Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Serial Extraction Technique of Rich Antibacterial Compounds in Sargassum cristaefolium Using Different Solvents and Testing their Activity

Author(s): Bambang Susilo*, Abd. Rohim and Midia Lestari Wahyu

Volume 18, Issue 3, 2022

Published on: 17 December, 2021

Article ID: e100921196341 Pages: 8

DOI: 10.2174/1573407217666210910095732

open access plus

Open Access Journals Promotions 2
Abstract

Background: Sargassum cristaefolium, as one of the brown seaweeds locally found in Indonesia, is extracted using the serial technique employing different solvents.

Methods: S. cristaefolium powder (50 mesh) was extracted with three different solvents, including hexane, ethyl acetate, and methanol. S. cristaefolium powder residue was dried prior to serial re-extraction using different solvents. Three serial extracts were obtained and named as 1-stage extract, 2-stage extract, and 3-stage extract. Besides, a single-step extract (i.e., extraction using only methanol) was produced to be compared with three serial extracts in antibacterial activity tests (against E. coli and S. aureus). The three serial extracts were detected for their antibacterial compounds using GC-MS, LC-HRMS, and FT-IR.

Results: The 3-stage extract exhibited the highest extraction yield. On S. aureus, the inhibition zone in all extracts was not significantly different. On E.coli, the highest inhibition zone (5.42±0.14 mm) was of the 3-stage extract; indeed, it was higher than both antibiotic and a single- step extract. Antibacterial compounds, such as phenol, 9-Tricosene(Z)-, palmitic acid, and oleamide, were present in all extracts. Other antibacterial compound types, both the 1-stage and 2-stage extracts, contained 7 types, whilst the 3-stage extract contained the most types (11 types). Particularly, hexyl cinnamic aldehyde, betaine and several cinnamic aldehyde groups were detected only in the 3-stage extract comprising the dominant area. The carboxylic acid groups were detected in all extracts to confirm the fatty acid structure.

Conclusion: The serial extraction technique could produce the 3-stage extract which exhibited the strongest antibacterial activity and contained the richest antibacterial compounds.

Keywords: Sargassum cristaefolium, serial extraction, antibacterial compounds, solvent, LC-HRMS, FT-IR.

Graphical Abstract
[1]
Hwang, P-A.; Hung, Y-L.; Gau, S-Y.; Wu, C-H.; Chou, Y-C. Fucoxanthin-containing ethanolic extract from sargassum hemiphyllum inhibits adipogenesis in 3T3-L1 cells. J. Taiwan Fish Res., 2014, 22, 93-101.
[2]
Rohim, A-Y.; Estiasih, T. Senyawa-senyawa bioaktif pada rumput laut cokelat Sargassum sp.:  Ulasan ilmiah. J. Teknol Pertan, 2019, 20, 115-126.
[http://dx.doi.org/10.21776/ub.jtp.2019.020.02.5]
[3]
Palanisamy, S.; Vinosha, M.; Rajasekar, P.; Anjali, R.; Sathiyaraj, G.; Marudhupandi, T. Antibacterial efficacy of a fucoidan fraction (Fu-F2) extracted from Sargassum polycystum. Int. J. Biol. Macromol., 2019, 125, 485-495.
[http://dx.doi.org/10.1016/J.IJBIOMAC.2018.12.070]
[4]
Jaswir, I.; Tawakalit Tope, A.H.; Raus, R.A.; Ademola Monsur, H.; Ramli, N. Study on anti-bacterial potentials of some Malaysian brown seaweeds. Food Hydrocoll., 2014, 42, 275-279.
[http://dx.doi.org/10.1016/J.FOODHYD.2014.03.008]
[5]
Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 2013, 117, 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[6]
Juin, C.; Chérouvrier, J.R.; Thiéry, V.; Gagez, A.L.; Bérard, J.B.; Joguet, N. Microwave-assisted extraction of phycobiliproteins from porphyridium purpureum. Appl. Biochem. Biotechnol., 2015, 175, 1-15.
[http://dx.doi.org/10.1007/s12010-014-1250-2]
[7]
Asgharpour, M.; Rodgers, B.; Hestekin, J.A. Eicosapentaenoic acid from Porphyridium cruentum: Increasing growth and productivity of microalgae for pharmaceutical products. Energies, 2015, 8, 10487-10503.
[http://dx.doi.org/10.3390/en80910487]
[8]
Davoodbasha, M.A.; Edachery, B.; Nooruddin, T.; Lee, S.Y.; Kim, J.W. An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property. Microb. Pathog., 2018, 115, 233-238.
[http://dx.doi.org/10.1016/j.micpath.2017.12.049]
[9]
Moreira, L.M.; de Magalhães, W.T.; Farias, W.R.L.; Rocha, M.V.P. Extraction of biomolecules from Spirulina platensis using non-conventional processes and harmless solvents. J. Environ. Chem. Eng., 2017, 5, 2101-2106.
[http://dx.doi.org/10.1016/j.jece.2017.04.008]
[10]
Puspita, M.; Setyawidati, N.A.R.; Stiger-Pouvreau, V.; Vandanjon, L.; Widowati, I.; Radjasa, O.K. Indonesian Sargassum species bioprospecting: Potential applications of bioactive compounds and challenge for sustainable development. Adv. Bot. Res., 2020, 95, 113-161.
[http://dx.doi.org/10.1016/BS.ABR.2019.12.002]
[11]
Jin, W.; Zhang, W.; Wang, J.; Yao, J.; Xie, E.; Liu, D. A study of neuroprotective and antioxidant activities of heteropolysaccharides from six Sargassum species. Int. J. Biol. Macromol., 2014, 67, 336-342.
[http://dx.doi.org/10.1016/J.IJBIOMAC.2014.03.031]
[12]
Sanjeewa, K.K.A.; Kang, N.; Ahn, G.; Jee, Y.; Kim, Y.T.; Jeon, Y.J. Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: A review. Food Hydrocoll., 2018, 81, 200-208.
[http://dx.doi.org/10.1016/J.FOODHYD.2018.02.040]
[13]
Jesumani, V.; Du, H.; Pei, P.; Zheng, C.; Cheong, K.L.; Huang, N. Unravelling property of polysaccharides from Sargassum sp. as an anti-wrinkle and skin whitening property. Int. J. Biol. Macromol., 2019, 140, 216-224.
[http://dx.doi.org/10.1016/J.IJBIOMAC.2019.08.027]
[14]
Liu, L.; Heinrich, M.; Myers, S.; Dworjanyn, S.A. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: A phytochemical and pharmacological review. J. Ethnopharmacol., 2012, 142, 591-619.
[http://dx.doi.org/10.1016/J.JEP.2012.05.046]
[15]
Moubayed, N.M.S.; Al Houri, H.J.; Al Khulaifi, M.M.; Al Farraj, D.A. Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J. Biol. Sci., 2017, 24, 162-169.
[http://dx.doi.org/10.1016/J.SJBS.2016.05.018]
[16]
El Shafay, S.M.; Ali, S.S.; El-Sheekh, M.M. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt J. Aquat. Res., 2016, 42, 65-74.
[http://dx.doi.org/10.1016/J.EJAR.2015.11.006]
[17]
Kumar, S.; Mishra, A.; Pandey, A.K. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complement. Altern. Med., 2013, 13, 1-9.
[http://dx.doi.org/10.1186/1472-6882-13-120]
[18]
Salem, D.M.S.A.; Ismail, M.M.; Tadros, H.R.Z. Evaluation of the antibiofilm activity of three seaweed species and their biosynthesized iron oxide nanoparticles (Fe3O4-NPs). Egypt J. Aquat. Res., 2020, 46, 333-339.
[http://dx.doi.org/10.1016/J.EJAR.2020.09.001]
[19]
Sowndhararajan, K.; Kang, S.C. Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii Wight & Arn. Saudi J. Biol. Sci., 2013, 20, 319-325.
[http://dx.doi.org/10.1016/J.SJBS.2012.12.005]
[20]
Swamy, M.K.; Arumugam, G.; Kaur, R.; Ghasemzadeh, A.; Yusoff, M.M.; Sinniah, U.R. GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evid. Based Complement. Alternat. Med., 2017, 2017.
[http://dx.doi.org/10.1155/2017/1517683]
[21]
Yang, X.Q; Fan, R; Zheng, Y.K; Shi, J.B; Zheng, Q. Non-target screening analysis of volatile organic compounds in drinking water by headspace-solid phase microextraction gas chromatography-mass spectrometry. Chin. J. Anal. Chem., 2020, 48, 1228-1235.
[http://dx.doi.org/10.1016/S1872-2040(20)60044-5]
[22]
Susilo, B.H.M.L.W.; Rohim, A. Impact of using low-cost packaging material of commercial herbal oil on its antibacterial compounds. All Life, 2020, 13, 516-523.
[http://dx.doi.org/10.1080/26895293.2020.1817800]
[23]
Osuna-Ruiz, I.; López-Saiz, C-M.; Burgos-Hernández, A.; Velázquez, C.; Nieves-Soto, M.; Hurtado-Oliva, M.A. Antioxidant, antimutagenic and antiproliferative activities in selected seaweed species from Sinaloa, Mexico. Pharm. Biol., 2016, 54, 2196-2210.
[http://dx.doi.org/10.3109/13880209.2016.1150305]
[24]
Gavoille, A.; Bardy, B.; Andremont, A. Measurement of inhibition zone diameter in disk susceptibility tests by computerized image analysis. Comput. Biol. Med., 1994, 24, 179-188.
[http://dx.doi.org/10.1016/0010-4825(94)90014-0]
[25]
Bhagavathy, S.; Sumathi, P.; Jancy Sherene Bell, I. Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pac. J. Trop. Biomed., 2011, 1, S1-S7.
[http://dx.doi.org/10.1016/S2221-1691(11)60111-1]
[26]
Manivannan, K.; Karthikai devi, G; Anantharaman, P; Balasubramanian, T Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar. Asian Pac. J. Trop. Biomed., 2011, 1, 114-120.
[http://dx.doi.org/10.1016/S2221-1691(11)60007-5]
[27]
Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf., 2017, 16, 1243-1268.
[http://dx.doi.org/10.1111/1541-4337.12298]
[28]
Ncube, S.; Dube, S.; Nindi, M.M. Determination of volatile compounds during deterioration of African opaque beer using a stir bar sorptive extraction technique and gas chromatography-high resolution mass spectrometry. Curr. Res. Food Sci., 2020, 3, 256-267.
[http://dx.doi.org/10.1016/J.CRFS.2020.10.003]
[29]
Conde, E.; Moure, A.; Domínguez, H. Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum. J. Appl. Phycol., 2014, 27, 957-964.
[http://dx.doi.org/10.1007/S10811-014-0389-0]
[30]
Barot, M.; Kumar, J.I.N.; Kumar, R.N. Bioactive compounds and antifungal activity of three different seaweed species Ulva lactuca, Sargassum tenerrimum and Laurencia obtusa collected from Okha coast, Western India. J. Coast. Life Med., 2016, 4, 284-289.
[http://dx.doi.org/10.12980/JCLM.4.2016J5-185]
[31]
Guzman, J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules, 2014, 19, 19292-19349.
[http://dx.doi.org/10.3390/MOLECULES191219292]
[32]
Kim, H.O.; Park, S.W.; Park, H.D. Inactivation of Escherichia coli O157: H7 by cinnamic aldehyde purified from Cinnamomum cassia shoot. Food Microbiol., 2004, 21, 105-110.
[http://dx.doi.org/10.1016/S0740-0020(03)00010-8]
[33]
Aydoğan, C. Recent advances and applications in LC-HRMS for food and plant natural products: A critical review. Anal. Bioanal. Chem., 2020, 412, 1973-1991.
[http://dx.doi.org/10.1007/S00216-019-02328-6]
[34]
Zhao, F.; Wang, P.; Lucardi, R.D.; Su, Z.; Li, S. Natural sources and bioactivities of 2,4-Di-tert-butylphenol and its analogs. Toxins (Basel), 2020, 12, 35.
[http://dx.doi.org/10.3390/TOXINS12010035]
[35]
Muvva, V.; Rajesh, D.; Munaganti, K.; Naragani, K.; Mangamuri, U.; Poda, S. Antimicrobial potential of Streptomyces cheonanensis VUK-A from mangrove origin. Int. J. Pharm. Pharm. Sci., 2016, 8, 53-57.
[36]
Yildirim, F.; Memis, Y.; Ozturk, A.; Caliskan, Z.; Savran, A.; Abdullah, M.I. Antimicrobial activity of the essential oil and the extracts of kitaibelia balansae species. J. Essent. Oil Bear Plants, 2017, 20, 809-819.
[http://dx.doi.org/10.1080/0972060X.2017.1324323]
[37]
Bassin, J.P.; Botha, M.J.; Garikipati, R.; Goyal, M.; Martin, L.; Shah, A. Synthesis and antibacterial activity of benzo[4,5]isothiazolo[2,3-a]pyrazine-6,6-dioxide derivatives. Molecules, 2017, 22, 1889.
[http://dx.doi.org/10.3390/MOLECULES22111889]
[38]
Liu, Y.; Wang, H.; Wei, S.; Yan, Z. Chemical composition and antimicrobial activity of the essential oils extracted by microwave-assisted hydrodistillation from the flowers of two plumeria species. Anal. Lett., 2012, 45, 2389-2397.
[http://dx.doi.org/10.1080/00032719.2012.689905]
[39]
Kwon, J.A.; Yu, C.B.; Park, H.D. Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Lett. Appl. Microbiol., 2003, 37, 61-65.
[http://dx.doi.org/10.1046/J.1472-765X.2003.01350.X]
[40]
Gołebiowski, M.; Cerkowniak, M.; Urbanek, A.; Dawgul, M.; Kamysz, W.; Boguś, M.I. Identification and antifungal activity of novel organic compounds found in cuticular and internal lipids of medically important flies. Microbiol. Res., 2015, 170, 213-222.
[http://dx.doi.org/10.1016/J.MICRES.2014.06.004]
[41]
Ceyhan-Guvensen, N.; Keskin, D. Chemical content and antimicrobial properties of three different extracts of Mentha pulegium leaves from Mugla Region, Turkey. J. Environ. Biol., 2016, 37, 1341-1346.
[42]
Alagić, S.; Selekcija, I.S.; Palić, R.; Stojanović, G.; Nikolić, M. Chemical composition and antimicrobial activity of the essential oil of the oriental tobacco yaka. J. Essent. Oil Res., 2011, 14, 230-232.
[http://dx.doi.org/10.1080/10412905.2002.9699832]
[43]
Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I. Phytol: A review of biomedical activities. Food Chem. Toxicol., 2018, 121, 82-94.
[http://dx.doi.org/10.1016/J.FCT.2018.08.032]
[44]
Saha, M.; Bandyopadhyay, P.K. In vivo and in vitro antimicrobial activity of phytol, a diterpene molecule, isolated and characterized from Adhatoda vasica Nees. (Acanthaceae), to control severe bacterial disease of ornamental fish, Carassius auratus, caused by Bacillus licheniformis P. Microb. Pathog., 2020, 141, 103977.
[http://dx.doi.org/10.1016/J.MICPATH.2020.103977]
[45]
Mongalo, S.O.; Antimicrobial, M.T. cytotoxicity, anticancer and antioxidant activities of Jatropha zeyheri Sond. roots (Euphorbiaceae). Asian Pac. J. Trop. Biomed., 2019, 9, 307.
[http://dx.doi.org/10.4103/2221-1691.261822]
[46]
Saïdana, D.; Mahjoub, M.A.; Boussaada, O.; Chriaa, J.; Chéraif, I.; Daami, M. Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiol. Res., 2008, 163, 445-455.
[http://dx.doi.org/10.1016/J.MICRES.2006.07.009]
[47]
Al-Saif, SSA llah; Abdel-Raouf, N.; El-Wazanani, HA.; Aref, IA. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J. Biol. Sci., 2014, 21, 57-64.
[http://dx.doi.org/10.1016/J.SJBS.2013.06.001]
[48]
Afzal, M.; Shahid, M.; Mehmood, Z.; Bukhari, S.A.; Talpur, M.M.A. Antimicrobial activity of extract and fractions of different parts and gc-ms profiling of essential oil of cichorium intybus extracted by super critical fluid extraction. Asian J. Chem., 2014, 26, 531-536.
[http://dx.doi.org/10.14233/AJCHEM.2014.15667]
[49]
Ali Ibrahim, N.; Musa, S.K.; Yassin, S.M.; Abuniama, N.H.; Awadalkareem, S.; Osama, A. Chemical composition and antimicrobial activity of essential oil of Belpharis linariifolia. Int. J. Sci. Technol. Soc., 2017, 5, 66.
[http://dx.doi.org/10.11648/J.IJSTS.20170504.12]
[50]
Nobre, C.B.; de Sousa, E.O.; de Lima Silva, J.M.F.; Melo Coutinho, H.D.; da Costa, J.G.M. Chemical composition and antibacterial activity of fixed oils of Mauritia flexuosa and Orbignya speciosa associated with aminoglycosides. Eur. J. Integr. Med., 2018, 23, 84-89.
[http://dx.doi.org/10.1016/J.EUJIM.2018.09.009]
[51]
Huang, C.B.; George, B.; Ebersole, J.L. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch. Oral Biol., 2010, 55, 555-560.
[http://dx.doi.org/10.1016/J.ARCHORALBIO.2010.05.009]
[52]
Zhao, H.F.; Jiang, W.D.; Liu, Y.; Jiang, J.; Wu, P.; Kuang, S.Y. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol., 2016, 52, 139-150.
[http://dx.doi.org/10.1016/J.FSI.2016.03.029]
[53]
El-Moez, S.I.A.; Abdelmonem, M.A.; Gomaa, A.M.; Aziz, M.F.A. In vitro antibacterial activities of dietary medicinal ethanolic extracts against pathogenic reference strains of animal origin. Afr. J. Microbiol. Res., 2013, 7, 5261-5270.
[http://dx.doi.org/10.5897/AJMR2013.5477]
[54]
Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res., 2021, 82, 101093.
[http://dx.doi.org/10.1016/J.PLIPRES.2021.101093]
[55]
Xie, Y.; Peng, Q.; Ji, Y.; Xie, A.; Yang, L.; Mu, S. Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Front. Microbiol., 2021, 12, 645484.
[http://dx.doi.org/10.3389/FMICB.2021.645484]
[56]
Ali, S.M.; Khan, N.A.; Sagathevan, K.; Anwar, A.; Siddiqui, R. Biologically active metabolite(s) from haemolymph of red-headed centipede Scolopendra subspinipes possess broad spectrum antibacterial activity. AMB Express, 2019, 9, 1-17.
[http://dx.doi.org/10.1186/S13568-019-0816-3]
[57]
Duan, P.; Xu, Q.; Zhang, X.; Chen, J.; Zheng, W.; Li, L. Naturally occurring betaine grafted on cotton fabric for achieving antibacterial and anti-protein adsorption functions. Cellulose, 2020, 27, 6603-6615.
[http://dx.doi.org/10.1007/S10570-020-03228-0]
[58]
Paneva, D.; Manolova, N.; Argirova, M.; Rashkov, I. Antibacterial electrospun poly(ɛ-caprolactone)/ascorbyl palmitate nanofibrous materials. Int. J. Pharm., 2011, 416, 346-355.
[http://dx.doi.org/10.1016/J.IJPHARM.2011.06.032]
[59]
Jumina, J.; Lavendi, W.; Singgih, T.; Triono, S.; Kurniawan, Y.S.; Koketsu, M. Preparation of monoacylglycerol derivatives from indonesian edible oil and their antimicrobial assay against Staphylococcus aureus and Escherichia coli. Sci. Rep., 2019, 9, 1-8.
[http://dx.doi.org/10.1038/s41598-019-47373-4]
[60]
Naik, M.; Natarajan, V.; Rawson, A.; Rangarajan, J.; Manickam, L. Extraction kinetics and quality evaluation of oil extracted from bitter gourd (Momardica charantia L.) seeds using emergent technologies. LWT, 2021, 140, 110714.
[http://dx.doi.org/10.1016/J.LWT.2020.110714]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy