalization, carbonaceous materials, graphene, nanomaterial, allotropic modifications.

Graphical Abstract
[1]
Curl, R.; Kroto, H.W.; Smalley, R.E. Nobel prize in chemistry for 1996. S. AFR. J. CHEM-S-AFR T, 1997, 50, 102-105.
[2]
Dresselhaus, M.S.; Araujo, P.T. Perspectives on the 2010 Nobel Prize in physics for graphene. ACS Nano, 2010, 4(11), 6297-6302.
[http://dx.doi.org/10.1021/nn1029789] [PMID: 21090813]
[3]
Chen, K.; Wang, Q.; Niu, Z.; Chen, J. Graphene-based materials for flexible energy storage devices. J. Energy Chem., 2018, 27, 12-24.
[http://dx.doi.org/10.1016/j.jechem.2017.08.015]
[4]
Wu, Z.; Wang, Y.; Liu, X.; Lv, C.; Li, Y.; Wei, D.; Liu, Z. Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater., 2019, 31(9)e1800716
[http://dx.doi.org/10.1002/adma.201800716] [PMID: 30680813]
[5]
Dai, Ch.; Sun, G.; Hu, L.; Xiao, Y.; Zhang, Zh.; Qu, L. Recent progress in graphene-based electrodes for flexible batteries. Infomat, 2020, 2, 529-526.
[http://dx.doi.org/10.1002/inf2.12039]
[6]
Tian, W.; Li, W.; Yu, W.; Liu, X. A review on lattice defects in graphene: types. generation, effects and regulation. Micromachines (Basel), 2017, 8(5)
[http://dx.doi.org/10.3390/mi8050163]
[7]
Song, S.; Zhao, H.; Zheng, X.; Zhang, H.; Liu, Y.; Wang, Y.; Han, B. A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation. R. Soc. Open Sci., 2018, 5(2)170772
[http://dx.doi.org/10.1098/rsos.170772] [PMID: 29515821]
[8]
Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18), 3865-3868.
[http://dx.doi.org/10.1103/PhysRevLett.77.3865] [PMID: 10062328]
[9]
Kresse, G.; Furthmüller, J.J.C. m. s. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Elsevier, 1996, 6(1), 15-50.
[10]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter, 1996, 54(16), 11169-11186.
[http://dx.doi.org/10.1103/PhysRevB.54.11169] [PMID: 9984901]
[11]
Saha, B.; Bhattacharyya, P.K. Adsorption of amino acids on boron and/or nitrogen doped functionalized graphene: A Density Functional Study. Comput. Theor. Chem., 2016, 1086, 45-51.
[http://dx.doi.org/10.1016/j.comptc.2016.04.017]
[12]
Scalmani, G.; Frisch, M.J. Comment on A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: The switching/gaussian approach. J. Chem. Phys., 2011, 134(11)117101
[http://dx.doi.org/10.1063/1.3567489] [PMID: 21428670]
[13]
Sánchez‐Portal, D.; Ordejon, P.; Artacho, E.; Soler, J.M.J.I.c. Density‐functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem., 1997, 65(5), 453-461.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:5<453:AID-QUA9>3.0.CO;2-V]
[14]
Sharma, J.D.; Ahluwalia, P.; Kumar, N. In: Study of electron density of states of nano structured functionalized graphene within DFT calculations; AIP Conference Proceedings AIP, 2011, pp. 321-322.
[http://dx.doi.org/10.1063/1.3653739]
[15]
Zan, W. Chemical functionalization of graphene by carbene cycloaddition: A density functional theory study. Appl. Surf. Sci., 2014, 311, 377-383.
[http://dx.doi.org/10.1016/j.apsusc.2014.05.071]
[16]
Giannozzi, P. Baroni, S. Bonini, N.Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.J.J. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Condens. Matter Phys., 2009, 21(39)395502
[http://dx.doi.org/10.1088/0953-8984/21/39/395502]
[17]
Wood, B.C.; Bhide, S.Y.; Dutta, D.; Kandagal, V.S.; Pathak, A.D.; Punnathanam, S.N.; Ayappa, K.G.; Narasimhan, S. Methane and carbon dioxide adsorption on edge-functionalized graphene: A comparative DFT study. J. Chem. Phys., 2012, 137(5)054702
[http://dx.doi.org/10.1063/1.4736568] [PMID: 22894366]
[18]
Anithaa, V.; Vijayakumar, S. Effect of side chain edge functionalization in pristine and defected graphene-DFT study. Comput. Theor. Chem., 2018, 1135, 34-47.
[http://dx.doi.org/10.1016/j.comptc.2018.05.006]
[19]
Dobrota, A.S.; Pašti, I.A.; Mentus, S.V.; Johansson, B.; Skorodumova, N.V. Functionalized graphene for sodium battery applications: The DFT insights. Electrochim. Acta, 2017, 250, 185-195.
[http://dx.doi.org/10.1016/j.electacta.2017.07.186]
[20]
Rad, A.S. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf. Sci., 2016, 645, 6-12.
[http://dx.doi.org/10.1016/j.susc.2015.10.036]
[21]
Liu, Z.; Zhang, Y.; Wang, B.; Cheng, H.; Cheng, X.; Huang, Z. DFT study on Al-doped defective graphene towards adsorption of elemental mercury. Appl. Surf. Sci., 2018, 427, 547-553.
[http://dx.doi.org/10.1016/j.apsusc.2017.07.293]
[22]
López-Corral, I.; Germán, E.a.; Juan, A.; Volpe, M.A.; Brizuela, G.P. DFT study of hydrogen adsorption on palladium decorated graphene. J. Phys. Chem. C, 2011, 115(10), 4315-4323.
[http://dx.doi.org/10.1021/jp110067w]
[23]
Zhang, H.P.; Luo, X.G.; Song, H.T.; Lin, X.Y.; Lu, X.; Tang, Y. DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene. Appl. Surf. Sci., 2014, 317, 511-516.
[http://dx.doi.org/10.1016/j.apsusc.2014.08.141]
[24]
Luo, H.; Cai, J.; Tao, X.; Tan, M.J.A.s. Adsorption and dissociation of H2S on Mo (10 0) surface by first-principles study. Appl. Surf., 2014, 292, 328-335.
[http://dx.doi.org/10.1016/j.apsusc.2013.11.140]
[25]
Luque, G.; Rojas, M.; Rivas, G.; Leiva, E. The origin of the catalysis of hydrogen peroxide reduction by functionalized graphene surfaces: a density functional theory study. Electrochim. Acta, 2010, 56(1), 523-530.
[http://dx.doi.org/10.1016/j.electacta.2010.09.016]
[26]
Esrafili, M.D.; Vessally, E. N2O + CO reaction over single Ga or Ge atom embedded graphene: A DFT study. Surf. Sci., 2018, 667, 105-111.
[http://dx.doi.org/10.1016/j.susc.2017.10.001]
[27]
Li, L.; Reich, S.; Robertson, J. Defect energies of graphite: density-functional calculations. Phys. Rev. B Condens. Matter Mater. Phys., 2005, 72(18)184109
[http://dx.doi.org/10.1103/PhysRevB.72.184109]
[28]
Susi, T.; Kaukonen, M.; Havu, P.; Ljungberg, M.P.; Ayala, P.; Kauppinen, E.I. Core level binding energies of functionalized and defective graphene. Beilstein J. Nanotechnol., 2014, 5(1), 121-132.
[http://dx.doi.org/10.3762/bjnano.5.12] [PMID: 24605278]
[29]
Mortensen, J.J.; Hansen, L.B.; Jacobsen, K.W. Phys. Rev. B Condens. Matter Mater. Phys., 2005, 71035109
[http://dx.doi.org/10.1103/PhysRevB.71.035109]
[30]
Guo, X.; Huang, S. Tuning nitrogen reduction reaction activity via controllable Fe magnetic moment: a computational study of single Fe atom supported on defective graphene. Electrochim. Acta, 2018, 284, 392-399.
[http://dx.doi.org/10.1016/j.electacta.2018.07.168]
[31]
Yang, S.; Li, S.; Tang, S.; Shen, D.; Dong, W.; Sun, W. Adsorption, intercalation and diffusion of Na on defective bilayer graphene: a computational study. Surf. Sci., 2017, 658, 31-37.
[http://dx.doi.org/10.1016/j.susc.2017.01.004]
[32]
Baei, M.T.; Peyghan, A.A.; Bagheri, Z. Electronic, energetic, and geometric properties of methylene-functionalized C60. J. Cluster Sci., 2013, 24(3), 669-678.
[http://dx.doi.org/10.1007/s10876-013-0563-6]
[33]
Peyghan, A.A.; Soleymanabadi, H.; Moradi, M. Structural and electronic properties of pyrrolidine-functionalized [60] fullerenes. J. Phys. Chem. Solids, 2013, 74(11), 1594-1598.
[http://dx.doi.org/10.1016/j.jpcs.2013.05.030]
[34]
Peyghan, A.A.; Noei, M. DFT study on [4+ 2] and [2+ 2] cycloadditions to [60] fullerene. Chem. Zvesti, 2014, 68(3), 409-416.
[http://dx.doi.org/10.2478/s11696-013-0448-z]
[35]
Beheshtian, J.; Peyghan, A.A.; Bagheri, Z. Functionalization of [60] fullerene with butadienes: A DFT study. Appl. Surf. Sci., 2012, 258(22), 8980-8984.
[http://dx.doi.org/10.1016/j.apsusc.2012.05.134]
[36]
Jena, N.K.; Sundararajan, M.; Ghosh, S.K. On the interaction of uranyl with functionalized fullerenes: A DFT investigation. RSC Advances, 2012, 2(7), 2994-2999.
[http://dx.doi.org/10.1039/c2ra01143c]
[37]
Zhang, Z.; Hao, Y.; Wang, L.; Dong, M.; Hou, W.; Han, P.; Liu, X.; Xu, B. DFT studies of ag-loading intrinsic and functionalized single-walled carbon nanotubes. Chin. J. Chem., 2012, 30(1), 121-126.
[http://dx.doi.org/10.1002/cjoc.201180449]
[38]
Pan, H.; Feng, Y.P.; Lin, J. Ab initio study of F-and Cl-functionalized single wall carbon nanotubes. J. Condens. Matter Phys., 2006, 18(22), 5175.
[http://dx.doi.org/10.1088/0953-8984/18/22/017]
[39]
Anafcheh, M.; Ghafouri, R. Silicon doping of defect sites in Stone–Wales defective carbon nanotubes: A density functional theory study. Superlattices Microstruct., 2013, 60, 1-9.
[http://dx.doi.org/10.1016/j.spmi.2013.04.014]
[40]
Ganji, M.; Bakhshandeh, A. Functionalized single-walled carbon nanotubes interacting with glycine amino acid: DFT study. Physica B, 2011, 406(23), 4453-4459.
[http://dx.doi.org/10.1016/j.physb.2011.09.006]
[41]
Beheshtian, J.; Peyghan, A.A.; Bagheri, Z. Carbon nanotube functionalization with carboxylic derivatives: a DFT study. J. Mol. Model., 2013, 19(1), 391-396.
[http://dx.doi.org/10.1007/s00894-012-1569-y] [PMID: 22936348]
[42]
Mehdizadeh, K.; Giahi, M. A DFT study on N-6-amino-hexylamide functionalized single-walled carbon nanotubes in interaction with silver ion in a gaseous environment. J. Nanostructure Chem., 2019, 9(1), 39-51.
[http://dx.doi.org/10.1007/s40097-019-0296-7]
[43]
Datta, A.; Kirca, M.; Fu, Y.; To, A.C. Surface structure and properties of functionalized nanodiamonds: A first-principles study. Nanotechnology, 2011, 22(6)065706
[http://dx.doi.org/10.1088/0957-4484/22/6/065706] [PMID: 21212485]
[44]
Brown, N.; Hod, O. Controlling the electronic properties of nanodiamonds via surface chemical functionalization: A DFT study. J. Phys. Chem. C, 2014, 118(10), 5530-5537.
[http://dx.doi.org/10.1021/jp409236t]
[45]
Abdelsalam, H.; Elhaes, H.; Ibrahim, M.A. Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations. Chem. Phys. Lett., 2018, 695, 138-148.
[http://dx.doi.org/10.1016/j.cplett.2018.02.015]
[46]
Quintana, M.; Spyrou, K.; Grzelczak, M.; Browne, W.R.; Rudolf, P.; Prato, M. Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano, 2010, 4(6), 3527-3533.
[http://dx.doi.org/10.1021/nn100883p] [PMID: 20503982]
[47]
Georgakilas, V.; Bourlinos, A.B.; Zboril, R.; Steriotis, T.A.; Dallas, P.; Stubos, A.K.; Trapalis, C. Organic functionalisation of graphenes. Chem. Commun. (Camb.), 2010, 46(10), 1766-1768.
[http://dx.doi.org/10.1039/b922081j] [PMID: 20177643]
[48]
Cao, Y.; Houk, K. Computational assessment of 1,3-dipolar cycloadditions to graphene. J. Mater. Chem., 2011, 21(5), 1503-1508.
[http://dx.doi.org/10.1039/C0JM02422H]
[49]
Osuna, S.; Houk, K.N. Cycloaddition reactions of butadiene and 1,3-dipoles to curved arenes, fullerenes, and nanotubes: Theoretical evaluation of the role of distortion energies on activation barriers. Chemistry, 2009, 15(47), 13219-13231.
[http://dx.doi.org/10.1002/chem.200901761] [PMID: 19876972]
[50]
Osuna, S.; Torrent-Sucarrat, M.; Sola, M.; Geerlings, P.; Ewels, C.P.; Lier, G.V. Reaction mechanisms for graphene and carbon nanotube fluorination. J. Phys. Chem. C, 2010, 114(8), 3340-3345.
[http://dx.doi.org/10.1021/jp908887n]
[51]
Tan, C.; Xu, S.; Tan, Z.; Sun, L.; Wu, J.; Li, T.; Peng, H. Exploitation of Bi2O2Se/graphene van der Waals heterojunction for creating efficient photodetectors and short‐channel field‐effect transistors. InfoMat, 2019, 1, 390-395.
[http://dx.doi.org/10.1002/inf2.12025]
[52]
Rümmeli, M.H.; Ayala, P.; Pichler, T. Carbon nanotubes and related structures: Production and formation; Wiley Online Library, 2010, pp. 1-22.
[53]
Lin, T.; Zhang, W-D.; Huang, J.; He, C. A DFT study of the amination of fullerenes and carbon nanotubes: reactivity and curvature. J. Phys. Chem. B, 2005, 109(28), 13755-13760.
[http://dx.doi.org/10.1021/jp051022g] [PMID: 16852723]
[54]
Gallo, M.; Favila, A.; Glossman-Mitnik, D. DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chem. Phys. Lett., 2007, 447(1-3), 105-109.
[http://dx.doi.org/10.1016/j.cplett.2007.08.098]
[55]
Georgakilas, V.; Tagmatarchis, N.; Pantarotto, D.; Bianco, A.; Briand, J-P.; Prato, M. Amino acid functionalization of water soluble carbon nanotubes. ChemComm., 2002, 24, 3050-3051.
[56]
Anafcheh, M.; Ghafouri, R. Mono-and multiply-functionalized fullerene derivatives through 1,3-dipolar cycloadditions: A DFT study. Physica E, 2014, 56, 351-356.
[http://dx.doi.org/10.1016/j.physe.2013.10.013]
[57]
Hazrati, M.K.; Hadipour, N.L. A DFT study on the functionalization of C60 fullerene with 1, 2-benzoquinone. Comput. Theor. Chem., 2016, 1098, 63-69.
[http://dx.doi.org/10.1016/j.comptc.2016.11.007]
[58]
Dyke, Ch.A.; Tour, J.M. Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A, 2004, 108(51), 11151-11159.
[http://dx.doi.org/10.1021/jp046274g]
[59]
Zhao, J-x.; Ding, Y-h. Chemical functionalization of single-walled carbon nanotubes (SWNTs) by aryl groups: A density functional theory study. J. Phys. Chem. C, 2008, 112(34), 13141-13149.
[http://dx.doi.org/10.1021/jp8030607]
[60]
Gebhardt, J.; Bosch, S.; Hof, F.; Hauke, F.; Hirsch, A.; Görling, A.J.J.M.C.C. Selective reduction of SWCNTs – concepts and insights. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(16), 3937-3947.
[http://dx.doi.org/10.1039/C5TC01407G]
[61]
Özgen, P.S.O.; Durmaz, H.; Parlak, C.; Alver, Ö.; Bağlayan, Ö. Non-covalent functionalization of single walled carbon nanotubes with pyrene pendant polyester: A DFT supported study. J. Mol. Struct., 2020, 1209127943
[http://dx.doi.org/10.1016/j.molstruc.2020.127943]
[62]
Goclon, J.; Kozlowska, M.; Rodziewicz, P. Noncovalent functionalization of single-walled carbon nanotubes by aromatic diisocyanate molecules: A computational study. Chem. Phys. Lett., 2014, 598, 10-16.
[http://dx.doi.org/10.1016/j.cplett.2014.02.042]
[63]
Delacou, C.; Jeon, I.; Otsuka, K.; Inoue, T.; Anisimov, A.; Fujii, T.; Kauppinen, E.I.; Maruyama, S.; Matsuo, Y. Investigation of charge interaction between fullerene derivatives and single‐walled carbon nanotubes. InfoMat., 2019, 1, 559-570.
[http://dx.doi.org/10.1002/inf2.12045]
[64]
Fitzgerald, D.R.; Doren, D.J. Functionalization of diamond (100) by cycloaddition of butadiene: First-principles theory. J. Am. Chem. Soc., 2000, 122(49), 12334-12339.
[http://dx.doi.org/10.1021/ja002023j]
[65]
Wang, G.T.; Bent, S.F.; Russell, J.N.; Butler, J.E.; D’Evelyn, M.P.J.J.A.C.S. Functionalization of diamond (100) by Diels− Alder chemistry. J. Am. Chem. Soc., 2000, 122(4), 744-745.
[http://dx.doi.org/10.1021/ja993024i]
[66]
Hossain, M.Z.; Aruga, T.; Takagi, N.; Tsuno, T.; Fujimori, N.; Ando, T.; Nishijima, M.J.J.J.A.P. Diels-Alder reaction on the clean diamond (100) 2× 1 surface. Jpn. J. Appl. Phys., 1999, 38(12B), L1496.
[http://dx.doi.org/10.1143/JJAP.38.L1496]
[67]
Hovis, J.; Coulter, S.; Hamers, R.; D’Evelyn, M.; Russell, J.; Butler, J.J.J.A.C.S. Cycloaddition chemistry at surfaces: Reaction of alkenes with the diamond (001)-2× 1 surface. J. Am. Chem. Soc., 2000, 122(24), 732-733.63.
[68]
Hurst Jr, M.O.; Hurst Sr, M.O.; Fortenberry, R.C. Boron-doped c24 fullerenes for alkyl functionalization or potential polymerization. ACS Omega, 2018, 3(1), 1001-1006.
[69]
Yashwanth, H.; Rondiya, S.R.; Dzade, N.Y.; Dhole, S.; Phase, D.; Hareesh, K.J.V. Enhanced photocatalytic activity of N, P, co-doped carbon quantum dots: An insight from experimental and computational approach. Elsevier, 2020, 180, 109589.
[70]
Kasi Matta, S.; Zhang, C.; O’Mullane, A.P.; Du, A. Density functional theory investigation of carbon dots as hole-transport material in perovskite solar cells. ChemPhysChem, 2018, 19(22), 3018-3023.
[http://dx.doi.org/10.1002/cphc.201800822] [PMID: 30252194]
[71]
Adjizian, J.-J.; Latham, C.; Öberg, S.; Briddon, P.; Heggie, M.J.C. DFT study of the chemistry of sulfur in graphite, including interactions with defects, edges and folds. Elsevier, 2013, 62, 256-262.
[72]
Hurst, M.O., Jr; Hurst, M.O., Sr; Fortenberry, R.C. Boron-Doped C24 fullerenes for Alkyl functionalization or potential polymerization. ACS Omega, 2018, 3(1), 991-996.
[http://dx.doi.org/10.1021/acsomega.7b01767] [PMID: 31457943]
[73]
Chełmecka, E.; Pasterny, K.; Kupka, T.; Stobiński, L. DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes. J. Mol. Model., 2012, 18(5), 2241-2246.
[http://dx.doi.org/10.1007/s00894-011-1242-x] [PMID: 21965032]
[74]
Schirowski, M.; Tyborski, C.; Maultzsch, J.; Hauke, F.; Hirsch, A.; Goclon, J. Reductive diazotation of carbon nanotubes: An experimental and theoretical selectivity study. Chem. Sci. (Camb.), 2018, 10(3), 706-717.
[http://dx.doi.org/10.1039/C8SC03737J] [PMID: 30746106]
[75]
Walker, B.; Hendy, S.; Tilley, R. In Density functional studies of surface functionalization in semiconductor quantum dots In: AIP Conference Proceedings AIP; , 2009; pp. 98-101.
[http://dx.doi.org/10.1063/1.3203257]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy