Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Antibacterial, Antioxidant, and Angiotensin-I Converting Enzyme Inhibition Effects of Margotia gummifera Extracts Rich in Phenolic Compounds

Author(s): Moufida Bouchekrit*, Hocine Laouer*, Yavuz Selim Çakmak, Mohamed Hajji, Saber Boutellaa, Moncef Nasri and Salah Akkal

Volume 18, Issue 3, 2022

Published on: 31 January, 2022

Article ID: e140921196444 Pages: 14

DOI: 10.2174/1573407217666210914090501

Price: $65

conference banner
Abstract

Background: Aromatic and medicinal plants have been used to substitute synthetic drugs with natural bioactive products.

Objective: The current investigation was conducted to evaluate phenol and flavonoid contents, antibacterial, antioxidant, and anti-hypertensive potentials of three extracts of Margotia gummifera aerial parts.

Methods: The antibacterial effect was assessed using the wells agar diffusion method against 11 strains. The antioxidant effect was evaluated using different methods, 2, 2-diphenyl-1-picrylhydrazyl, total antioxidant capacity, ferric reducing ability power, cupric reducing antioxidant capacity, and β-carotene/linoleic acid bleaching assay. The anti-hypertensive activity was performed using hippuryl-histidyl-leucine substrates.

Results: The highest yield, i.e., 19.801%, was obtained by the hydro-methanolic extract. However, ethyl acetate extract seemed to be rich in phenolic and flavonoid compounds compared to other extracts, i.e., 822.14±69.10 mg GAE g-1 ext. and 117.28±1.80 mg RE g-1 ext., respectively. The high free radical scavenging activity was mentioned in ethyl acetate extract with IC50 of 48.820±1.25 μg/ml. The same extract showed better antioxidant activity in all tested procedures. In antibacterial activity, the hydro-methanolic extract exhibited moderate effect against all tested bacteria except Salmonella enterica and Enterococcus faecalis which gave 18±2.0 and 16±1.0 mm of inhibition, whereas it seemed to be inactive towards two Gram-negative bacteria. Concerning anti-hypertensive activity, all extracts can inhibit the Angiotensin-I Converting Enzyme, but the potential effect was given by hydro-methanolic and aqueous extracts, 97.75% and 96.65%, respectively.

Conclusion: It can be stated that the bioactive compounds of Margotia gummifera extracts had different biological activities, which confirm their therapeutic uses in traditional medicine.

Keywords: Antibacterial activity, antioxidant activity, anti-hypertensive activity, Margotia gummifera, Angiotensin-I, phenolic compounds.

Graphical Abstract
[1]
Osseni, R.A.; Rat, P.; Bogdan, A.; Warnet, J.M.; Touitou, Y. Evidence of prooxidant and antioxidant action of melatonin on human liver cell line HepG2. Life Sci., 2000, 68(4), 387-399.
[http://dx.doi.org/10.1016/S0024-3205(00)00955-3] [PMID: 11205889]
[2]
Arouma, O.I. Free radicals, oxidative stress, and antioxidants in human health and diseases. J. Am. Oil Chem. Soc., 2010, 75, 199-212.
[http://dx.doi.org/10.1007/s11746-998-0032-9]
[3]
Toullec, A.; Gerald, D.; Despouy, G.; Bourachot, B.; Cardon, M.; Lefort, S.; Richardson, M.; Rigaill, G.; Parrini, M.C.; Lucchesi, C.; Bellanger, D.; Stern, M.H.; Dubois, T.; Sastre-Garau, X.; Delattre, O.; Vincent-Salomon, A.; Mechta-Grigoriou, F. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol. Med., 2010, 2(6), 211-230.
[http://dx.doi.org/10.1002/emmm.201000073] [PMID: 20535745]
[4]
Sasaki, Y.F.; Kawaguchi, S.; Kamaya, A.; Ohshita, M.; Kabasawa, K.; Iwama, K.; Taniguchi, K.; Tsuda, S. The comet assay with 8 mouse organs: Results with 39 currently used food additives. Mutat. Res., 2002, 519(1-2), 103-119.
[http://dx.doi.org/10.1016/S1383-5718(02)00128-6] [PMID: 12160896]
[5]
Sanda, M.A.; Zengin, G.; Aktumsek, A.; Cakmak, Y.S. Evaluation of antioxidant potential of two Daphne species (D. gnidioides and D. pontica) from Turkey. Emir. J. Food Agric., 2015, 27(6), 488-494.
[http://dx.doi.org/10.9755/ejfa.2015.04.030]
[6]
Kozłowska, M.; Ścibisz, I.; Zaręba, D.; Ziarno, M. Antioxidant properties and effect on lactic acid bacterial growth of spice extracts. J. Food, 2015, 13(4), 573-577.
[http://dx.doi.org/10.1080/19476337.2015.1022228]
[7]
Kaska, A.; Mammadov, R. Antioxidant properties, proximate content and cytotoxic activity of Echinophora tournefortii Jaub. & Spach. Food Sci. Technol. (Campinas), 2019, 39(4), 875-880.
[http://dx.doi.org/10.1590/fst.09118]
[8]
Mendis, S.; Puska, P.; Norrving, B. Global atlas on cardiovascular disease prevention and control; World Health Organization (WHO): Geneva, 2011.
[9]
Kramoh, E.K.; N’goran, Y.N.; Aké-Traboulsi, E.; Anzouan-Kacou, J.B.; Konin, C.K.; Coulibaly, I.; Traoré, F.; Agbechi, Y.M.; Guikahue, M.K. Hypertension management in an outpatient clinic at the Institute of Cardiology of Abidjan (Ivory Coast). Arch. Cardiovasc. Dis., 2011, 104(11), 558-564.
[http://dx.doi.org/10.1016/j.acvd.2011.08.002] [PMID: 22117907]
[10]
Barbosa-Filho, J.M.; Martins, V.K.; Rabelo, L.A.; Moura, M.D.; Silva, M.S.; Cunha, E.V.; Souza, M.F.; Almeida, R.N.; Medeiros, I.A. Natural products inhibitors of the Angiotensin Converting Enzyme (ACE): A review between 1980-2000. Rev. Bras. Farmacogn., 2006, 16, 421-446.
[http://dx.doi.org/10.1590/S0102-695X2006000300021]
[11]
Muñoz-Durango, N.; Fuentes, C.A.; Castillo, A.E.; González-Gómez, L.M.; Vecchiola, A.; Fardella, C.E.; Kalergis, A.M. Role of the renin-angiotensin aldosterone system beyond blood regulation; Molecular and cellular mechanism involved in end-organ damage during arterial hypertension. Int. J. Mol. Sci., 2016, 17(7), 797-814.
[http://dx.doi.org/10.3390/ijms17070797] [PMID: 27347925]
[12]
Hussain, F.; Jahan, N.; Rahman, K.; Sultana, B.; Jamil, S. Identification of hypotensive biofunctional compounds of Coriandrum sativum and evaluation of their Angiotensin Converting Enzyme (ACE) inhibition potential. Oxid. Med. Cell. Longev, Hindawi. 2018, 01-11.
[13]
Shimada, A.; Inagaki, M. Angiotensin I Converting Enzyme (ACE) inhibitory activity of ursolic acid isolated from Thymus vulgaris L. Food Sci. Technol. Res., 2014, 20(3), 711-714.
[http://dx.doi.org/10.3136/fstr.20.711]
[14]
Zhang, Y.; Lee, E.T.; Devereux, R.B.; Yeh, J.; Best, L.G.; Fabsitz, R.R.; Howard, B.V. Prehypertension, diabetes, and cardiovascular disease risk in a population-based sample: The strong heart study. Hypertension, 2006, 47(3), 410-414.
[http://dx.doi.org/10.1161/01.HYP.0000205119.19804.08] [PMID: 16446387]
[15]
Ahmad, I.; Yanuar, A.; Mulia, K.; Mun’im, A. Review of angiotensin converting enzyme inhibitory assay: Rapid method in drug discovery of herbal plants. Pharmacogn. Rev., 2017, 11(21), 1-7.
[http://dx.doi.org/10.4103/phrev.phrev_45_16] [PMID: 28503045]
[16]
Patten, G.S.; Abeywardena, M.Y.; Bennett, L.E. Inhibition of angiotensin converting enzyme, angiotensin II receptor blocking, and blood pressure lowering bioactivity across plant families. Crit. Rev. Food Sci. Nutr., 2016, 56(2), 181-214.
[http://dx.doi.org/10.1080/10408398.2011.651176] [PMID: 24915402]
[17]
Madaka, F.; Charoonratana, T. Angiotensin-converting enzyme inhibitory activity of Senna garrettiana active compounds: Potential markers for standardized herbal medicines. Pharmacogn. Mag., 2020, 14(57), 335-339.
[18]
Garcia Martin, F.; Silvestre, S. Revision of the genus Elaeoselinum Koch ex DC., Margotia Boiss. and Distichoselinum Garcia Martin and Silvestre (Umbelliferae). Lagascalia, 1985, 13(2), 205-237.
[19]
Pinar, M.; Rodriguez, B.; Alemany, A. Gummiferolic acid, a new ent-ATIS-6-ene diterpenoid from Margotia gummifera. Phytochemistry, 1978, 17(9), 1637-1640.
[http://dx.doi.org/10.1016/S0031-9422(00)94658-2]
[20]
Rodriguez, B.; Pinar, M. Margotianin, a new diterpenoid from Margotia gummifera. Phytochemistry, 1979, 18(5), 891-893.
[http://dx.doi.org/10.1016/0031-9422(79)80044-8]
[21]
De Pascual Teresa, J.; Grand, C.; Moran, J.R.; Grand, M. A revised structur for diterpenoid Magydardiendiol. Chem. Lett., 1984, 13(2), 247-250.
[http://dx.doi.org/10.1246/cl.1984.247]
[22]
Karakoca, K.; Ozusaglam, M.A.; Cakmak, Y.S.; Erkul, S.K. Antioxidative, antimicrobial and cytotoxic properties of Isatis floribunda Boiss. ex Bornm. extracts. EXCLI J., 2013, 12, 150-167.
[PMID: 26417224]
[23]
Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardisation d’un extrait de propolis et identification des principaux constituants. J. Pharm. Belg., 1994, 49(6), 462-468.
[PMID: 7884635]
[24]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[25]
Benzie, I.F.F.; Strain, J.J. The Ferric Reducing ability of Plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[26]
Sarikurkcu, C.; Tepe, B.; Daferera, D.; Polissiou, M.; Harmandar, M. Studies on the antioxidant activity of the essential oil and methanol extract of Marrubium globosum subsp. (lamiaceae) by three different chemical assays. Bioresour. Technol., 2008, 99(10), 4239-4246.
[http://dx.doi.org/10.1016/j.biortech.2007.08.058] [PMID: 17920880]
[27]
Aslan, A.; Güllüce, M.; Sôkmen, M.; Adigüzel, A.; Sahin, F.; Ôzkan, H. Antioxidant and antimicrobial properties of the lichens Cladonia foliacea, Dermatocarpon miniatum, Everinia divaricata, Evernia prunastri and Neofuscella pulla. Pharm. Biol., 2006, 44, 247-252.
[http://dx.doi.org/10.1080/13880200600713808]
[28]
Apak, R.; Güçlü, K.; Ozyürek, M.; Esin Karademir, S.; Erçağ, E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr., 2006, 57(5-6), 292-304.
[http://dx.doi.org/10.1080/09637480600798132] [PMID: 17135020]
[29]
Berghe, V.A.; Vlietinck, A.J. Screening methods for antibacterial and antiviral agents from higher plants. Meth. Plant. Biochem, 1991, 6, 47-68.
[30]
Sood, K.; Yadav, R.N.S. Phytochemical screening and antimicrobial activity of four members of family Apiaceae. Int. J. Phytomed., 2014, 6(2), 232-236.
[31]
Wu, J.; Aluko, R.E.; Muir, A.D. Purification of angiotensin I-converting enzyme-inhibitory peptides from the enzymatic hydrolysate of defatted canola meal. Food Chem., 2008, 111(4), 942-950.
[http://dx.doi.org/10.1016/j.foodchem.2008.05.009]
[32]
Chaudhary, N.; Husain, S.S.; Yousuf Ali, M. Chemical composition and antimicrobial activity of volatile oil of the seeds of Cuminum cyminum L. Int. J. Pharm. Pharm. Sci., 2014, 3(7), 1428-1441.
[33]
Mileski, K.S.; Džamić, A.M.; Ćirić, A.D.; Ristić, M.S.; Grujić, S.M.; Matevski, V.S.; Marin, P.D. Composition, antimicrobial and antioxidant properties of endemic species Ferulago macedonica Micevski & E. Mayer. Rec. Nat. Prod., 2015, 9(2), 208-223.
[34]
Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med., 2012, 12(221), 221.
[http://dx.doi.org/10.1186/1472-6882-12-221] [PMID: 23153304]
[35]
Matejić, J.; Džamić, A.; Mihajilov-Krstev, T.; Ranđelović, V.; Marin, P. Antioxidant and antimicrobial potential of Opopanax hispidus (Apiaceae) extracts. Lek. Sirov, 2015, XXXV(35), 141-150.
[http://dx.doi.org/10.5937/leksir1535141M]
[36]
El Ouariachi, E.; Lahhit, N.; Bouyanzer, A.; Hammouti, B.; Paolini, J.; Majidi, L.; Desjobert, J-M.; Costa, J. Chemical composition and antioxidant activity of essential oils and solvent extracts of Foeniculum vulgare Mill. from Morocco. J. Chem. Pharm. Res., 2014, 6(4), 743-748.
[37]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[38]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[39]
Maestri, D.M.; Nepote, V.; Lamarque, A.L.; Zygadlo, J.A. Natural products as antioxidants. Phytochemistry, 2006, 105-135.
[40]
Ksouri, A.; Dob, T.; Belkebir, A.; Krimat, S.; Chelghoum, C. Chemical composition and antioxidant activity of the essential oil and the methanol extract of Algerian wild carrot Daucus carota L. ssp. carota. (L.) Thell. J. Mater. Environ. Sci, 2015, 6(3), 784-791.
[41]
Meliani, N.; Dib, M.A.; Bendiabdellah, A.; Djabou, N.; Chikhi, I.; Allali, H.; Tabti, B. Evaluation of antioxidant activity of essential oil and extracts from Algerian Daucus carota L. aerial parts. Int. J. Pharm. Res, 2012, 1(5), 1121-1129.
[42]
Mileski, K.; Džamić, A.; Ćirić, A.; Grujić, S.; Ristić, M.; Matevski, V.; Marin, P.D. Radical scavenging and antimicrobial activity of essential oil and extracts of Echinophora sibthorpiana GUSS. from Macedonia. Arch. Biol. Sci., 2014, 66(1), 401-413.
[http://dx.doi.org/10.2298/ABS1401401M]
[43]
Tomsone, L.; Kruma, Z.; Galoburda, R. Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana). Int. J. Agric. Biosyst. Eng, 2012, 6(4), 236-241.
[44]
Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr., 2003, 133(9), 2812-2819.
[http://dx.doi.org/10.1093/jn/133.9.2812] [PMID: 12949370]
[45]
Lefahal, M.; Zaabat, N.; Ayad, R.; Makhloufi, E.H.; Djarri, L.; Benahmed, M.; Laouer, H.; Nieto, G.; Akkal, S. In vitro assessment of total phenolic and flavonoid contents, antioxidant and photoprotective activities of crude methanolic extract of aerial parts of Capnophyllum peregrinum (L.) Lange (Apiaceae) Growing in Algeria. MDPI. Medicines (Basel), 2018, 5(2), 1-10.
[http://dx.doi.org/10.3390/medicines5020026] [PMID: 29565294]
[46]
Falleh, H.; Medini, F.; Ksouri, R.; Guyot, S.; Abdelly, C.; Magné, C. Antioxidant activity and phenolic composition of the medicinal and edible halophyte Mesembryanthemum edule L. Ind. Crops Prod., 2011, 34, 1066-1071.
[http://dx.doi.org/10.1016/j.indcrop.2011.03.018]
[47]
Dehshiri, M.M.; Aghamollaei, H.; Zarini, M.; Nabavi, S.M.; Mirzaei, M.; Loizzo, M.R.; Nabavi, S.F. Antioxidant activity of different parts of Tetrataenium lasiopetalum. Pharm. Biol., 2013, 51(8), 1081-1085.
[http://dx.doi.org/10.3109/13880209.2013.775594] [PMID: 23742701]
[48]
Duh, P.D. Antioxidant activity of burdock (Arctium lappa L.): It’s scavenging effect on free radicals and active oxygen. J. Am. Oil Chem. Soc., 1998, 75, 455-461.
[http://dx.doi.org/10.1007/s11746-998-0248-8]
[49]
Delnavazi, M.R.; Tavakoli, S.; Rustaie, A.; Batooli, H.; Yassa, N. Antioxidant and antibacterial activities of the essential oils and extracts of Dorema ammoniacum roots and aerial parts. Res. J. Pharmacogn., 2014, 1(4), 11-18.
[50]
Deepa, G.; Ayesha, S.; Nishtha, K.; Thankamani, M. Comparative evaluation of various total antioxidant capacity assays applied to phytochemical compounds of Indian culinary spices. Int. Food Res. J., 2013, 20(4), 1711-1716.
[51]
Martins, N.; Barros, L.; Santos-Buelga, C.; Ferreira Isabel, C.F.R. Antioxidant potential of two Apiaceae plant extracts: A comparative study focused on the phenolic composition. Ind. Crops Prod., 2016, 79, 188-194.
[http://dx.doi.org/10.1016/j.indcrop.2015.11.018]
[52]
Christova-Bagdassarian, V.L.; Bagdassarian, K.S.; Atanassova, M.S. Phenolic profile: antioxidant and antibacterial activities from the Apiaceae family (dry seeds). Mintage J. Pharm. Med. Sci, 2013, 2, 26-31.
[53]
Phatak, R.S.; Pratinidhi, A.K.; Hendre, A.S. Evaluation of antioxidant and free radical scavenging activities of spices mixture extract as additive with reference to synthetic antioxidant. Der. Pharm. Lett, 2015, 7(2), 27-34.
[54]
Boutellaa, S.; Zellagui, A.; Öztürk, M.; Bensouici, C.; Ölmez, Ö.T.; Menakh, M.; Duru, M.E. HPLC-DAD profiling and antioxidant activity of the n-butanol extract from aerial parts of Algerian Crithmum maritimum L. SCIENDO. Acta Sci. Nat, 2019, 6(1), 8-16.
[55]
Boulacel, I.; Djarri, L.; Azzouzi, S.; Medjroubi, K.; Demirtas, I.; Laouer, H.; Akkal, S. Phytochemical studies and antibacterial activity of the aerial parts of Physospermum verticillatum. Bangladesh J. Pharmacol., 2017, 12, 107-112.
[http://dx.doi.org/10.3329/bjp.v12i2.29668]
[56]
Matejić, J.S.; Džamić, A.M.; Mihajilov-Krstev, T.M.; Ranđelović, V.N.; Krivošej, Z.Đ.; Marin, P.D.. Total phenolic and flavonoid content, antioxidant and antimicrobial activity of extracts from Tordylium maximum. J. Appl. Pharm. Sci, 2013, 3(01), 055-059.
[57]
Al-Alak, S.K.; Ali Wala’a, S.; Kadum, M.M.; Othman, N.A-A. Effect of carrot and ginger extracts (alone and in combination with ciprofloxacin) on multidrug resistant Pseudomonas aeruginosa. J. Pharm. Sci. Innov, 2014, 3(2), 114-116.
[http://dx.doi.org/10.7897/2277-4572.0320121]
[58]
Thiem, B.; Goślińska, O.; Kikowska, M.; Budzianowski, J. Antimicrobial activity of three Eryngium L. species (Apiaceae). Herba Pol., 2010, 56(4), 52-58.
[59]
Baudin, B. New aspects on angiotensin-converting enzyme: From gene to disease. Clin. Chem. Lab. Med., 2002, 40(3), 256-265.
[http://dx.doi.org/10.1515/CCLM.2002.042] [PMID: 12005216]
[60]
Guang, C.; Phillips, R.D.; Jiang, B.; Milani, F. Three key proteases--Angiotensin-I-Converting Enzyme (ACE), ACE2 and renin--within and beyond the renin-angiotensin system. Arch. Cardiovasc. Dis., 2012, 105(6-7), 373-385.
[http://dx.doi.org/10.1016/j.acvd.2012.02.010] [PMID: 22800722]
[61]
Ullah, M.F.; Abuduhier, F.M. Inhibition of angiotensin converting enzyme by Rhazya stricta, Moringa peregrina and Achillea fragrantissima, used in traditional system of medicine in Arabian Peninsula: Implication in the management of hypertension. J. Med. Plants Res., 2016, 10(8), 93-99.
[http://dx.doi.org/10.5897/JMPR2015.6043]
[62]
Bhuyan, B.J.; Mugesh, G.S. Angiotensin converting enzyme inhibitors in the treatment of hypertension. Curr. Sci., 2010, 101(7), 881-887.
[63]
Namjoyan, F.; Azemi, M.E.; Abdollahi, E.; Goudarzi, N.; Nikan, K. Angiotensin I converting enzyme inhibitory activities of hydroalcoholic extracts of Nardostachys jatamansi, Prangos ferulacea and Marrubium vulgare. Jundishapur J. Nat. Pharm. Prod., 2015, 10(2), 1-5.
[http://dx.doi.org/10.17795/jjnpp-17255]
[64]
Madaka, F.; Pathompak, P.; Sakunpak, A.; Monton, C.; Charoonratana, T. Angiotensin I-converting enzyme inhibitor activity of some medicinal plants listed in traditional thai medicine. Bull. Health, Sci. Technol., 2017, 15(1), 01-07.
[65]
Kang, D.G.; Yun, Y.G.; Ryoo, J.H.; Lee, H.S. Anti-hypertensive effect of water extract of danshen on renovascular hypertension through inhibition of the renin angiotensin system. Am. J. Chin. Med., 2002, 30(1), 87-93.
[http://dx.doi.org/10.1142/S0192415X02000107] [PMID: 12067101]
[66]
Lasboi, E.; Rissyelly, R.; Basah, K. Angiotensin I-Converting enzyme inhibitory activity, total phenolic and flavonoid content of extract and fraction of jam fruit leaves (Muntingia calabura L.). Asian J. Pharm. Clin. Res., 2017, 10, 166-168.
[http://dx.doi.org/10.22159/ajpcr.2017.v10s5.23123]
[67]
Sakaida, H.; Nagao, K.; Higa, K.; Shirouchi, B.; Inoue, N.; Hidaka, F.; Kai, T.; Yanagita, T. Effect of vaccinium ashei reade leaves on angiotensin converting enzyme activity in vitro and on systolic blood pressure of spontaneously hypertensive rats in vivo. Biosci. Biotechnol. Biochem., 2007, 71(9), 2335-2337.
[http://dx.doi.org/10.1271/bbb.70277] [PMID: 17827680]
[68]
Paiva, L.; Lima, E.; Neto, A.I.; Baptista, J. Angiotensin I-Converting Enzyme (ACE) Inhibitory activity, antioxidant properties, phenolic content and amino acid profiles of Fucus spiralis L. protein hydrolysate fractions. Mar. Drugs, 2017, 15(10), 1-18.
[http://dx.doi.org/10.3390/md15100311] [PMID: 29027934]
[69]
Pihlanto, A.; Akkanen, S.; Korhonen, H.J. ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chem., 2008, 109(1), 104-112.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.023] [PMID: 26054270]
[70]
Liu, M.; Du, M.; Zhang, Y.; Xu, W.; Wang, C.; Wang, K.; Zhang, L. Purification and identification of an ACE inhibitory peptide from walnut protein. J. Agric. Food Chem., 2013, 61(17), 4097-4100.
[http://dx.doi.org/10.1021/jf4001378] [PMID: 23566262]
[71]
Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-Converting Enzyme (ACE)-inhibitory peptides from plants. Nutrients, 2017, 9(4), 316.
[http://dx.doi.org/10.3390/nu9040316] [PMID: 28333109]
[72]
Saputri, F.C.; Mun’im, A.; Lukmanto, D.; Aisyah, S.N.; Rinandy, J.S. Inhibition of Angiotensin Converting Enzyme (ACE) activity by some Indonesia edible plants. Int. J. Pharm. Sci. Res., 2015, 6(3), 1054-1059.
[73]
Liu, J-C.; Hsu, F-L.; Tsai, J-C.; Chan, P.; Liu, J.Y.; Thomas, G.N.; Tomlinson, B.; Lo, M-Y.; Lin, J-Y. Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci., 2003, 73(12), 1543-1555.
[http://dx.doi.org/10.1016/S0024-3205(03)00481-8] [PMID: 12865094]
[74]
Braga, F.C.; Serra, C.P.; Viana, N.S., Jr; Oliveira, A.B.; Côrtes, S.F.; Lombardi, J.A. Angiotensin-converting enzyme inhibition by Brazilian plants. Fitoterapia, 2007, 78(5), 353-358.
[http://dx.doi.org/10.1016/j.fitote.2007.02.007] [PMID: 17513067]
[75]
Al Shukor, N.; Van Camp, J.; Gonzales, G.B.; Staljanssens, D.; Struijs, K.; Zotti, M.J.; Raes, K.; Smagghe, G. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: A study of structure activity relationships. J. Agric. Food Chem., 2013, 61(48), 11832-11839.
[http://dx.doi.org/10.1021/jf404641v] [PMID: 24219111]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy