Generic placeholder image

Drug Metabolism Letters

Editor-in-Chief

ISSN (Print): 1872-3128
ISSN (Online): 1874-0758

Research Article

Analysis between Linagliptin and Azithromycin: In vitro and In vivo Interaction Study

Author(s): Md. Didaruzzaman Sohel, Faisal Asif*, Tonmoy Kumar Mondal, Md. Helal Uddin Sumon and Md. Hassan Kawsar

Volume 14, Issue 3, 2021

Published on: 08 December, 2021

Page: [193 - 205] Pages: 13

DOI: 10.2174/1872312814666210910123056

Price: $65

Abstract

Background: Linagliptin is prescribed as a dipeptidyl peptidase-4 (DPP-4) inhibitor. Azithromycin is specified as an antibiotic that binds with 23s rRNA of the 50s ribosomal subunit, obstructing the microbial protein synthesis. Our study focuses on the drug-drug interactions of these drugs.

Objectives: The purpose of the study is to understand the bioavailability and physicochemical approaches of Linagliptin and Azithromycin interaction mediated through the strength and nature of the complexation.

Methods: TheIn vitro assessment of drug interaction was conducted using Ultraviolet-visible spectroscopy (UV/VIS), Ultra-Performance Liquid Chromatography (UPLC), Fourier transform infrared spectroscopy (FT-IR), and Differential scanning calorimetry (DSC), while the Oral Glucose Tolerance Test (OGTT) was performed for theIn vivo assessment of drug interaction in a mouse model.

Results: Mild variation in interaction was observed at different pH values at a specific temperature by Job's and Ardon's equations. In UPLC, the drug mixture assessment showed that the area of Linagliptin was 2013793, and the area of Azithromycin was 54631 in 50 mg/l. The height of Linagliptin in the drug mixture was 579234, and that of Azithromycin was 11442. For Azithromycin, the wavelength of 731.02 cm-1, 993.34 cm-1, 1379.10 cm-1, and 1718.58 cm-1 decreased in the mixture. Also, for Linagliptin, the wavelength 1363.67 cm-1, 1473.62 cm-1, and 1718.58 cm-1 decreased in the drug mixture. The melting endotherm was 125.55°C, melting normalized energy was -3.0 W/mg, and 225.75°C with melting normalized energy of -5.5 W/mg of the drug mixture as indicated by DSC. In the OGTT test, the blood glucose level of Linagliptin decreased in the drug mixture by 13.58 % and 57.25%.

Conclusion: Hence, the concomitant administration of Linagliptin and Azithromycin simultaneously might reduce the therapeutic effect of the drug complex.

Keywords: Linagliptin, azithromycin, spectroscopy, UV, mice, OGTT.

Graphical Abstract
[1]
Iyer, S.V.; Harpaz, R.; LePendu, P.; Bauer-Mehren, A.; Shah, N.H. Mining clinical text for signals of adverse drug-drug interactions. J. Am. Med. Inform. Assoc., 2014, 21(2), 353-362.
[http://dx.doi.org/10.1136/amiajnl-2013-001612] [PMID: 24158091]
[2]
Chu, X.; Liao, M.; Shen, H.; Yoshida, K.; Zur, A.A.; Arya, V.; Galetin, A.; Giacomini, K.M.; Hanna, I.; Kusuhara, H.; Lai, Y.; Rodrigues, D.; Sugiyama, Y.; Zamek-Gliszczynski, M.J.; Zhang, L. Clinical probes and endogenous biomarkers as substrates for transporter drug-drug interaction evaluation: Perspectives from the international transporter consortium. Clin. Pharmacol. Ther., 2018, 104(5), 836-864.
[http://dx.doi.org/10.1002/cpt.1216] [PMID: 30347454]
[3]
Barnett, S.; Ogungbenro, K.; Ménochet, K.; Shen, H.; Humphreys, W.G.; Galetin, A. Comprehensive evaluation of the utility of 20 endogenous molecules as biomarkers of OATP1B inhibition compared with rosuvastatin and coproporphyrin I. J. Pharmacol. Exp. Ther., 2019, 368(1), 125-135.
[http://dx.doi.org/10.1124/jpet.118.253062] [PMID: 30314992]
[4]
Rodrigues, A.D.; Taskar, K.S.; Kusuhara, H.; Sugiyama, Y. Endogenous probes for drug transporters: Balancing vision with reality. Clin. Pharmacol. Ther., 2018, 103(3), 434-448.
[http://dx.doi.org/10.1002/cpt.749] [PMID: 28560712]
[5]
Lai, Y.; Mandlekar, S.; Shen, H.; Holenarsipur, V.K.; Langish, R.; Rajanna, P.; Murugesan, S.; Gaud, N.; Selvam, S.; Date, O.; Cheng, Y.; Shipkova, P.; Dai, J.; Humphreys, W.G.; Marathe, P. Coproporphyrins in plasma and urine can be appropriate clinical biomarkers to recapitulate drug-drug interactions mediated by organic anion transporting polypeptide inhibition. J. Pharmacol. Exp. Ther., 2016, 358(3), 397-404.
[http://dx.doi.org/10.1124/jpet.116.234914] [PMID: 27317801]
[6]
Barnett, S.; Ogungbenro, K.; Ménochet, K.; Shen, H.; Lai, Y.; Humphreys, W.G.; Galetin, A. Gaining mechanistic insight into coproporphyrin I as endogenous biomarker for OATP1B-mediated drug-drug interactions using population pharmacokinetic modeling and simulation. Clin. Pharmacol. Ther., 2018, 104(3), 564-574.
[http://dx.doi.org/10.1002/cpt.983] [PMID: 29243231]
[7]
Lavan, A.H.; Gallagher, P. Predicting risk of adverse drug reactions in older adults. Ther. Adv. Drug Saf., 2016, 7(1), 11-22.
[http://dx.doi.org/10.1177/2042098615615472] [PMID: 26834959]
[8]
Kruger, D.F.; Cypress, M.; Maryniuk, M.; Childs, B.P.; Tieking, J. Pharmaceutical treatment of hypertension and dyslipidemia in people with diabetes: An educator’s perspective: Part 2: Dyslipidemia. Diabetes Spectr., 2004, 17(2), 73-77.
[http://dx.doi.org/10.2337/diaspect.17.2.73]
[9]
Pirmohamed, M.; James, S.; Meakin, S.; Green, C.; Scott, A.K.; Walley, T.J.; Farrar, K.; Park, B.K.; Breckenridge, A.M. Adverse drug reactions as cause of admission to hospital: Prospective analysis of 18 820 patients. BMJ, 2004, 329(7456), 15-19.
[http://dx.doi.org/10.1136/bmj.329.7456.15] [PMID: 15231615]
[10]
Dubrall, D.; Just, K.S.; Schmid, M.; Stingl, J.C.; Sachs, B. Adverse drug reactions in older adults: A retrospective comparative analysis of spontaneous reports to the German Federal Institute for Drugs and Medical Devices. BMC Pharmacol. Toxicol., 2020, 21(1), 25.
[http://dx.doi.org/10.1186/s40360-020-0392-9] [PMID: 32293547]
[11]
Benedetti, M.S.; Whomsley, R.; Poggesi, I.; Cawello, W.; Mathy, F.X.; Delporte, M.L.; Papeleu, P.; Watelet, J.B. Drug metabolism and pharmacokinetics. Drug Metab. Rev., 2009, 41(3), 344-390.
[http://dx.doi.org/10.1080/10837450902891295] [PMID: 19601718]
[12]
Triplitt, C. Drug interactions of medications commonly used in diabetes. Diabetes Spectr., 2006, 19(4), 202-211.
[http://dx.doi.org/10.2337/diaspect.19.4.202]
[13]
Samardzic, I.; Bacic-Vrca, V. Incidence of potential drug-drug interactions with antidiabetic drugs. Pharmazie, 2015, 70(6), 410-415.
[PMID: 26189304]
[14]
Tornio, A.; Niemi, M.; Neuvonen, P.J.; Backman, J.T. Drug interactions with oral antidiabetic agents: Pharmacokinetic mechanisms and clinical implications. Trends Pharmacol. Sci., 2012, 33(6), 312-322.
[http://dx.doi.org/10.1016/j.tips.2012.03.001] [PMID: 22475684]
[15]
Scheen, A.J. Drug-drug and food-drug pharmacokinetic interactions with new insulinotropic agents repaglinide and nateglinide. Clin. Pharmacokinet., 2007, 46(2), 93-108.
[http://dx.doi.org/10.2165/00003088-200746020-00001] [PMID: 17253883]
[16]
Schnapp, G.; Klein, T.; Hoevels, Y.; Bakker, R.A.; Nar, H. Comparative analysis of binding kinetics and thermodynamics of dipeptidyl peptidase-4 inhibitors and their relationship to structure. J. Med. Chem., 2016, 59(16), 7466-7477.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00475] [PMID: 27438064]
[17]
Agrawal, R.; Jain, P.; Dikshit, S.N. Linagliptin: A novel methylxanthin based approved dipeptidyl peptidase-4 inhibitor. Curr. Drug Targets, 2012, 13(7), 970-983.
[http://dx.doi.org/10.2174/138945012800675731] [PMID: 22420306]
[18]
Thomas, L.; Eckhardt, M.; Langkopf, E.; Tadayyon, M.; Himmelsbach, F.; Mark, M. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J. Pharmacol. Exp. Ther., 2008, 325(1), 175-182.
[http://dx.doi.org/10.1124/jpet.107.135723] [PMID: 18223196]
[19]
Ceriello, A.; Inagaki, N. Pharmacokinetic and pharmacodynamic evaluation of linagliptin for the treatment of type 2 diabetes mellitus, with consideration of Asian patient populations. J. Diabetes Investig., 2017, 8(1), 19-28.
[http://dx.doi.org/10.1111/jdi.12528] [PMID: 27180612]
[20]
Holm, L.; Ekman, E.; Jorsäter Blomgren, K. Influence of age, sex and seriousness on reporting of adverse drug reactions in Sweden. Pharmacoepidemiol. Drug Saf., 2017, 26(3), 335-343.
[http://dx.doi.org/10.1002/pds.4155] [PMID: 28071845]
[21]
Cutroneo, P.; Greco, S.; Cucinotta, G.; Arcoraci, V.; Caputi, A.P. Spontaneous reporting of adverse drug reactions in elderly patients in Sicily (Italy). Pharmacol. Res., 1999, 40(1), 41-46.
[http://dx.doi.org/10.1006/phrs.1998.0483] [PMID: 10378989]
[22]
Freeman, M.K. Efficacy and safety of linagliptin (tradjenta) in adults with type-2 diabetes mellitus. P&T, 2011, 36(12), 807-842.
[PMID: 22346314]
[23]
Saleem, Z.; Saeed, H.; Ahmad, M.; Yousaf, M.; Hassan, H.B.; Javed, A.; Anees, N.; Maharjan, S. Antibiotic self-prescribing trends, experiences and attitudes in upper respiratory tract infection among pharmacy and non-pharmacy students: A study from Lahore. PLoS One, 2016, 11(2), e0149929.
[http://dx.doi.org/10.1371/journal.pone.0149929] [PMID: 26919465]
[24]
Mangal, S.; Nie, H.; Xu, R.; Guo, R.; Cavallaro, A.; Zemlyanov, D.; Zhou, Q.T. Physico-chemical properties, aerosolization and dissolution of co-spray dried azithromycin particles with l-leucine for inhalation. Pharm. Res., 2018, 35(2), 28.
[http://dx.doi.org/10.1007/s11095-017-2334-9] [PMID: 29374368]
[25]
Nichols, D.P.; Happoldt, C.L.; Bratcher, P.E.; Caceres, S.M.; Chmiel, J.F.; Malcolm, K.C.; Saavedra, M.T.; Saiman, L.; Taylor- Cousar, J.L.; Nick, J.A. Impact of azithromycin on the clinical and antimicrobial effectiveness of tobramycin in the treatment of cystic fibrosis. J. Cyst. Fibros., 2017, 16(3), 358-366.
[http://dx.doi.org/10.1016/j.jcf.2016.12.003] [PMID: 28025037]
[26]
Jelić, D.; Antolović, R. From erythromycin to Azithromycin and new potential ribosome-binding antimicrobials. Antibiotics (Basel), 2016, 5(3), 29.
[http://dx.doi.org/10.3390/antibiotics5030029] [PMID: 27598215]
[27]
Zhang, L.; Zhang, Y.D.; Zhao, P.; Huang, S-M. Predicting drug- drug interactions: An FDA perspective. AAPS J., 2009, 11(2), 300-306.
[http://dx.doi.org/10.1208/s12248-009-9106-3] [PMID: 19418230]
[28]
Palleria, C.; Di Paolo, A.; Giofrè, C.; Caglioti, C.; Leuzzi, G.; Siniscalchi, A.; De Sarro, G.; Gallelli, L. Pharmacokinetic drug- drug interaction and their implication in clinical management. J. Res. Med. Sci., 2013, 18(7), 601-610.
[PMID: 24516494]
[29]
Amanlou, M.; Khosravian, P.; Souri, E.; Dadrass, O.G.; Dinarvand, R.; Alimorad, M.M.; Akbari, H. Determination of buprenorphine in raw material and pharmaceutical products using ion-pair formation. Bull. Korean Chem. Soc., 2007, 28(2), 183-187.
[http://dx.doi.org/10.5012/bkcs.2007.28.2.183]
[30]
Amanlou, M.; Keivani, S.; Sadri, B.; Gorban-Dadras, O.; Souri, E. Simple extractive colorimetric determination of buspirone by acid-dye complexation method in solid dosage form. Res. Pharm. Sci., 2009, 4(1), 11-18.
[31]
Ganesh, M.; Thangabalan, B.; Patil, R.; Ganguly, S.; Sivakumar, T. Simple extractive colorimetric determination of oxaprozin by acid-dye complexation methods in solid dosage form. E-J. Chem., 2008, 5(3), 593-597.
[http://dx.doi.org/10.1155/2008/734160]
[32]
Rothstein, D.M. Rifamycins, alone and in combination. Cold Spring Harb. Perspect. Med., 2016, 6(7), a027011.
[http://dx.doi.org/10.1101/cshperspect.a027011] [PMID: 27270559]
[33]
Evrard, A.; Mbatchi, L. Genetic polymorphisms of drug metabolizing enzymes and transporters: The long way from bench to bedside. Curr. Top. Med. Chem., 2012, 12(15), 1720-1729.
[http://dx.doi.org/10.2174/156802612803531388] [PMID: 22978342]
[34]
Gerber, W.; Steyn, J.D.; Kotzé, A.F.; Hamman, J.H. Beneficial pharmacokinetic drug interactions: A tool to improve the bioavailability of poorly permeable drugs. Pharmaceutics, 2018, 10(3), 106.
[http://dx.doi.org/10.3390/pharmaceutics10030106] [PMID: 30049988]
[35]
Rahman, M.A.; Salam, M.A.; Sultan, M.Z.; Hossain, K.; Rahman, A.; Rashid, M.A. DSC and HPLC studies of some common antidiabetic and antihypertensive drugs. Bangladesh Pharm. J., 2014, 17(2), 123-127.
[http://dx.doi.org/10.3329/bpj.v17i2.22326]
[36]
Custodio, J.M.; Wu, C.Y.; Benet, L.Z. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv. Drug Deliv. Rev., 2008, 60(6), 717-733.
[http://dx.doi.org/10.1016/j.addr.2007.08.043] [PMID: 18199522]
[37]
Galani, V.; Vyas, M. In vivo and in vitro drug interactions study of glimepride with atorvastatin and rosuvastatin. J. Young Pharm., 2010, 2(2), 196-200.
[http://dx.doi.org/10.4103/0975-1483.63169] [PMID: 21264125]
[38]
Santos, C.A.; Boullata, J.I. An approach to evaluating drug-nutrient interactions. Pharmacotherapy, 2005, 25(12), 1789-1800.
[http://dx.doi.org/10.1592/phco.2005.25.12.1789] [PMID: 16305298]
[39]
Yoshida, K.; Zhao, P.; Zhang, L.; Abernethy, D.R.; Rekić, D.; Reynolds, K.S.; Galetin, A.; Huang, S.M. In vitro-in vivo extrapolation of metabolism- and transporter-mediated drug-drug interactions-overview of basic prediction methods. J. Pharm. Sci., 2017, 106(9), 2209-2213.
[http://dx.doi.org/10.1016/j.xphs.2017.04.045] [PMID: 28456729]
[40]
Tornio, A.; Filppula, A.M.; Niemi, M.; Backman, J.T. Clinical studies on drug-drug interactions involving metabolism and transport: methodology, pitfalls, and interpretation. Clin. Pharmacol. Ther., 2019, 105(6), 1345-1361.
[http://dx.doi.org/10.1002/cpt.1435] [PMID: 30916389]
[41]
Prueksaritanont, T.; Chu, X.; Gibson, C.; Cui, D.; Yee, K.L.; Ballard, J.; Cabalu, T.; Hochman, J. Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS J., 2013, 15(3), 629-645.
[http://dx.doi.org/10.1208/s12248-013-9470-x] [PMID: 23543602]
[42]
Nishi, K.K.; Jayakrishnan, A. Preparation and In vitro evaluation of primaquine-conjugated gum arabic microspheres. Biomacromolecules, 2004, 5(4), 1489-1495.
[http://dx.doi.org/10.1021/bm0499435] [PMID: 15244469]
[43]
Saeed Arayne, M; Sultana, N; Nawaz, M. Investigation of drug interaction studies of levocetirizne with hmg-coa reductase inhibitors. Mod Chem Appl., 2014, 2(134), 2.
[44]
Liu, F.; Merchant, H.A.; Kulkarni, R.P.; Alkademi, M.; Basit, A.W. Evolution of a physiological pH 6.8 bicarbonate buffer system: Application to the dissolution testing of enteric coated products. Eur. J. Pharm. Biopharm., 2011, 78(1), 151-157.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.001] [PMID: 21255647]
[45]
Paabo, M.; Bates, R.G.; Robinson, R.A. Buffer solutions of potassium dihydrogen phosphate and sodium succinate at 25 °C. J. Res. Natl. Bur. Stand., A Phys. Chem., 1963, 67A(6), 573-576.
[http://dx.doi.org/10.6028/jres.067A.055] [PMID: 31580601]
[46]
Ahsan, M.R.; Sultan, M.Z.; Baki, M.A. The study of in vitro and in vivo effects of concurrent administration of paracetamol and zinc on the antibacterial activity of ciprofloxacin. J. Pharm. Sci., 2011, 10(2), 137-142.
[http://dx.doi.org/10.3329/dujps.v10i2.11795]
[47]
Ahsan, M.R.; Sultan, M.Z.; Aamjad, F.M.; Sultana, S.; Baki, M.A.; Hossain, M.A.; Hossain, M.A.; Amran, M.S. The study of in vitro interaction of ciprofloxacin with paracetamol and zinc in aqueous medium. J. Sci. Res., 2012, 4(3), 701-708.
[http://dx.doi.org/10.3329/jsr.v4i3.8709]
[48]
Mohammad, M.; Azam, A.Z.; Amran, M.S.; Hossain, M.A. In vitro study on the interaction of caffeine with gliclazide and metformin in the aqueous media. J. Pharmacol. Toxicol., 2009, 4(5), 194-204.
[http://dx.doi.org/10.3923/jpt.2009.194.204]
[49]
Hossen, M.M.; Kabir, S.H.; Rahman, A. In vitro and in vivo drug- drug interaction between Sitagliptin phosphate Int. J. Pharm., 2016, 6(2), 283-291.
[50]
Sayeed, AM; Rana, S In vitro and in vivo drug-drug interaction study between Ketotifen Fumerate and Chlorpheniramine Maleate at gastric and intestinal pH. J. Sci. Technol., 2013, 8(2), 17-25.
[51]
Sayeed, M.A.; Rana, S. In vitro and in vivo interaction study between Ketotifen Fumarate and Metformin Hydrochloride. J. Sci. Technol., 2016, 11(4), 21-29.
[52]
Sri, K.V.; Anusha, A.; Sudhakar, M. UV-spectrophotometry method for the estimation of linagliptin in bulk and pharmaceutical formulations. Asian J. Res. Chem, 2016, 9(1), 4750.
[http://dx.doi.org/10.5958/0974-4150.2016.00009.2]
[53]
Das, J.; Khan, I.N.; Siraji, F.; Sharif, S.R.; Ajrin, M. In-vitro interaction of verapamil hydrochloride with magnesium sulphate (anhydrous) and its influence on protein binding of verapamil hydrochloride. 2011, Vol. 1, 122-126.
[54]
Voigt, M. On the photodegradation of Azithromycin, erythromycin and tylosin and their transformation products–A kinetic study. Sustain. Chem. Pharm., 2017, 5, 131-140.
[http://dx.doi.org/10.1016/j.scp.2016.12.001]
[55]
Amanlou, M.; Zarei-Ghobadi, M.; Rofouei, M.K.; Saremi, S.; Kebriaeezadeh, A. Extractive spectrophotometric method for determination of pioglitazone hydrochloride in raw material and tablets using ion-pair formation. J. Chem., 2010, 7(3), 915-921.
[http://dx.doi.org/10.1155/2010/257593]
[56]
Pignatello, R.; Castelli, F. Calorimetric techniques to study the interaction of drugs with biomembrane models. J. Pharm. Bioallied Sci., 2011, 3(1), 1-2.
[http://dx.doi.org/10.4103/0975-7406.76459] [PMID: 21430950]
[57]
Serafini, M.R.; Menezes, P.P.; Costa, L.P.; Lima, C.M.; Quintans, L.J., Jr; Cardoso, J.C.; Matos, J.R.; Soares-Sobrinho, J.L.; Grangeiro, S., Jr; Nunes, P.S.; Bonjadim, L.R. Interaction of p- cymene with β-cyclodextrin. J. Therm. Anal. Calorim., 2010, 109(2), 951-955.
[http://dx.doi.org/10.1007/s10973-011-1736-x]
[58]
Arayne, M.S.; Sultana, N.; Zuberi, M.H.; Haroon, U. In vitro studies of interaction between metformin and NSAIDS (Non Steroidal Anti-Inflamatory Drugs) using spectrophotometry and RP-High Performance Liquid Chromatography. J. Chil. Chem. Soc., 2010, 55(2), 206-211.
[http://dx.doi.org/10.4067/S0717-97072010000200013]
[59]
Kumar, B.R. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). J. Pharm. Anal., 2017, 7(6), 349-364.
[http://dx.doi.org/10.1016/j.jpha.2017.06.005] [PMID: 29404060]
[60]
Brito, L.B.; Chaves, H.A.; Nascimento, A.L.; Braga, T.C.; Pfister, J.; Correa, F.R.; Mendonça, F.S. Spontaneous and experimental poisoning by Merremia macrocalyx (Convolvulaceae) in cattle. Pesqui. Vet. Bras., 2019, 39, 447-453.
[http://dx.doi.org/10.1590/1678-5150-pvb-6335]
[61]
Ouhaddouch, H.; Cheikh, A.; Idrissi, M.B.; Draoui, M.; Bouatia, M. FT-IR spectroscopy applied for identification of a mineral drug substance in drug products: Application to bentonite. J. Spectro., 2019, 2020, 1-6.
[http://dx.doi.org/10.1155/2019/2960845]
[62]
Tay, Y.N.; Bakar, M.H.; Azmi, M.N.; Saad, N.A.; Awang, K.; Litaudon, M.; Kassim, M.A. Inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of Beilschmiedia species extracts. IOP Conf. Series Mat. Sci. Engin., 2020, 716(1), 012007.
[http://dx.doi.org/10.1088/1757-899X/716/1/012007]
[63]
Madni, A.; Ekwal, M.; Ahmad, S.; Din, I.; Hussain, Z.; Muhammad Ranjha, N.; Imran Khan, M.; Akhlaq, M.; Ahmad Mahmood, M.; Zafar, H. FTIR Drug-Polymer Interactions Studies of Perindopril Erbumine. J. Chem. Soc. Pak., 2014, 36(6), 1064-1070.
[64]
Alam, M.M.; Tasneem, F.; Kabir, A.L.; Rouf, A.S. Study of drug-drug and drug-food interactions of mesalazine through FTIR and DSC. J. Pharm. Sci., 2019, 18(2), 257-269.
[http://dx.doi.org/10.3329/dujps.v18i2.44466]
[65]
Veni, D.K.; Gupta, N.V. Development and evaluation of Eudragit coated environmental sensitive solid lipid nanoparticles using central composite design module for enhancement of oral bioavailability of linagliptin. Intl. J. Poly. Mat. Poly. Biomat., 2020, 69(7), 407-418.
[http://dx.doi.org/10.1080/00914037.2019.1570513]
[66]
Sahoo, S.; Chakraborti, C.K.; Mishra, S.C. Qualitative analysis of controlled release ciprofloxacin/carbopol 934 mucoadhesive suspension. J. Adv. Pharm. Technol. Res., 2011, 2(3), 195-204.
[http://dx.doi.org/10.4103/2231-4040.85541] [PMID: 22171318]
[67]
Rahman, M.F.; Salam, M.A.; Rahman, A.; Sultan, M.Z. Studies of interactions of valsartan, glimepiride and ciprofloxacin HCl by DSC and HPLC. Bangladesh Pharm. J., 2017, 20(2), 194199.
[http://dx.doi.org/10.3329/bpj.v20i2.37885]
[68]
Chowdhury, K.A.A.; Kabir, M.S.H.; Hossain, M.M.; Chowdhury, T.A.; Chakrabarty, N. In vitro, in vivo and in silico drug drug interaction study between Vildagliptin and Bisoprolol fumarate. IIUC Studies, 2017, 14(1), 29-44.
[http://dx.doi.org/10.3329/iiucs.v14i1.37653]
[69]
Sayeed, M.A.; Habib, R.; Rahman, M.; Banna, H.A.; Rana, S. Interaction of Ketotifen Fumarate with anhydrous theophylline in simulated gastric and intestinal media and effect on protein binding. Trop. J. Pharm. Res., 2012, 11(2), 263-268.
[http://dx.doi.org/10.4314/tjpr.v11i2.13]
[70]
Xia, F.; Xu, X.; Zhai, H.; Meng, Y.; Zhang, H.; Du, S.; Xu, H.; Wu, H.; Lu, Y. Castration-induced testosterone deficiency increases fasting glucose associated with hepatic and extra-hepatic insulin resistance in adult male rats. Reprod. Biol. Endocrinol., 2013, 11, 106.
[http://dx.doi.org/10.1186/1477-7827-11-106] [PMID: 24238614]
[71]
Christoffersen, B.; Raun, K.; Svendsen, O.; Fledelius, C.; Golozoubova, V. Evalution of the castrated male Sprague-Dawley rat as a model of the metabolic syndrome and type 2 diabetes. Int. J. Obes., 2006, 30(8), 1288-1297.
[http://dx.doi.org/10.1038/sj.ijo.0803261] [PMID: 16505834]
[72]
Inoue, T.; Zakikhani, M.; David, S.; Algire, C.; Blouin, M.J.; Pollak, M. Effects of castration on insulin levels and glucose tolerance in the mouse differ from those in man. Prostate, 2010, 70(15), 1628-1635.
[http://dx.doi.org/10.1002/pros.21198] [PMID: 20564323]
[73]
Jia, Y.; Yee, J.K.; Wang, C.; Nikolaenko, L.; Diaz-Arjonilla, M.; Cohen, J.N.; French, S.W.; Liu, P.Y.; Lue, Y.; Lee, W.P.; Swerdloff, R.S. Testosterone protects high-fat/low-carbohydrate diet-induced nonalcoholic fatty liver disease in castrated male rats mainly via modulating endoplasmic reticulum stress. Am. J. Physiol. Endocrinol. Metab., 2018, 314(4), E366-E376.
[http://dx.doi.org/10.1152/ajpendo.00124.2017] [PMID: 28928235]
[74]
Harada, N.; Katsuki, T.; Takahashi, Y.; Masuda, T.; Yoshinaga, M.; Adachi, T.; Izawa, T.; Kuwamura, M.; Nakano, Y.; Yamaji, R.; Inui, H. Androgen receptor silences thioredoxin-interacting protein and competitively inhibits glucocorticoid receptor-mediated apoptosis in pancreatic β-Cells. J. Cell. Biochem., 2015, 116(6), 998-1006.
[http://dx.doi.org/10.1002/jcb.25054] [PMID: 25639671]
[75]
Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons; , 2004.
[http://dx.doi.org/10.1002/0470011149]
[76]
Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Elsevier; , 1991.
[77]
Keresztury, G.; Holly, S.; Besenyei, G.; Varga, J.; Wang, A.; Durig, J.R. Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N,N-dimethylthiocarbamate. Spectrochim. Acta A, 1993, 49(13-14), 2007-2026.
[http://dx.doi.org/10.1016/S0584-8539(09)91012-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy