Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

GC-MS Characterization, In Vitro Antioxidant, Anti-inflammatory and Potential Antidermatophytic Activity of Citrullus lanatus Seed Oil

Author(s): Ruhi Pathania, Prince Chawla, Abhishek Sharma, Ravinder Kaushik and Mohammed Azhar Khan*

Volume 20, Issue 1, 2022

Published on: 30 November, 2021

Article ID: e060921196193 Pages: 9

DOI: 10.2174/2211352519666210906151310

Price: $65

Abstract

Background: Dermatophytes are well-known fungus having the capability to invade keratinized tissues of nails, skin, and hair, of humans and other animals, causing dermatophytosis. Citrullus lanatus (watermelon) seed is a rich source of vitamin E, essential fatty acids, and minerals, bearing various health benefits. Despite the presence of many useful components, the oil is not much explored. Accordingly, the study was planned to investigate the fatty acid profiling, in vitro antioxidant, anti-inflammatory, and potential antidermatophytic activity of Citrullus lanatus seed oil against dermatophytic strains.

Methods: The C. lanatus oil was extracted from seeds, and fatty acid profiling was characterized by GC-MS. Further, the oil was subjected to DPPH scavenging activity, and the anti-inflammatory activity was evaluated from Bovine serum albumin assay. The antidermatophytic screening against Microsporum canis, Trichophyton rubrum, and Trichophyton mentagrophytes was carried out by agar well diffusion, broth microdilution assay, and growth kinetics assay.

Results: The C. lanatus seed oil exhibited good antioxidant activity close to ascorbic acid, i.e., IC50- 52.22 μg/ml, 35.72 μg/ml, respectively, and the oil exhibited moderate anti-inflammatory activity (315.2 μg/ml) as that of the standard drug diclofenac sodium (174.3μg/ml). The fatty acid profiling indicates the presence of eight main compounds, out of which ç-tocopherol, butylated hydroxytoluene, and hexadecanoic acid are predominantly present. The C. lanatus seed oil showed promising activity against T. rubrum with a lower minimum inhibitory concentration value with respect to positive controls, Fluconazole and Ketoconazole. The oil also had a strong effect on timedependent kinetic inhibition against T. rubrum. This was the first report of C. lanatus seed oil against any dermatophyte.

Conclusion: In conclusion, the study supports the exploitation of C. lanatus seed oil and its main compounds as a source of natural antioxidants, anti-inflammatory, and as a novel agent against dermatophytes for curing superficial fungal infections in the near future.

Keywords: Trichophyton rubrum, Citrullus lanatus, Trichophyton mentagrophytes, Microsporum canis, fatty acid, dermatophytes.

Graphical Abstract
[1]
Jessup, C.J.; Warner, J.; Isham, N.; Hasan, I.; Ghannoum, M.A. Antifungal susceptibility testing of dermatophytes: establishing a medium for inducing conidial growth and evaluation of susceptibility of clinical isolates. J. Clin. Microbiol., 2000, 38(1), 341-344.
[http://dx.doi.org/10.1128/JCM.38.1.341-344.2000] [PMID: 10618112]
[2]
Ruengapirom, P.; Prapasrakul, N.; Niyomtum, V.; Sutheeratt, S. The incidence of fungal skin diseases in companion animals. Wetchasan Sattawaphaet, 2000, 12(1-2), 17-31.
[3]
Havlickova, B.; Czaika, V.A.; Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses, 2008, 51(Suppl. 4), 2-15.
[http://dx.doi.org/10.1111/j.1439-0507.2008.01606.x] [PMID: 18783559]
[4]
Nagamani, A. A study on anti dermatophytic potential of selected ethno medicinal plants against Trichophyton rubrum, a common etiologic agent in and around Visakhapatnam region (India). Asian Pac. J. Trop. Biomed., 2012, 2(3), 1874-S1878.
[http://dx.doi.org/10.1016/S2221-1691(12)60512-7]
[5]
Rajagopalan, M.; Inamadar, A.; Mittal, A.; Miskeen, A.K.; Srinivas, C.R.; Sardana, K.; Godse, K.; Patel, K.; Rengasamy, M.; Rudramurthy, S.; Dogra, S. Expert consensus on the management of dermatophytosis in India (ECTODERM India). BMC Dermatol., 2018, 18(1), 6.
[http://dx.doi.org/10.1186/s12895-018-0073-1] [PMID: 30041646]
[6]
de Pauw, B. Is there a need for new antifungal agents? Clin. Microbiol. Infect., 2000, 6(Suppl. 2), 23-28.
[http://dx.doi.org/10.1046/j.1469-0691.2000.00006.x] [PMID: 11523522]
[7]
Sahni, K.; Singh, S.; Dogra, S. Newer topical treatments in skin and nail dermatophyte infections. Indian Dermatol. Online J., 2018, 9(3), 149-158.
[PMID: 29854633]
[8]
Ghannoum, M. Azole resistance in dermatophytes: prevalence and mechanism of action. J. Am. Podiatr. Med. Assoc., 2016, 106(1), 79-86.
[http://dx.doi.org/10.7547/14-109] [PMID: 26895366]
[9]
Curtis, C. Use and abuse of topical dermatological therapy in dogs and cats Part 1. Shampoo therapy. In Pract., 1998, 20(5), 244-251.
[http://dx.doi.org/10.1136/inpract.20.5.244]
[10]
Park, M.J.; Gwak, K.S.; Yang, I.; Choi, W.S.; Jo, H.J.; Chang, J.W.; Jeung, E.B.; Choi, I.G. Antifungal activities of the essential oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their constituents against various dermatophytes. J. Microbiol., 2007, 45(5), 460-465.
[PMID: 17978807]
[11]
Murbach Teles Andrade, B.F.; Nunes Barbosa, L.; da Silva Probst, I.; Fernandes Júnior, A. Antimicrobial activity of essential oils. J. Essent. Oil Res., 2014, 26(1), 34-40.
[http://dx.doi.org/10.1080/10412905.2013.860409]
[12]
Baratta, M.T.; Dorman, H.D.; Deans, S.G.; Figueiredo, A.C.; Barroso, J.G.; Ruberto, G. Antimicrobial and antioxidant properties of some commercial essential oils. Flavour Fragrance J., 1998, 13(4), 235-244.
[http://dx.doi.org/10.1002/(SICI)1099-1026(1998070)13:4<235::AID-FFJ733>3.0.CO;2-T]
[13]
Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V. Essential oils and antifungal activity. Pharmaceuticals (Basel), 2017, 10(4), 86.
[http://dx.doi.org/10.3390/ph10040086] [PMID: 29099084]
[14]
Kang, C.A.; Shin, S.W. Studies on Compositions and Antifungal Activities of Essential Oils from Cultivars of Brassica juncea L. Korean J. Pharmacogn., 2001, 32(2), 140-144.
[15]
Pathania, R.; Kaushik, R.; Khan, M.A. Essential oil nanoemulsions and their antimicrobial and food applications. Current Research in Nutrition and Food Science Journal, 2018, 6(3), 626-643.
[http://dx.doi.org/10.12944/CRNFSJ.6.3.05]
[16]
Madhavi, P.; Rao, M.; Vakati, K.; Rahman, H.; Eswaraiah, M.C. Evaluation of anti-inflammatory activity of Citrullus lanatus seed oil by in-vivo and in-vitro models. Int. Res. J. Pharm. Appl. Sci., 2012, 2(4), 104-108.
[17]
Messaoudi, S.; Tebibel, S.; Beladjila, A.K.; Touhami, F.K.; Kabouche, Z. Anti-hyperlipidemic, Anti-inflammatory and Antioxidant Activities of Citrullus lanatus. WORLD, 2019, 8(1), 100-106.
[18]
Ayoola, G.A.; Lawore, F.M.; Adelowotan, T.; Aibinu, I.E.; Adenipekun, E.; Coker, H.A.; Odugbemi, T.O. Chemical analysis and antimicrobial activity of the essential oil of Syzigium aromaticum (clove). Afr. J. Microbiol. Res., 2008, 2(7), 162-166.
[19]
AOACOfficial methods of analysis; Association of official analytical chemists: 18th edition Washington, DC, U.S.A, 2005.
[20]
Adams, R.P. Identification of essential oil components by gas chromatography/mass spectrometry; Allured publishing corporation: Carol Stream, IL, 2007, 456, .
[21]
Sadh, P.K.; Chawla, P.; Duhan, J.S. Fermentation approach on phenolic, antioxidants and functional properties of peanut press cake. Food Biosci., 2018, 22, 113-120.
[http://dx.doi.org/10.1016/j.fbio.2018.01.011]
[22]
Kar, B.; Kumar, R.S.; Karmakar, I.; Dola, N.; Bala, A.; Mazumder, U.K.; Hadar, P.K. Antioxidant and in vitro anti-inflammatory activities of Mimusops elengi leaves. Asian Pac. J. Trop. Biomed., 2012, 2(2), S976-S980.
[http://dx.doi.org/10.1016/S2221-1691(12)60346-3]
[23]
Balakumar, S.; Rajan, S.; Thirunalasundari, T.; Jeeva, S. Antifungal activity of Aegle marmelos (L.) Correa (Rutaceae) leaf extract on dermatophytes. Asian Pac. J. Trop. Biomed., 2011, 1(4), 309-312.
[http://dx.doi.org/10.1016/S2221-1691(11)60049-X] [PMID: 23569781]
[24]
CLSI/Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi. Wayne, 2002.
[25]
McFarland, J. The nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J. Am. Med. Assoc., 1907, 49(14), 1176-1178.
[http://dx.doi.org/10.1001/jama.1907.25320140022001f]
[26]
Lee, S.J.; Han, J.I.; Lee, G.S.; Park, M.J.; Choi, I.G.; Na, K.J.; Jeung, E.B. Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model. Biol. Pharm. Bull., 2007, 30(1), 184-188.
[http://dx.doi.org/10.1248/bpb.30.184] [PMID: 17202684]
[27]
Rana, B.K.; Singh, U.P.; Taneja, V. Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos. J. Ethnopharmacol., 1997, 57(1), 29-34.
[http://dx.doi.org/10.1016/S0378-8741(97)00044-5] [PMID: 9234162]
[28]
Chawla, P.; Kumar, N.; Kaushik, R.; Dhull, S.B. Synthesis, characterization and cellular mineral absorption of nanoemulsions of Rhododendron arboreum flower extracts stabilized with gum arabic. J. Food Sci. Technol., 2019, 56(12), 5194-5203.
[http://dx.doi.org/10.1007/s13197-019-03988-z] [PMID: 31749466]
[29]
Akbar, E.; Yaakob, Z.; Kamarudin, S.K.; Ismail, M.; Salimon, J. Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur. J. Sci. Res., 2009, 29(3), 396-403.
[30]
Ahmad, M.; Faruk, R.; Shagari, K.A.; Umar, S. Analysis of essential oil from watermelon seeds. SosPoly J. AGR. SCI., 2017.
[31]
Oluwadare, I.; Olawunmi, M.O.; Taiwo, A. Effects of drying methods on properties of water melon (Citrullus lanatus) seed oil. 2008.
[32]
Cheikhyoussef, N.; Kandawa-Schulz, M.; Böck, R.; de Koning, C.; Cheikhyoussef, A.; Hussein, A.A. Characterization of Acanthosicyos horridus and Citrullus lanatus seed oils: two melon seed oils from Namibia used in food and cosmetics applications. 3 Biotech, 2017, 7(5), 297.
[33]
Albishri, H.M.; Almaghrabi, O.A.; Moussa, T.A. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy. Pharmacogn. Mag., 2013, 9(33), 58-66.
[http://dx.doi.org/10.4103/0973-1296.108142] [PMID: 23661995]
[34]
Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem., 2013, 61(46), 10835-10847.
[http://dx.doi.org/10.1021/jf403496k] [PMID: 24156356]
[35]
Choi, H.S.; Song, H.S.; Ukeda, H.; Sawamura, M. Radical-scavenging activities of citrus essential oils and their components: detection using 1,1-diphenyl-2-picrylhydrazyl. J. Agric. Food Chem., 2000, 48(9), 4156-4161.
[http://dx.doi.org/10.1021/jf000227d] [PMID: 10995330]
[36]
Atolani, O.; Omere, J.; Otuechere, C.A.; Adewuyi, A. Antioxidant and cytotoxicity effects of seed oils from edible fruits. J. Acute Dis., 2012, 1(2), 130-134.
[http://dx.doi.org/10.1016/S2221-6189(13)60030-X]
[37]
Adaramola, B.; Onigbinde, A. Physicochemical properties and mineral compositions of pawpaw and watermelon seed oils. Pak. J. Nutr., 2016, 15(1), 23-27.
[http://dx.doi.org/10.3923/pjn.2016.23.27]
[38]
Kamatou, G.P.; Viljoen, A.M. A review of the application and pharmacological properties of α‐Bisabolol and α‐Bisabolol‐rich oils. J. Am. Oil Chem. Soc., 2010, 87(1), 1-7.
[http://dx.doi.org/10.1007/s11746-009-1483-3] [PMID: 21350591]
[39]
Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules, 2010, 15(12), 9252-9287.
[http://dx.doi.org/10.3390/molecules15129252] [PMID: 21160452]
[40]
Pérez, G.S.; Zavala, S.M.; Arias, G.L.; Ramos, L.M. Anti-inflammatory activity of some essential oils. J. Essent. Oil Res., 2011, 23(5), 38-44.
[http://dx.doi.org/10.1080/10412905.2011.9700480]
[41]
Jain, N.; Sharma, M. Evaluation of Citrus lemon essential oil for its chemical and biological properties against fungi causing dermatophytic infection in human beings. Anal. Chem. Lett., 2017, 7(3), 402-409.
[http://dx.doi.org/10.1080/22297928.2017.1349620]
[42]
Jain, N.; Sharma, M.; Joshi, S.C.; Kaushik, U. Chemical composition, toxicity and antidermatophytic activity of essential oil of Trachyspermum ammi. Indian J. Pharm. Sci., 2018, 80(1), 135-142.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000338]
[43]
Khan, M.S.; Ahmad, I. Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl. Microbiol. Biotechnol., 2011, 90(3), 1083-1094.
[http://dx.doi.org/10.1007/s00253-011-3152-3] [PMID: 21336686]
[44]
Cavaleiro, C.; Pinto, E.; Gonçalves, M.J.; Salgueiro, L. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J. Appl. Microbiol., 2006, 100(6), 1333-1338.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02862.x] [PMID: 16696681]
[45]
Bajpai, V.K.; Yoon, J.I.; Kang, S.C. Antifungal potential of essential oil and various organic extracts of Nandina domestica Thunb. against skin infectious fungal pathogens. Appl. Microbiol. Biotechnol., 2009, 83(6), 1127-1133.
[http://dx.doi.org/10.1007/s00253-009-2017-5] [PMID: 19415265]
[46]
Bajpai, V.K.; Yoon, J.I.; Chul Kang, S. Antioxidant and antidermatophytic activities of essential oil and extracts of Metasequoia glyptostroboides Miki ex Hu. Food Chem. Toxicol., 2009, 47(6), 1355-1361.
[http://dx.doi.org/10.1016/j.fct.2009.03.011] [PMID: 19303043]
[47]
Rahman, A.; Al-Reza, S.M.; Siddiqui, S.A.; Chang, T.; Kang, S.C. Antifungal potential of essential oil and ethanol extracts of Lonicera japonica Thunb. against dermatophytes. EXCLI J., 2014, 13, 427-436.
[PMID: 26417269]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy