Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Systematic Review Article

Neutrophil/Lymphocyte, Platelet/Lymphocyte, and Monocyte/Lymphocyte Ratios in Mood Disorders

Author(s): Donatella Marazziti *, Samuele Torrigiani, Manuel G. Carbone, Federico Mucci , Walter Flamini , Tea Ivaldi and Liliana Dell'Osso

Volume 29, Issue 36, 2022

Published on: 11 January, 2022

Page: [5758 - 5781] Pages: 24

DOI: 10.2174/0929867328666210922160116

Abstract

Major depressive disorder (MDD) and bipolar disorders (BDs), the most severe types of mood disorders (MDs), are considered as among the most disabling illnesses worldwide. Several studies suggested that inflammatory neuroinflammation might be involved in the pathophysiology of MDs while reporting increasing data on the relationships between these processes and classical neurotransmitters, hypothalamus-pituitaryadrenal axis (HPA), and neurotrophic factors. The assessment of neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and monocyte/lymphocyte ratio (MLR) in peripheral blood represents a simple method to evaluate the inflammatory status. The aim of the present paper was to review the literature on the possible relationships between NLR, PLR, and MLR in MDs and to comment on their possible wider use in clinical research. Thirty-five studies were included in the present review. The majority of them had higher values of these parameters, particularly NLR values in patients with MDs when compared to healthy subjects. The increase would appear more robust in patients with BD during a manic episode, thus indicating that it could be considered as both state and trait markers. In addition, increased NLR and PLR levels seem to represent prognostic elements for the early discovery of post-stroke depression. The findings of the present review would indicate the need to carry out further studies in this field. In particular, NLR, PLR, and MLR seem to be promising tools to detect economically and easily the activation of the inflammatory system and to perhaps evaluate the etiology and course of MDs. Again, they could suggest some information to better understand the relationship between inflammatory and cardiovascular disease and MDs, and thus, to provide clinical implications in terms of management and treatment.

Keywords: Mood disorders, major depressive disorder, bipolar disorders, pathophysiology, inflammation, clinical biomarkers, neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, monocyte/lymphocyte ratio.

[1]
Benazzi, F. The continuum/spectrum concept of mood disorders: is mixed depression the basic link? Eur. Arch. Psychiatry Clin. Neurosci., 2006, 256(8), 512-515.
[http://dx.doi.org/10.1007/s00406-006-0672-4] [PMID: 16960654]
[2]
Rowland, T.A.; Marwaha, S. Epidemiology and risk factors for bipolar disorder. Ther. Adv. Psychopharmacol., 2018, 8(9), 251-269.
[http://dx.doi.org/10.1177/2045125318769235] [PMID: 30181867]
[3]
Maletic, V.; Raison, C. Integrated neurobiology of bipolar disorder. Front. Psychiatry, 2014, 5, 98.
[http://dx.doi.org/10.3389/fpsyt.2014.00098] [PMID: 25202283]
[4]
Ferrari, F.; Villa, R.F. The neurobiology of depression: an integrated overview from biological theories to clinical evidence. Mol. Neurobiol., 2017, 54(7), 4847-4865.
[http://dx.doi.org/10.1007/s12035-016-0032-y] [PMID: 27510505]
[5]
Fatemi, S.H. C. P. The Medical Basis of Psychiatry, 4th ed; Springer-Verlag: New York, USA, 2016.
[http://dx.doi.org/10.1007/978-1-4939-2528-5]
[6]
Dean, J.; Keshavan, M. The neurobiology of depression: An integrated view. Asian J. Psychiatr., 2017, 27, 101-111.
[http://dx.doi.org/10.1016/j.ajp.2017.01.025] [PMID: 28558878]
[7]
Rosenblat, J.D.; McIntyre, R.S. Bipolar disorder and immune dysfunction: epidemiological findings, proposed pathophysiology and clinical implications. Brain Sci., 2017, 7(11)E144
[http://dx.doi.org/10.3390/brainsci7110144] [PMID: 29084144]
[8]
Sayana, P.; Colpo, G.D.; Simões, L.R.; Giridharan, V.V.; Teixeira, A.L.; Quevedo, J.; Barichello, T. A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients. J. Psychiatr. Res., 2017, 92, 160-182.
[http://dx.doi.org/10.1016/j.jpsychires.2017.03.018] [PMID: 28458141]
[9]
Miller, A.H.; Raison, C.L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol., 2016, 16(1), 22-34.
[http://dx.doi.org/10.1038/nri.2015.5] [PMID: 26711676]
[10]
Haroon, E.; Raison, C.L.; Miller, A.H. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology, 2012, 37(1), 137-162.
[http://dx.doi.org/10.1038/npp.2011.205] [PMID: 21918508]
[11]
Benedetti, F.; Aggio, V.; Pratesi, M.L.; Greco, G.; Furlan, R. Neuroinflammation in bipolar depression. Front. Psychiatry, 2020, 11, 71.
[http://dx.doi.org/10.3389/fpsyt.2020.00071] [PMID: 32174850]
[12]
Bauer, M.E.; Teixeira, A.L. Inflammation in psychiatric disorders: what comes first? Ann. N. Y. Acad. Sci., 2019, 1437(1), 57-67.
[http://dx.doi.org/10.1111/nyas.13712] [PMID: 29752710]
[13]
Radtke, F.A.; Chapman, G.; Hall, J.; Syed, Y.A. Modulating neuroinflammation to treat neuropsychiatric disorders. BioMed Res. Int., 2017, 20175071786
[http://dx.doi.org/10.1155/2017/5071786] [PMID: 29181395]
[14]
Capuron, L.; Neurauter, G.; Musselman, D.L.; Lawson, D.H.; Nemeroff, C.B.; Fuchs, D.; Miller, A.H. Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol. Psychiatry, 2003, 54(9), 906-914.
[http://dx.doi.org/10.1016/S0006-3223(03)00173-2] [PMID: 14573318]
[15]
Marazziti, D.; Baroni, S.; Picchetti, M.; Piccinni, A.; Silvestri, S.; Dell’Osso, L. New developments on the serotonin hypothesis of depression: shunt of tryptophan. Riv. Psichiatr., 2013, 48(1), 23-34.
[PMID: 23438698]
[16]
Arango, V.; Underwood, M.D.; Mann, J.J. Serotonin brain circuits involved in major depression and suicide. Prog. Brain Res; , 2002, 136, pp. 443-453.
[http://dx.doi.org/10.1016/S0079-6123(02)36037-0] [PMID: 12143401]
[17]
Buhot, M.C.; Martin, S.; Segu, L. Role of serotonin in memory impairment. Ann. Med., 2000, 32(3), 210-221.
[http://dx.doi.org/10.3109/07853890008998828] [PMID: 10821328]
[18]
Dunn, A.J.; Swiergiel, A.H.; de Beaurepaire, R. Cytokines as mediators of depression: what can we learn from animal studies? Neurosci. Biobehav. Rev., 2005, 29(4-5), 891-909.
[http://dx.doi.org/10.1016/j.neubiorev.2005.03.023] [PMID: 15885777]
[19]
Rosenblat, J.D.; Cha, D.S.; Mansur, R.B.; McIntyre, R.S. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 53, 23-34.
[http://dx.doi.org/10.1016/j.pnpbp.2014.01.013] [PMID: 24468642]
[20]
Haroon, E.; Welle, J.R.; Woolwine, B.J.; Goldsmith, D.R.; Baer, W.; Patel, T.; Felger, J.C.; Miller, A.H. Associations among peripheral and central kynurenine pathway metabolites and inflammation in depression. Neuropsychopharmacology, 2020, 45(6), 998-1007.
[http://dx.doi.org/10.1038/s41386-020-0607-1] [PMID: 31940661]
[21]
Wang, J.; Dunn, A.J. Mouse interleukin-6 stimulates the HPA axis and increases brain tryptophan and serotonin metabolism. Neurochem. Int., 1998, 33(2), 143-154.
[http://dx.doi.org/10.1016/S0197-0186(98)00016-3] [PMID: 9761458]
[22]
Zhang, J.; Terreni, L.; De Simoni, M.G.; Dunn, A.J. Peripheral interleukin-6 administration increases extracellular concentrations of serotonin and the evoked release of serotonin in the rat striatum. Neurochem. Int., 2001, 38(4), 303-308.
[http://dx.doi.org/10.1016/S0197-0186(00)00099-1] [PMID: 11137624]
[23]
Catena-Dell’Osso, M.; Marazziti, D.; Rotella, F.; Bellantuono, C. Emerging targets for the pharmacological treatment of depression: focus on melatonergic system. Curr. Med. Chem., 2012, 19(3), 428-437.
[http://dx.doi.org/10.2174/092986712803414277] [PMID: 22335516]
[24]
Catena-Dell’Osso, M.; Fagiolini, A.; Marazziti, D.; Baroni, S.; Bellantuono, C. Non-monoaminergic targets for the development of antidepressants: focus on neuropeptides. Mini Rev. Med. Chem., 2013, 13(1), 2-10.
[http://dx.doi.org/10.2174/138955713804484758] [PMID: 22876945]
[25]
Pariante, C.M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol., 2017, 27(6), 554-559.
[http://dx.doi.org/10.1016/j.euroneuro.2017.04.001] [PMID: 28479211]
[26]
Wohleb, E.S.; Franklin, T.; Iwata, M.; Duman, R.S. Integrating neuroimmune systems in the neurobiology of depression. Nat. Rev. Neurosci., 2016, 17(8), 497-511.
[http://dx.doi.org/10.1038/nrn.2016.69] [PMID: 27277867]
[27]
Lurie, D.I. An Integrative Approach to Neuroinflammation in Psychiatric disorders and Neuropathic Pain. J. Exp. Neurosci., 2018, 121179069518793639
[http://dx.doi.org/10.1177/1179069518793639] [PMID: 30127639]
[28]
Ekdahl, C.T. Microglial activation - tuning and pruning adult neurogenesis. Front. Pharmacol., 2012, 3, 41.
[http://dx.doi.org/10.3389/fphar.2012.00041] [PMID: 22408626]
[29]
Harry, G.J.; Kraft, A.D. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology, 2012, 33(2), 191-206.
[http://dx.doi.org/10.1016/j.neuro.2012.01.012] [PMID: 22322212]
[30]
Frick, L.R.; Williams, K.; Pittenger, C. Microglial dysregulation in psychiatric disease. Clin. Dev. Immunol., 2013, 2013608654
[http://dx.doi.org/10.1155/2013/608654] [PMID: 23690824]
[31]
Stertz, L.; Magalhães, P.V.; Kapczinski, F. Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Curr. Opin. Psychiatry, 2013, 26(1), 19-26.
[http://dx.doi.org/10.1097/YCO.0b013e32835aa4b4] [PMID: 23196997]
[32]
Kraft, A.D.; Harry, G.J. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int. J. Environ. Res. Public Health, 2011, 8(7), 2980-3018.
[http://dx.doi.org/10.3390/ijerph8072980] [PMID: 21845170]
[33]
Jin, Y.; Sun, L.H.; Yang, W.; Cui, R.J.; Xu, S.B. The role of BDNF in the neuroimmune axis regulation of mood disorders. Front. Neurol., 2019, 10, 515.
[http://dx.doi.org/10.3389/fneur.2019.00515] [PMID: 31231295]
[34]
Erb, L.; Cao, C.; Ajit, D.; Weisman, G.A. P2Y receptors in Alzheimer’s disease. Biol. Cell, 2015, 107(1), 1-21.
[http://dx.doi.org/10.1111/boc.201400043] [PMID: 25179475]
[35]
Ansoleaga, B.; Jové, M.; Schlüter, A.; Garcia-Esparcia, P.; Moreno, J.; Pujol, A.; Pamplona, R.; Portero-Otín, M.; Ferrer, I. Deregulation of purine metabolism in Alzheimer’s disease. Neurobiol. Aging, 2015, 36(1), 68-80.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.08.004] [PMID: 25311278]
[36]
Burnstock, G. P2X ion channel receptors and inflammation. Purinergic Signal., 2016, 12(1), 59-67.
[http://dx.doi.org/10.1007/s11302-015-9493-0] [PMID: 26739702]
[37]
Kellett, K.A.; Hooper, N.M. The role of tissue non-specific alkaline phosphatase (TNAP) in neurodegenerative diseases: alzheimer’s disease in the Focus. Subcell. Biochem., 2015, 76, 363-374.
[http://dx.doi.org/10.1007/978-94-017-7197-9_17] [PMID: 26219720]
[38]
Wardas, J. Neuroprotective role of adenosine in the CNS. Pol. J. Pharmacol., 2002, 54(4), 313-326.
[PMID: 12523485]
[39]
Capuron, L.; Gumnick, J.F.; Musselman, D.L.; Lawson, D.H.; Reemsnyder, A.; Nemeroff, C.B.; Miller, A.H. Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology, 2002, 26(5), 643-652.
[http://dx.doi.org/10.1016/S0893-133X(01)00407-9] [PMID: 11927189]
[40]
Bonaccorso, S.; Marino, V.; Biondi, M.; Grimaldi, F.; Ippoliti, F.; Maes, M. Depression induced by treatment with interferon-alpha in patients affected by hepatitis C virus. J. Affect. Disord., 2002, 72(3), 237-241.
[http://dx.doi.org/10.1016/S0165-0327(02)00264-1] [PMID: 12450640]
[41]
Bonaccorso, S.; Marino, V.; Puzella, A.; Pasquini, M.; Biondi, M.; Artini, M.; Almerighi, C.; Verkerk, R.; Meltzer, H.; Maes, M. Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J. Clin. Psychopharmacol., 2002, 22(1), 86-90.
[http://dx.doi.org/10.1097/00004714-200202000-00014] [PMID: 11799348]
[42]
Moieni, M.; Irwin, M.R.; Jevtic, I.; Olmstead, R.; Breen, E.C.; Eisenberger, N.I. Sex differences in depressive and socioemotional responses to an inflammatory challenge: implications for sex differences in depression. Neuropsychopharmacology, 2015, 40(7), 1709-1716.
[http://dx.doi.org/10.1038/npp.2015.17] [PMID: 25598426]
[43]
Eisenberger, N.I.; Inagaki, T.K.; Rameson, L.T.; Mashal, N.M.; Irwin, M.R. An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage, 2009, 47(3), 881-890.
[http://dx.doi.org/10.1016/j.neuroimage.2009.04.040] [PMID: 19376240]
[44]
Muscatell, K.A.; Moieni, M.; Inagaki, T.K.; Dutcher, J.M.; Jevtic, I.; Breen, E.C.; Irwin, M.R.; Eisenberger, N.I. Exposure to an inflammatory challenge enhances neural sensitivity to negative and positive social feedback. Brain Behav. Immun., 2016, 57, 21-29.
[http://dx.doi.org/10.1016/j.bbi.2016.03.022] [PMID: 27032568]
[45]
Mohammadinejad, P.; Arya, P.; Esfandbod, M.; Kaviani, A.; Najafi, M.; Kashani, L.; Zeinoddini, A.; Emami, S.A.; Akhondzadeh, S. Celecoxib versus diclofenac in mild to moderate depression management among breast cancer patients: a double-blind, placebo-controlled, randomized trial. Ann. Pharmacother., 2015, 49(9), 953-961.
[http://dx.doi.org/10.1177/1060028015592215] [PMID: 26139640]
[46]
Müller, N. COX-2 inhibitors, aspirin, and other potential anti-inflammatory treatments for psychiatric disorders. Front. Psychiatry, 2019, 10, 375.
[http://dx.doi.org/10.3389/fpsyt.2019.00375] [PMID: 31214060]
[47]
Margaretten, M.; Julian, L.; Katz, P.; Yelin, E. Depression in patients with rheumatoid arthritis: description, causes and mechanisms. Int. J. Clin. Rheumatol., 2011, 6(6), 617-623.
[http://dx.doi.org/10.2217/ijr.11.62] [PMID: 22211138]
[48]
Tyring, S.; Gottlieb, A.; Papp, K.; Gordon, K.; Leonardi, C.; Wang, A.; Lalla, D.; Woolley, M.; Jahreis, A.; Zitnik, R.; Cella, D.; Krishnan, R. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet, 2006, 367(9504), 29-35.
[http://dx.doi.org/10.1016/S0140-6736(05)67763-X] [PMID: 16399150]
[49]
Munkholm, K.; Braüner, J.V.; Kessing, L.V.; Vinberg, M. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J. Psychiatr. Res., 2013, 47(9), 1119-1133.
[http://dx.doi.org/10.1016/j.jpsychires.2013.05.018] [PMID: 23768870]
[50]
O’Brien, S.M.; Scully, P.; Fitzgerald, P.; Scott, L.V.; Dinan, T.G. Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J. Psychiatr. Res., 2007, 41(3-4), 326-331.
[http://dx.doi.org/10.1016/j.jpsychires.2006.05.013] [PMID: 16870211]
[51]
Brietzke, E.; Kauer-Sant’Anna, M.; Teixeira, A.L.; Kapczinski, F. Abnormalities in serum chemokine levels in euthymic patients with bipolar disorder. Brain Behav. Immun., 2009, 23(8), 1079-1082.
[http://dx.doi.org/10.1016/j.bbi.2009.04.008] [PMID: 19406226]
[52]
Barbosa, I.G.; Bauer, M.E.; Machado-Vieira, R.; Teixeira, A.L. Cytokines in bipolar disorder: paving the way for neuroprogression. Neural Plast., 2014, 2014360481
[http://dx.doi.org/10.1155/2014/360481] [PMID: 25313338]
[53]
Kim, Y.K.; Jung, H.G.; Myint, A.M.; Kim, H.; Park, S.H. Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J. Affect. Disord., 2007, 104(1-3), 91-95.
[http://dx.doi.org/10.1016/j.jad.2007.02.018] [PMID: 17434599]
[54]
Remlinger-Molenda, A.; Wójciak, P.; Michalak, M.; Rybakowski, J. Activity of selected cytokines in bipolar patients during manic and depressive episodes. Psychiatr. Pol., 2012, 46(4), 599-611.
[PMID: 23214162]
[55]
Simon, N.M.; McNamara, K.; Chow, C.W.; Maser, R.S.; Papakostas, G.I.; Pollack, M.H.; Nierenberg, A.A.; Fava, M.; Wong, K.K. A detailed examination of cytokine abnormalities in Major Depressive Disorder. Eur. Neuropsychopharmacol., 2008, 18(3), 230-233.
[http://dx.doi.org/10.1016/j.euroneuro.2007.06.004] [PMID: 17681762]
[56]
Liu, Y.; Ho, R.C.; Mak, A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J. Affect. Disord., 2012, 139(3), 230-239.
[http://dx.doi.org/10.1016/j.jad.2011.08.003] [PMID: 21872339]
[57]
Cunha, A.B.; Andreazza, A.C.; Gomes, F.A.; Frey, B.N.; da Silveira, L.E.; Gonçalves, C.A.; Kapczinski, F. Investigation of serum high-sensitive C-reactive protein levels across all mood states in bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci., 2008, 258(5), 300-304.
[http://dx.doi.org/10.1007/s00406-007-0797-0] [PMID: 18297417]
[58]
Mazza, M. G.; Lucchi, S.; Tringali, A. G. M.; Rossetti, A.; Botti, E. R.; Clerici, M. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: A metaanalysis. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 84(Pt A), 229-236.
[59]
Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J. Clin. Epidemiol., 2009, 62(10), e1-e34.
[http://dx.doi.org/10.1016/j.jclinepi.2009.06.006] [PMID: 19631507]
[60]
Zahorec, R. Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek Listy, 2001, 102(1), 5-14.
[PMID: 11723675]
[61]
Zheng, J.; Cai, J.; Li, H.; Zeng, K.; He, L.; Fu, H.; Zhang, J.; Chen, L.; Yao, J.; Zhang, Y.; Yang, Y. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio as prognostic predictors for hepatocellular carcinoma patients with various treatments: a meta-analysis and systematic review. Cell. Physiol. Biochem., 2017, 44(3), 967-981.
[http://dx.doi.org/10.1159/000485396] [PMID: 29179180]
[62]
Szkandera, J.; Absenger, G.; Liegl-Atzwanger, B.; Pichler, M.; Stotz, M.; Samonigg, H.; Glehr, M.; Zacherl, M.; Stojakovic, T.; Gerger, A.; Leithner, A. Elevated preoperative neutrophil/lymphocyte ratio is associated with poor prognosis in soft-tissue sarcoma patients. Br. J. Cancer, 2013, 108(8), 1677-1683.
[http://dx.doi.org/10.1038/bjc.2013.135] [PMID: 23558897]
[63]
Duan, J.; Pan, L.; Yang, M. Preoperative elevated neutrophil-to-lymphocyte ratio (NLR) and derived NLR are associated with poor prognosis in patients with breast cancer: A meta-analysis. Medicine (Baltimore), 2018, 97(49)e13340
[http://dx.doi.org/10.1097/MD.0000000000013340] [PMID: 30544398]
[64]
Wang, X.; Lou, Z.; Zhang, L.; Liu, Z.; Zhang, J.; Gao, J.; Ji, Y. Evaluation of the prognostic value of derived neutrophil/lymphocyte ratio in early stage non-small cell lung cancer patients treated with stereotactic ablative radiotherapy. Medicine (Baltimore), 2020, 99(42)e22603
[http://dx.doi.org/10.1097/MD.0000000000022603] [PMID: 33080694]
[65]
Wang, Y.; Fuentes, H.E.; Attar, B.M.; Jaiswal, P.; Demetria, M. Evaluation of the prognostic value of neutrophil to lymphocyte ratio in patients with hypertriglyceridemia-induced acute pancreatitis. Pancreatology, 2017, 17(6), 893-897.
[http://dx.doi.org/10.1016/j.pan.2017.10.001] [PMID: 29030078]
[66]
Azab, B.; Jaglall, N.; Atallah, J.P.; Lamet, A.; Raja-Surya, V.; Farah, B.; Lesser, M.; Widmann, W.D. Neutrophil-lymphocyte ratio as a predictor of adverse outcomes of acute pancreatitis. Pancreatology, 2011, 11(4), 445-452.
[http://dx.doi.org/10.1159/000331494] [PMID: 21968329]
[67]
Afari, M.E.; Bhat, T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: an update. Expert Rev. Cardiovasc. Ther., 2016, 14(5), 573-577.
[http://dx.doi.org/10.1586/14779072.2016.1154788] [PMID: 26878164]
[68]
Wang, S.; Liu, H.; Wang, Q.; Cheng, Z.; Sun, S.; Zhang, Y.; Sun, X.; Wang, Z.; Ren, L. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio are effective predictors of prognosis in patients with acute mesenteric arterial embolism and thrombosis. Ann. Vasc. Surg., 2018, 49, 115-122.
[http://dx.doi.org/10.1016/j.avsg.2018.01.059] [PMID: 29428537]
[69]
Tunç, A. Early predictors of functional disability in Guillain-Barré Syndrome. Acta Neurol. Belg., 2019, 119(4), 555-559.
[http://dx.doi.org/10.1007/s13760-019-01133-3] [PMID: 30963477]
[70]
Patel, V.H.; Vendittelli, P.; Garg, R.; Szpunar, S.; LaLonde, T.; Lee, J.; Rosman, H.; Mehta, R.H.; Othman, H. Neutrophil-lymphocyte ratio: A prognostic tool in patients with in-hospital cardiac arrest. World J. Crit. Care Med., 2019, 8(2), 9-17.
[http://dx.doi.org/10.5492/wjccm.v8.i2.9] [PMID: 30815378]
[71]
Ergelen, M.; Uyarel, H.; Altay, S.; Kul, Ş.; Ayhan, E.; Isık, T.; Kemaloğlu, T.; Gül, M.; Sönmez, O.; Erdoğan, E.; Turfan, M. Predictive value of elevated neutrophil to lymphocyte ratio in patients undergoing primary angioplasty for ST-segment elevation myocardial infarction. Clin. Appl. Thromb. Hemost., 2014, 20(4), 427-432.
[http://dx.doi.org/10.1177/1076029612473516] [PMID: 23314674]
[72]
Bhat, T.M.; Afari, M.E.; Garcia, L.A. Neutrophil lymphocyte ratio in peripheral vascular disease: a review. Expert Rev. Cardiovasc. Ther., 2016, 14(7), 871-875.
[http://dx.doi.org/10.1586/14779072.2016.1165091] [PMID: 26967241]
[73]
Azab, B.; Zaher, M.; Weiserbs, K.F.; Torbey, E.; Lacossiere, K.; Gaddam, S.; Gobunsuy, R.; Jadonath, S.; Baldari, D.; McCord, D.; Lafferty, J. Usefulness of neutrophil to lymphocyte ratio in predicting short- and long-term mortality after non-ST-elevation myocardial infarction. Am. J. Cardiol., 2010, 106(4), 470-476.
[http://dx.doi.org/10.1016/j.amjcard.2010.03.062] [PMID: 20691303]
[74]
Cai, Y.J.; Dong, J.J.; Dong, J.Z.; Yang, N.B.; Song, M.; Wang, Y.Q.; Chen, Y.P.; Lin, Z.; Shi, K.Q. Neutrophil-lymphocyte ratio predicts hospital-acquired bacterial infections in decompensated cirrhosis. Clin. Chim. Acta, 2017, 469, 201-207.
[http://dx.doi.org/10.1016/j.cca.2017.04.011] [PMID: 28412195]
[75]
Biyik, M.; Ucar, R.; Solak, Y.; Gungor, G.; Polat, I.; Gaipov, A.; Cakir, O.O.; Ataseven, H.; Demir, A.; Turk, S.; Polat, H. Blood neutrophil-to-lymphocyte ratio independently predicts survival in patients with liver cirrhosis. Eur. J. Gastroenterol. Hepatol., 2013, 25(4), 435-441.
[http://dx.doi.org/10.1097/MEG.0b013e32835c2af3] [PMID: 23249602]
[76]
Ahn, S.S.; Jung, S.M.; Song, J.J.; Park, Y.B.; Lee, S.W. Neutrophil to lymphocyte ratio at diagnosis can estimate vasculitis activity and poor prognosis in patients with ANCA-associated vasculitis: a retrospective study. BMC Nephrol., 2018, 19(1), 187.
[http://dx.doi.org/10.1186/s12882-018-0992-4] [PMID: 30064369]
[77]
Kuyumcu, M.E.; Yesil, Y.; Oztürk, Z.A.; Kizilarslanoğlu, C.; Etgül, S.; Halil, M.; Ulger, Z.; Cankurtaran, M.; Arıoğul, S. The evaluation of neutrophil-lymphocyte ratio in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2012, 34(2), 69-74.
[http://dx.doi.org/10.1159/000341583] [PMID: 22922667]
[78]
Furutate, R.; Ishii, T.; Motegi, T.; Hattori, K.; Kusunoki, Y.; Gemma, A.; Kida, K. The neutrophil to lymphocyte ratio is related to disease severity and exacerbation in patients with chronic obstructive pulmonary disease. Intern. Med., 2016, 55(3), 223-229.
[http://dx.doi.org/10.2169/internalmedicine.55.5772] [PMID: 26831014]
[79]
Ye, Z.; Ai, X.; Liao, Z.; You, C.; Cheng, Y. The prognostic values of neutrophil to lymphocyte ratio for outcomes in chronic obstructive pulmonary disease. Medicine (Baltimore), 2019, 98(28)e16371
[http://dx.doi.org/10.1097/MD.0000000000016371] [PMID: 31305434]
[80]
Mayadas, T.N.; Cullere, X.; Lowell, C.A. The multifaceted functions of neutrophils. Annu. Rev. Pathol., 2014, 9, 181-218.
[http://dx.doi.org/10.1146/annurev-pathol-020712-164023] [PMID: 24050624]
[81]
Ferroni, P.; Riondino, S.; Formica, V.; Cereda, V.; Tosetto, L.; La Farina, F.; Valente, M.G.; Vergati, M.; Guadagni, F.; Roselli, M. Venous thromboembolism risk prediction in ambulatory cancer patients: clinical significance of neutrophil/lymphocyte ratio and platelet/lymphocyte ratio. Int. J. Cancer, 2015, 136(5), 1234-1240.
[http://dx.doi.org/10.1002/ijc.29076] [PMID: 25042739]
[82]
Balta, S.; Ozturk, C. The platelet-lymphocyte ratio: A simple, inexpensive and rapid prognostic marker for cardiovascular events. Platelets, 2015, 26(7), 680-681.
[http://dx.doi.org/10.3109/09537104.2014.979340] [PMID: 25549287]
[83]
Zhang, M.; Huang, X.Z.; Song, Y.X.; Gao, P.; Sun, J.X.; Wang, Z.N. High platelet-to-lymphocyte ratio predicts poor prognosis and clinicopathological characteristics in patients with breast cancer: a meta-analysis. BioMed Res. Int., 2017, 20179503025
[http://dx.doi.org/10.1155/2017/9503025] [PMID: 29082257]
[84]
Wang, Z.; Peng, S.; Wang, A.; Xie, H.; Guo, L.; Jiang, N.; Niu, Y. Platelet-lymphocyte ratio acts as an independent predictor of prognosis in patients with renal cell carcinoma. Clin. Chim. Acta, 2018, 480, 166-172.
[http://dx.doi.org/10.1016/j.cca.2018.02.014] [PMID: 29462592]
[85]
Yu, J.; Ding, Z.; Yang, Y.; Liu, S. Increased platelet-to-lymphocytes ratio is associated with poor long-term prognosis in patients with pancreatic cancer after surgery. Medicine (Baltimore), 2018, 97(25)e11002
[http://dx.doi.org/10.1097/MD.0000000000011002] [PMID: 29923983]
[86]
Zafar, M.U.; Paz-Yepes, M.; Shimbo, D.; Vilahur, G.; Burg, M.M.; Chaplin, W.; Fuster, V.; Davidson, K.W.; Badimon, J.J. Anxiety is a better predictor of platelet reactivity in coronary artery disease patients than depression. Eur. Heart J., 2010, 31(13), 1573-1582.
[http://dx.doi.org/10.1093/eurheartj/ehp602] [PMID: 20097703]
[87]
Gautam, D.; Tiwari, A.; Nath Chaurasia, R.; Dash, D. Glutamate induces synthesis of thrombogenic peptides and extracellular vesicle release from human platelets. Sci. Rep., 2019, 9(1), 8346.
[http://dx.doi.org/10.1038/s41598-019-44734-x] [PMID: 31171802]
[88]
Machado-Vieira, R.; Manji, H.K.; Zarate, C.A. The role of the tripartite glutamatergic synapse in the pathophysiology and therapeutics of mood disorders. Neuroscientist, 2009, 15(5), 525-539.
[http://dx.doi.org/10.1177/1073858409336093] [PMID: 19471044]
[89]
Berk, M.; Plein, H.; Belsham, B. The specificity of platelet glutamate receptor supersensitivity in psychotic disorders. Life Sci., 2000, 66(25), 2427-2432.
[http://dx.doi.org/10.1016/S0024-3205(00)80002-8] [PMID: 10894085]
[90]
Cananzi, F.C.M.; Minerva, E.M.; Samà, L.; Ruspi, L.; Sicoli, F.; Conti, L.; Fumagalli Romario, U.; Quagliuolo, V.L. Preoperative monocyte-to-lymphocyte ratio predicts recurrence in gastrointestinal stromal tumors. J. Surg. Oncol., 2019, 119(1), 12-20.
[http://dx.doi.org/10.1002/jso.25290] [PMID: 30426498]
[91]
Chen, H.; Li, M.; Liu, L.; Dang, X.; Zhu, D.; Tian, G. Monocyte/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients with non-ST-elevation myocardial infarction. Medicine (Baltimore), 2019, 98(26)e16267
[http://dx.doi.org/10.1097/MD.0000000000016267] [PMID: 31261596]
[92]
Beumer, W.; Gibney, S.M.; Drexhage, R.C.; Pont-Lezica, L.; Doorduin, J.; Klein, H.C.; Steiner, J.; Connor, T.J.; Harkin, A.; Versnel, M.A.; Drexhage, H.A. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J. Leukoc. Biol., 2012, 92(5), 959-975.
[http://dx.doi.org/10.1189/jlb.0212100] [PMID: 22875882]
[93]
Nimmerjahn, A.; Kirchhoff, F.; Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 2005, 308(5726), 1314-1318.
[http://dx.doi.org/10.1126/science.1110647] [PMID: 15831717]
[94]
Çakır, U.; Tuman, T.C.; Yıldırım, O. Increased neutrophil/lymphoctye ratio in patients with bipolar disorder: a preliminary study. Psychiatr. Danub., 2015, 27(2), 180-184.
[PMID: 26057314]
[95]
Kalelioglu, T.; Akkus, M.; Karamustafalioglu, N.; Genc, A.; Genc, E.S.; Cansiz, A.; Emul, M. Neutrophil-lymphocyte and platelet-lymphocyte ratios as inflammation markers for bipolar disorder. Psychiatry Res., 2015, 228(3), 925-927.
[http://dx.doi.org/10.1016/j.psychres.2015.05.110] [PMID: 26154814]
[96]
Sağlam Aykut, D.; Civil Arslan, F.; Özkorumak Karagüzel, E.; Aral, G.; Karakullukçu, S. The relationship between neutrophil-lymphocyte, platelet-lymphocyte ratio and cognitive functions in bipolar disorder. Nord. J. Psychiatry, 2018, 72(2), 119-123.
[http://dx.doi.org/10.1080/08039488.2017.1397192] [PMID: 29108448]
[97]
Mert, D.G.; Terzi, H. Mean platelet volume in bipolar disorder: the search for an ideal biomarker. Neuropsychiatr. Dis. Treat., 2016, 12, 2057-2062.
[http://dx.doi.org/10.2147/NDT.S112374] [PMID: 27578978]
[98]
Mayda, H.; Ahsen, A.; Bağcioğlu, E.; Öztürk, A.; Bahçeci, B.; Soyuçok, E.; Başpinar, E.; Ulu, M.S. Effect of increased neutrophil-to-lymphocyte ratio (NLR) and decreased mean platelet volume (MPV) values on inflammation in acute mania. Noro Psikiyatri Arsivi, 2016, 53(4), 317-320.
[http://dx.doi.org/10.5152/npa.2016.10272] [PMID: 28360805]
[99]
Özdin, S.; Sarisoy, G.; Böke, Ö. A comparison of the neutrophil-lymphocyte, platelet-lymphocyte and monocyte-lymphocyte ratios in schizophrenia and bipolar disorder patients - a retrospective file review. Nord. J. Psychiatry, 2017, 71(7), 509-512.
[http://dx.doi.org/10.1080/08039488.2017.1340517] [PMID: 28644753]
[100]
Inanli, I.; Aydin, M.; Çaliskan, A.M.; Eren, I. Neutrophil/lymphocyte ratio, monocyte/lymphocyte ratio, and mean platelet volume as systemic inflammatory markers in different states of bipolar disorder. Nord. J. Psychiatry, 2019, 73(6), 372-379.
[http://dx.doi.org/10.1080/08039488.2019.1640789] [PMID: 31304832]
[101]
Ozdin, S.; Usta, M.B. A comparison of inflammatory markers in manic and euthymic states of bipolar disorder. Nord. J. Psychiatry, 2020, 1-6.
[PMID: 32804583]
[102]
Kirlioglu, S.S.; Balcioglu, Y.H.; Kalelioglu, T.; Erten, E.; Karamustafalioglu, N. Comparison of the complete blood count-derived inflammatory markers in bipolar patients with manic and mixed episodes. Bratisl. Lek Listy, 2019, 120(3), 195-199.
[http://dx.doi.org/10.4149/BLL_2019_051] [PMID: 31023037]
[103]
Melo, M.C.A.; Garcia, R.F.; de Araújo, C.F.C.; Abreu, R.L.C.; de Bruin, P.F.C.; de Bruin, V.M.S. Clinical significance of neutrophil-lymphocyte and platelet-lymphocyte ratios in bipolar patients: An 18-month prospective study. Psychiatry Res., 2019, 271, 8-14.
[http://dx.doi.org/10.1016/j.psychres.2018.10.077] [PMID: 30448449]
[104]
Mazza, M.G.; Tringali, A.G.M.; Rossetti, A.; Botti, R.E.; Clerici, M. Cross-sectional study of neutrophil-lymphocyte, platelet-lymphocyte and monocyte-lymphocyte ratios in mood disorders. Gen. Hosp. Psychiatry, 2019, 58, 7-12.
[http://dx.doi.org/10.1016/j.genhosppsych.2019.02.003] [PMID: 30818102]
[105]
Demir, S.; Atli, A.; Bulut, M.; İbiloğlu, A.O.; Güneş, M.; Kaya, M.C.; Demirpençe, Ö.; Sır, A. Neutrophil-lymphocyte ratio in patients with major depressive disorder undergoing no pharmacological therapy. Neuropsychiatr. Dis. Treat., 2015, 11, 2253-2258.
[PMID: 26347335]
[106]
Demircan, F.; Gözel, N.; Kılınç, F.; Ulu, R.; Atmaca, M. The impact of red blood cell distribution width and neutrophil/lymphocyte ratio on the diagnosis of major depressive disorder. Neurol. Ther., 2016, 5(1), 27-33.
[http://dx.doi.org/10.1007/s40120-015-0039-8] [PMID: 26686339]
[107]
Cai, L.; Xu, L.; Wei, L.; Chen, W. Relationship of mean platelet volume to MDD: a retrospective study. Shanghai Jingshen Yixue, 2017, 29(1), 21-29.
[PMID: 28769542]
[108]
Euteneuer, F.; Dannehl, K.; Del Rey, A.; Engler, H.; Schedlowski, M.; Rief, W. Peripheral immune alterations in major depression: the role of subtypes and pathogenetic characteristics. Front. Psychiatry, 2017, 8, 250.
[http://dx.doi.org/10.3389/fpsyt.2017.00250] [PMID: 29218020]
[109]
Meng, G.; Wang, L.; Wang, X.; Chi, V.T.Q.; Zhang, Q.; Liu, L.; Yao, Z.; Wu, H.; Bao, X.; Gu, Y.; Zhang, S.; Sun, S.; Zhou, M.; Jia, Q.; Song, K.; Sun, Z.; Wu, Y.; Niu, K. Association between neutrophil to lymphocyte ratio and depressive symptoms among Chinese adults: A population study from the TCLSIH cohort study. Psychoneuroendocrinology, 2019, 103, 76-82.
[http://dx.doi.org/10.1016/j.psyneuen.2019.01.007] [PMID: 30658341]
[110]
Aydin Sunbul, E.; Sunbul, M.; Yanartas, O.; Cengiz, F.; Bozbay, M.; Sari, I.; Gulec, H. Increased neutrophil/lymphocyte ratio in patients with depression is correlated with the severity of depression and cardiovascular risk factors. Psychiatry Investig., 2016, 13(1), 121-126.
[http://dx.doi.org/10.4306/pi.2016.13.1.121] [PMID: 26766954]
[111]
Adhikari, A.; Dikshit, R.; Karia, S.; Sonavane, S.; Shah, N.; De Sousa, A. Neutrophil-lymphocyte ratio and c-reactive protein level in patients with major depressive disorder before and after pharmacotherapy. East Asian Arch. Psychiatry, 2018, 28(2), 53-58.
[PMID: 29921741]
[112]
Kayhan, F.; Gündüz, Ş.; Ersoy, S.A.; Kandeğer, A.; Annagür, B.B. Relationships of neutrophil-lymphocyte and platelet-lymphocyte ratios with the severity of major depression. Psychiatry Res., 2017, 247, 332-335.
[http://dx.doi.org/10.1016/j.psychres.2016.11.016] [PMID: 27978453]
[113]
Brinn, A.; Stone, J. Neutrophil-lymphocyte ratio across psychiatric diagnoses: a cross-sectional study using electronic health records. BMJ Open, 2020, 10(7)e036859
[http://dx.doi.org/10.1136/bmjopen-2020-036859] [PMID: 32690528]
[114]
Özyurt, G.; Binici, N.C. Increased neutrophil-lymphocyte ratios in depressive adolescents is correlated with the severity of depression. Psychiatry Res., 2018, 268, 426-431.
[http://dx.doi.org/10.1016/j.psychres.2018.08.007] [PMID: 30130709]
[115]
Cevher Binici, N.; Alşen Güney, S.; İnal Emiroğlu, F.N. Neutrophil-lymphocyte and platelet-lymphocyte ratios among adolescents with bipolar disorder: A preliminary study. Psychiatry Res., 2018, 269, 178-182.
[http://dx.doi.org/10.1016/j.psychres.2018.08.065] [PMID: 30149275]
[116]
Ceylan, M.F.; Tural Hesapcioglu, S.; Kasak, M.; Senat, A.; Erel, O. Increased prolidase activity and high blood monocyte counts in pediatric bipolar disorder. Psychiatry Res., 2019, 271, 360-364.
[http://dx.doi.org/10.1016/j.psychres.2018.11.066] [PMID: 30529319]
[117]
Arabska, J.; Łucka, A.; Magierski, R.; Sobów, T.; Wysokiński, A. Neutrophil-lymphocyte ratio is increased in elderly patients with first episode depression, but not in recurrent depression. Psychiatry Res., 2018, 263, 35-40.
[http://dx.doi.org/10.1016/j.psychres.2018.02.043] [PMID: 29490259]
[118]
Liang, M.; Du, B.; Zhang, H.; Lu, X.; Chen, C.; Fan, C.; Bi, X. NLR is associated with geriatric depression in chinese women: a community-based cross-sectional study in eastern China. Front. Psychol., 2020, 10, 2941.
[http://dx.doi.org/10.3389/fpsyg.2019.02941] [PMID: 31998193]
[119]
Wang, J.; Zhou, D.; Li, X. The association between neutrophil-to-lymphocyte ratio and diabetic depression in u.s. adults with diabetes: findings from the 2009-2016 national health and nutrition examination survey (NHANES). BioMed Res. Int., 2020, 20208297628
[http://dx.doi.org/10.1155/2020/8297628] [PMID: 33102595]
[120]
Orum, M.H.; Kara, M.Z.; Egilmez, O.B. Mean platelet volume and neutrophil to lymphocyte ratio as parameters to indicate the severity of suicide attempt. J. Immunoassay Immunochem., 2018, 39(6), 647-659.
[http://dx.doi.org/10.1080/15321819.2018.1529682] [PMID: 30311834]
[121]
Ekinci, O.; Ekinci, A. The connections among suicidal behavior, lipid profile and low-grade inflammation in patients with major depressive disorder: a specific relationship with the neutrophil-to-lymphocyte ratio. Nord. J. Psychiatry, 2017, 71(8), 574-580.
[http://dx.doi.org/10.1080/08039488.2017.1363285] [PMID: 28800269]
[122]
Gundogdu Meydaneri, G.; Meydaneri, S. Can neutrophil lymphocyte ratio predict the likelihood of suicide in patients with major depression? Cureus, 2018, 10(4)e2510
[http://dx.doi.org/10.7759/cureus.2510] [PMID: 29930888]
[123]
Velasco, Á.; Rodríguez-Revuelta, J.; Olié, E.; Abad, I.; Fernández-Peláez, A.; Cazals, A.; Guillaume, S.; de la Fuente-Tomás, L.; Jiménez-Treviño, L.; Gutiérrez, L.; García-Portilla, P.; Bobes, J.; Courtet, P.; Sáiz, P.A. Neutrophil-to-lymphocyte ratio: A potential new peripheral biomarker of suicidal behavior. Eur. Psychiatry, 2020, 63(1)e14
[http://dx.doi.org/10.1192/j.eurpsy.2019.20] [PMID: 32093807]
[124]
Kara, M.Z.; Orum, M.H.; Egilmez, O.B. Relationship between immune cells and violent/nonviolent suicide attempts and controls: What about the lymphocyte-related ratios and neutrophil-related parameters? Kaohsiung J. Med. Sci., 2019, 35(5), 315-316.
[http://dx.doi.org/10.1002/kjm2.12049] [PMID: 30887667]
[125]
Ivković, M.; Pantović-Stefanović, M.; Dunjić-Kostić, B.; Jurišić, V.; Lačković, M.; Totić-Poznanović, S.; Jovanović, A.A.; Damjanović, A. Neutrophil-to-lymphocyte ratio predicting suicide risk in euthymic patients with bipolar disorder: Moderatory effect of family history. Compr. Psychiatry, 2016, 66, 87-95.
[http://dx.doi.org/10.1016/j.comppsych.2016.01.005] [PMID: 26995241]
[126]
Chen, H.; Luan, X.; Zhao, K.; Qiu, H.; Liu, Y.; Tu, X.; Tang, W.; He, J. The association between neutrophil-to-lymphocyte ratio and post-stroke depression. Clin. Chim. Acta, 2018, 486, 298-302.
[http://dx.doi.org/10.1016/j.cca.2018.08.026] [PMID: 30130533]
[127]
Huang, G.; Chen, H.; Wang, Q.; Hong, X.; Hu, P.; Xiao, M.; Shu, M.; He, J. High platelet-to-lymphocyte ratio are associated with post-stroke depression. J. Affect. Disord., 2019, 246, 105-111.
[http://dx.doi.org/10.1016/j.jad.2018.12.012] [PMID: 30578944]
[128]
Gong, X.; Lu, Z.; Feng, X.; Yu, C.; Xue, M.; Yu, L.; Wang, T.; Cheng, X.; Lu, J.; Zhang, M. Elevated neutrophil-to-lymphocyte ratio predicts depression after intracerebral hemorrhage. Neuropsychiatr. Dis. Treat., 2020, 16, 2153-2159.
[http://dx.doi.org/10.2147/NDT.S269210] [PMID: 33061386]
[129]
Akabaliev, V.H.; Sivkov, S.T.; Mantarkov, M.Y. Minor physical anomalies in schizophrenia and bipolar I disorder and the neurodevelopmental continuum of psychosis. Bipolar Disord., 2014, 16(6), 633-641.
[http://dx.doi.org/10.1111/bdi.12211] [PMID: 24798215]
[130]
Tamminga, C.A.; Pearlson, G.; Keshavan, M.; Sweeney, J.; Clementz, B.; Thaker, G. Bipolar and schizophrenia network for intermediate phenotypes: outcomes across the psychosis continuum. Schizophr. Bull., 2014, 40(Suppl. 2), S131-S137.
[http://dx.doi.org/10.1093/schbul/sbt179] [PMID: 24562492]
[131]
Zhang, X.Y.; Tang, W.; Xiu, M.H.; Chen, D.C.; Yang, F.D.; Tan, Y.L.; Wang, Z.R.; Zhang, F.; Liu, J.; Liu, L.; Chen, Y.; Wen, N.; Kosten, T.R. Interleukin 18 and cognitive impairment in first episode and drug naïve schizophrenia versus healthy controls. Brain Behav. Immun., 2013, 32, 105-111.
[http://dx.doi.org/10.1016/j.bbi.2013.03.001] [PMID: 23499732]
[132]
Schmidt, O.I.; Morganti-Kossmann, M.C.; Heyde, C.E.; Perez, D.; Yatsiv, I.; Shohami, E.; Ertel, W.; Stahel, P.F. Tumor necrosis factor-mediated inhibition of interleukin-18 in the brain: a clinical and experimental study in head-injured patients and in a murine model of closed head injury. J. Neuroinflammation, 2004, 1(1), 13.
[http://dx.doi.org/10.1186/1742-2094-1-13] [PMID: 15285802]
[133]
Miná, V.A.; Lacerda-Pinheiro, S.F.; Maia, L.C.; Pinheiro, R.F., Jr; Meireles, C.B.; de Souza, S.I.; Reis, A.O.; Bianco, B.; Rolim, M.L. The influence of inflammatory cytokines in physiopathology of suicidal behavior. J. Affect. Disord., 2015, 172, 219-230.
[http://dx.doi.org/10.1016/j.jad.2014.09.057] [PMID: 25451421]
[134]
Oquendo, M.A.; Waternaux, C.; Brodsky, B.; Parsons, B.; Haas, G.L.; Malone, K.M.; Mann, J.J. Suicidal behavior in bipolar mood disorder: clinical characteristics of attempters and nonattempters. J. Affect. Disord., 2000, 59(2), 107-117.
[http://dx.doi.org/10.1016/S0165-0327(99)00129-9] [PMID: 10837879]
[135]
Serafini, G.; Pompili, M.; Elena Seretti, M.; Stefani, H.; Palermo, M.; Coryell, W.; Girardi, P. The role of inflammatory cytokines in suicidal behavior: a systematic review. Eur. Neuropsychopharmacol., 2013, 23(12), 1672-1686.
[http://dx.doi.org/10.1016/j.euroneuro.2013.06.002] [PMID: 23896009]
[136]
Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(Suppl. 1), S4-S9.
[http://dx.doi.org/10.1093/gerona/glu057] [PMID: 24833586]
[137]
Kapczinski, F.; Vieta, E.; Andreazza, A.C.; Frey, B.N.; Gomes, F.A.; Tramontina, J.; Kauer-Sant’anna, M.; Grassi-Oliveira, R.; Post, R.M. Allostatic load in bipolar disorder: implications for pathophysiology and treatment. Neurosci. Biobehav. Rev., 2008, 32(4), 675-692.
[http://dx.doi.org/10.1016/j.neubiorev.2007.10.005] [PMID: 18199480]
[138]
Berk, M.; Kapczinski, F.; Andreazza, A.C.; Dean, O.M.; Giorlando, F.; Maes, M.; Yücel, M.; Gama, C.S.; Dodd, S.; Dean, B.; Magalhães, P.V.; Amminger, P.; McGorry, P.; Malhi, G.S. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci. Biobehav. Rev., 2011, 35(3), 804-817.
[http://dx.doi.org/10.1016/j.neubiorev.2010.10.001] [PMID: 20934453]
[139]
Kapczinski, N.S.; Mwangi, B.; Cassidy, R.M.; Librenza-Garcia, D.; Bermudez, M.B.; Kauer-Sant’anna, M.; Kapczinski, F.; Passos, I.C. Neuroprogression and illness trajectories in bipolar disorder. Expert Rev. Neurother., 2017, 17(3), 277-285.
[http://dx.doi.org/10.1080/14737175.2017.1240615] [PMID: 27659841]
[140]
Kauer-Sant’Anna, M.; Kapczinski, F.; Andreazza, A.C.; Bond, D.J.; Lam, R.W.; Young, L.T.; Yatham, L.N. Brain-derived neurotrophic factor and inflammatory markers in patients with early- vs. late-stage bipolar disorder. Int. J. Neuropsychopharmacol., 2009, 12(4), 447-458.
[http://dx.doi.org/10.1017/S1461145708009310] [PMID: 18771602]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy