Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Obesity and Inflammation: Colorectal Cancer Engines

Author(s): Lara J. Bou Malhab* and Wael M. Abdel-Rahman

Volume 15, Issue 4, 2022

Published on: 07 January, 2022

Article ID: e060921196181 Pages: 27

DOI: 10.2174/1874467214666210906122054

Price: $65

Abstract

The prevalence of obesity continues to increase to the extent that it became a worldwide pandemic. An accumulating body of evidence has associated obesity with the development of different types of cancer, including colorectal cancer, which is a notorious disease with a high mortality rate. At the molecular level, colorectal cancer is a heterogenous disease characterized by a myriad of genetic and epigenetic alterations associated with various forms of genomic instability (detailed in Supplementary Materials). Recently, the microenvironment has emerged as a major factor in carcinogenesis. Our aim is to define the different molecular alterations leading to the development of colorectal cancer in obese patients with a focus on the role of the microenvironment in carcinogenesis. We also highlight all existent molecules in clinical trials that target the activated pathways in obesity-associated colorectal cancer, whether used as single treatments or in combination. Obesity predisposes to colorectal cancer via creating a state of chronic inflammation with dysregulated adipokines, inflammatory mediators, and other factors such as immune cell infiltration. A unifying theme in obesity-mediated colorectal cancer is the activation of the PI3K/AKT, mTOR/MAPK, and STAT3 signaling pathways. Different inhibitory molecules towards these pathways exist, increasing the therapeutic choice of obesity-associated colon cancer. However, obese patients are more likely to suffer from chemotherapy overdosing. Preventing obesity through maintaining a healthy and active lifestyle remains to be the best remedy.

Keywords: Chemotherapy, chronic inflammation, colorectal cancer, microenvironment, obesity, STAT3 signaling pathway.

Graphical Abstract
[1]
Allott, E.H.; Hursting, S.D. Obesity and cancer: mechanistic insights from transdisciplinary studies. Endocr. Relat. Cancer, 2015, 22(6), R365-R386.
[http://dx.doi.org/10.1530/ERC-15-0400] [PMID: 26373570]
[2]
Seidell, J.C.; Halberstadt, J. The global burden of obesity and the challenges of prevention. Ann. Nutr. Metab., 2015, 66(Suppl. 2), 7-12.
[http://dx.doi.org/10.1159/000375143] [PMID: 26045323]
[3]
Hruby, A.; Hu, F.B. The epidemiology of obesity: A big picture. PharmacoEconomics, 2015, 33(7), 673-689.
[http://dx.doi.org/10.1007/s40273-014-0243-x] [PMID: 25471927]
[4]
Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci., 2019, 20(9), E2358.
[http://dx.doi.org/10.3390/ijms20092358] [PMID: 31085992]
[5]
Riondino, S.; Roselli, M.; Palmirotta, R.; Della-Morte, D.; Ferroni, P.; Guadagni, F. Obesity and colorectal cancer: role of adipokines in tumor initiation and progression. World J. Gastroenterol., 2014, 20(18), 5177-5190.
[http://dx.doi.org/10.3748/wjg.v20.i18.5177] [PMID: 24833848]
[6]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[7]
Romieu, I.; Dossus, L.; Barquera, S.; Blottiere, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; Nishida, C.; Potischman, N.; Seidell, J.; Stepien, M.; Wang, Y.; Westerterp, K.; Winichagoon, P.; Wiseman, M.; Willett, W.C.; Balance, I.E. Energy balance and obesity: what are the main drivers? Cancer Causes Control, 2017, 28(3), 247-258.
[http://dx.doi.org/10.1007/s10552-017-0869-z] [PMID: 28210884]
[8]
Bluher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol., 2019, 15(5), 288-298.
[http://dx.doi.org/10.1038/s41574-019-0176-8] [PMID: 30814686]
[9]
Lee, H.; Ahn, R.; Kim, T.H.; Han, E. Impact of obesity on employment and wages among young adults: Observational study with panel data. Int. J. Environ. Res. Public Health, 2019, 16(1), E139.
[http://dx.doi.org/10.3390/ijerph16010139] [PMID: 30621065]
[10]
Zierle-Ghosh, A.; Jan, A. Physiology, body mass index. StatPearls. Treasure Island (FL). 2021.
[11]
Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab., 2004, 89(6), 2548-2556.
[http://dx.doi.org/10.1210/jc.2004-0395] [PMID: 15181022]
[12]
Colditz, G.A.; Peterson, L.L. Obesity and Cancer: Evidence, Impact, and Future Directions. Clin. Chem., 2018, 64(1), 154-162.
[http://dx.doi.org/10.1373/clinchem.2017.277376] [PMID: 29038151]
[13]
Howe, L.R.; Subbaramaiah, K.; Hudis, C.A.; Dannenberg, A.J. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin. Cancer Res., 2013, 19(22), 6074-6083.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2603] [PMID: 23958744]
[14]
Harriss, D.J.; Atkinson, G.; George, K.; Cable, N.T.; Reilly, T.; Haboubi, N.; Zwahlen, M.; Egger, M.; Renehan, A.G. Lifestyle factors and colorectal cancer risk (1): systematic review and meta- analysis of associations with body mass index. Colorectal Dis., 2009, 11(6), 547-563.
[http://dx.doi.org/10.1111/j.1463-1318.2009.01766.x] [PMID: 19207714]
[15]
Zhang, X.; Wu, K.; Giovannucci, E.L.; Ma, J.; Colditz, G.A.; Fuchs, C.S.; Willett, W.C.; Stampfer, M.J.; Nimptsch, K.; Ogino, S.; Wei, E.K. Early life body fatness and risk of colorectal cancer in u.s. Women and men-results from two large cohort studies. Cancer Epidemiol. Biomarkers Prev., 2015, 24(4), 690-697.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-0909-T] [PMID: 25777804]
[16]
Sjoblom, T.; Jones, S.; Wood, L.D.; Parsons, D.W.; Lin, J.; Barber, T.D.; Mandelker, D.; Leary, R.J.; Ptak, J.; Silliman, N.; Szabo, S.; Buckhaults, P.; Farrell, C.; Meeh, P.; Markowitz, S.D.; Willis, J.; Dawson, D.; Willson, J.K.; Gazdar, A.F.; Hartigan, J.; Wu, L.; Liu, C.; Parmigiani, G.; Park, B.H.; Bachman, K.E.; Papadopoulos, N.; Vogelstein, B.; Kinzler, K.W.; Velculescu, V.E. The consensus coding sequences of human breast and colorectal cancers. Science, 2006, 314(5797), 268-274.
[http://dx.doi.org/10.1126/science.1133427] [PMID: 16959974]
[17]
De Sousa E Melo, F.; Wang, X.; Jansen, M.; Fessler, E.; Trinh, A.; de Rooij, L.P.; de Jong, J.H.; de Boer, O.J.; van Leersum, R.; Bijlsma, M.F.; Rodermond, H.; van der Heijden, M.; van Noesel, C.J.; Tuynman, J.B.; Dekker, E.; Markowetz, F.; Medema, J.P.; Vermeulen, L. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med., 2013, 19(5), 614-618.
[http://dx.doi.org/10.1038/nm.3174] [PMID: 23584090]
[18]
Leary, R.J.; Lin, J.C.; Cummins, J.; Boca, S.; Wood, L.D.; Parsons, D.W.; Jones, S.; Sjoblom, T.; Park, B.H.; Parsons, R.; Willis, J.; Dawson, D.; Willson, J.K.; Nikolskaya, T.; Nikolsky, Y.; Kopelovich, L.; Papadopoulos, N.; Pennacchio, L.A.; Wang, T.L.; Markowitz, S.D.; Parmigiani, G.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc. Natl. Acad. Sci. USA, 2008, 105(42), 16224-16229.
[http://dx.doi.org/10.1073/pnas.0808041105] [PMID: 18852474]
[19]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[20]
Guinney, J.; Dienstmann, R.; Wang, X.; de Reynies, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; Bot, B.M.; Morris, J.S.; Simon, I.M.; Gerster, S.; Fessler, E.; De Sousa E Melo, F.; Missiaglia, E.; Ramay, H.; Barras, D.; Homicsko, K.; Maru, D.; Manyam, G.C.; Broom, B.; Boige, V.; Perez-Villamil, B.; Laderas, T.; Salazar, R.; Gray, J.W.; Hanahan, D.; Tabernero, J.; Bernards, R.; Friend, S.H.; Laurent-Puig, P.; Medema, J.P.; Sadanandam, A.; Wessels, L.; Delorenzi, M.; Kopetz, S.; Vermeulen, L.; Tejpar, S. The consensus molecular subtypes of colorectal cancer. Nat. Med., 2015, 21(11), 1350-1356.
[http://dx.doi.org/10.1038/nm.3967] [PMID: 26457759]
[21]
Blank, A.; Roberts, D.E., II; Dawson, H.; Zlobec, I.; Lugli, A. Tumor heterogeneity in primary colorectal cancer and corresponding metastases. Does the apple fall far from the tree? Front. Med. (Lausanne), 2018, 5, 234.
[http://dx.doi.org/10.3389/fmed.2018.00234] [PMID: 30234115]
[22]
Sonugur, F.G.; Akbulut, H. The role of tumor microenvironment in genomic instability of malignant tumors. Front. Genet., 2019, 10, 1063.
[http://dx.doi.org/10.3389/fgene.2019.01063] [PMID: 31737046]
[23]
Becht, E.; de Reynies, A.; Giraldo, N.A.; Pilati, C.; Buttard, B.; Lacroix, L.; Selves, J.; Sautes-Fridman, C.; Laurent-Puig, P.; Fridman, W.H. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin. Cancer Res., 2016, 22(16), 4057-4066.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2879] [PMID: 26994146]
[24]
Calon, A.; Lonardo, E.; Berenguer-Llergo, A.; Espinet, E.; Hernando-Momblona, X.; Iglesias, M.; Sevillano, M.; Palomo-Ponce, S.; Tauriello, D.V.; Byrom, D.; Cortina, C.; Morral, C.; Barceló, C.; Tosi, S.; Riera, A.; Attolini, C.S.; Rossell, D.; Sancho, E.; Batlle, E. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet., 2015, 47(4), 320-329.
[http://dx.doi.org/10.1038/ng.3225] [PMID: 25706628]
[25]
Roelands, J.; Kuppen, P.J.K.; Vermeulen, L.; Maccalli, C.; Decock, J.; Wang, E.; Marincola, F.M.; Bedognetti, D.; Hendrickx, W. Immunogenomic classification of colorectal cancer and therapeutic implications. Int. J. Mol. Sci., 2017, 18(10), E2229.
[http://dx.doi.org/10.3390/ijms18102229] [PMID: 29064420]
[26]
Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; Ziv, E.; Culhane, A.C.; Paull, E.O.; Sivakumar, I.K.A.; Gentles, A.J.; Malhotra, R.; Farshidfar, F.; Colaprico, A.; Parker, J.S.; Mose, L.E.; Vo, N.S.; Liu, J.; Liu, Y.; Rader, J.; Dhankani, V.; Reynolds, S.M.; Bowlby, R.; Califano, A.; Cherniack, A.D.; Anastassiou, D.; Bedognetti, D.; Mokrab, Y.; Newman, A.M.; Rao, A.; Chen, K.; Krasnitz, A.; Hu, H.; Malta, T.M.; Noushmehr, H.; Pedamallu, C.S.; Bullman, S.; Ojesina, A.I.; Lamb, A.; Zhou, W.; Shen, H.; Choueiri, T.K.; Weinstein, J.N.; Guinney, J.; Saltz, J.; Holt, R.A.; Rabkin, C.S.; Lazar, A.J.; Serody, J.S.; Demicco, E.G.; Disis, M.L.; Vincent, B.G.; Shmulevich, I. The immune landscape of cancer. Immunity, 2018, 48(4), 812-830.e14.
[http://dx.doi.org/10.1016/j.immuni.2018.03.023] [PMID: 29628290]
[27]
Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; Ziv, E.; Culhane, A.C.; Paull, E.O.; Sivakumar, I.K.A.; Gentles, A.J.; Malhotra, R.; Farshidfar, F.; Colaprico, A.; Parker, J.S.; Mose, L.E.; Vo, N.S.; Liu, J.; Liu, Y.; Rader, J.; Dhankani, V.; Reynolds, S.M.; Bowlby, R.; Califano, A.; Cherniack, A.D.; Anastassiou, D.; Bedognetti, D.; Mokrab, Y.; Newman, A.M.; Rao, A.; Chen, K.; Krasnitz, A.; Hu, H.; Malta, T.M.; Noushmehr, H.; Pedamallu, C.S.; Bullman, S.; Ojesina, A.I.; Lamb, A.; Zhou, W.; Shen, H.; Choueiri, T.K.; Weinstein, J.N.; Guinney, J.; Saltz, J.; Holt, R.A.; Rabkin, C.S.; Lazar, A.J.; Serody, J.S.; Demicco, E.G.; Disis, M.L.; Vincent, B.G.; Shmulevich, I. The immune landscape of cancer. Immunity, 2019, 51(2), 411-412.
[http://dx.doi.org/10.1016/j.immuni.2019.08.004] [PMID: 31433971]
[28]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[29]
Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm, 2010, 2010, 286945.
[http://dx.doi.org/10.1155/2010/289645]
[30]
Pahwa, R.; Goyal, A.; Bansal, P.; Jialal, I. Chronic inflammation. In: StatPearls; Treasure Island, FL, 2020.
[PMID: 29630225]
[31]
Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: the linking mechanism and the complications. Arch. Med. Sci., 2017, 13(4), 851-863.
[http://dx.doi.org/10.5114/aoms.2016.58928] [PMID: 28721154]
[32]
Fischer-Posovszky, P.; Wabitsch, M.; Hochberg, Z. Endocrinology of adipose tissue - an update. Horm. Metab. Res., 2007, 39(5), 314-321.
[http://dx.doi.org/10.1055/s-2007-976539] [PMID: 17533572]
[33]
Poulos, S.P.; Hausman, D.B.; Hausman, G.J. The development and endocrine functions of adipose tissue. Mol. Cell. Endocrinol., 2010, 323(1), 20-34.
[http://dx.doi.org/10.1016/j.mce.2009.12.011] [PMID: 20025936]
[34]
Zhang, Y.; Bellows, C.F.; Kolonin, M.G. Adipose tissue-derived progenitor cells and cancer. World J. Stem Cells, 2010, 2(5), 103-113.
[http://dx.doi.org/10.4252/wjsc.v2.i5.103] [PMID: 21607127]
[35]
Cristancho, A.G.; Lazar, M.A. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol., 2011, 12(11), 722-734.
[http://dx.doi.org/10.1038/nrm3198] [PMID: 21952300]
[36]
Shuster, A.; Patlas, M.; Pinthus, J.H.; Mourtzakis, M. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br. J. Radiol., 2012, 85(1009), 1-10.
[http://dx.doi.org/10.1259/bjr/38447238] [PMID: 21937614]
[37]
Escobedo, N.; Oliver, G. The lymphatic vasculature: Its role in adipose metabolism and obesity. Cell Metab., 2017, 26(4), 598-609.
[http://dx.doi.org/10.1016/j.cmet.2017.07.020] [PMID: 28844882]
[38]
Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of adipose tissue: an endocrine organ. Arch. Med. Sci., 2013, 9(2), 191-200.
[http://dx.doi.org/10.5114/aoms.2013.33181] [PMID: 23671428]
[39]
Deng, T.; Lyon, C.J.; Bergin, S.; Caligiuri, M.A.; Hsueh, W.A. Obesity, inflammation, and cancer. Annu. Rev. Pathol., 2016, 11, 421-449.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044359] [PMID: 27193454]
[40]
Doerstling, S.S.; O’Flanagan, C.H.; Hursting, S.D. Obesity and cancer metabolism: A perspective on interacting tumor-intrinsic and extrinsic factors. Front. Oncol., 2017, 7, 216.
[http://dx.doi.org/10.3389/fonc.2017.00216] [PMID: 28959684]
[41]
Guzik, T.J.; Skiba, D.S.; Touyz, R.M.; Harrison, D.G. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc. Res., 2017, 113(9), 1009-1023.
[http://dx.doi.org/10.1093/cvr/cvx108] [PMID: 28838042]
[42]
Okada, F.; Kawaguchi, T.; Habelhah, H.; Kobayashi, T.; Tazawa, H.; Takeichi, N.; Kitagawa, T.; Hosokawa, M. Conversion of human colonic adenoma cells to adenocarcinoma cells through inflammation in nude mice. Lab. Invest., 2000, 80(11), 1617-1628.
[http://dx.doi.org/10.1038/labinvest.3780172] [PMID: 11092522]
[43]
Hirata, E.; Sahai, E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb. Perspect. Med., 2017, 7(7), a026781.
[http://dx.doi.org/10.1101/cshperspect.a026781] [PMID: 28213438]
[44]
Russo, L.; Lumeng, C.N. Properties and functions of adipose tissue macrophages in obesity. Immunology, 2018, 155(4), 407-417.
[http://dx.doi.org/10.1111/imm.13002] [PMID: 30229891]
[45]
Masoodi, M.; Kuda, O.; Rossmeisl, M.; Flachs, P.; Kopecky, J. Lipid signaling in adipose tissue: Connecting inflammation & metabolism. Biochim. Biophys. Acta, 2015, 1851(4), 503-518.
[http://dx.doi.org/10.1016/j.bbalip.2014.09.023] [PMID: 25311170]
[46]
Kanda, H.; Tateya, S.; Tamori, Y.; Kotani, K.; Hiasa, K.; Kitazawa, R.; Kitazawa, S.; Miyachi, H.; Maeda, S.; Egashira, K.; Kasuga, M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest., 2006, 116(6), 1494-1505.
[http://dx.doi.org/10.1172/JCI26498] [PMID: 16691291]
[47]
Caricilli, A.M.; Picardi, P.K.; de Abreu, L.L.; Ueno, M.; Prada, P.O.; Ropelle, E.R.; Hirabara, S.M.; Castoldi, Â.; Vieira, P.; Camara, N.O.; Curi, R.; Carvalheira, J.B.; Saad, M.J. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol., 2011, 9(12), e1001212.
[http://dx.doi.org/10.1371/journal.pbio.1001212] [PMID: 22162948]
[48]
Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest., 2003, 112(12), 1796-1808.
[http://dx.doi.org/10.1172/JCI200319246] [PMID: 14679176]
[49]
Lumeng, C.N.; DelProposto, J.B.; Westcott, D.J.; Saltiel, A.R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes, 2008, 57(12), 3239-3246.
[http://dx.doi.org/10.2337/db08-0872] [PMID: 18829989]
[50]
Orr, J.S.; Puglisi, M.J.; Ellacott, K.L.; Lumeng, C.N.; Wasserman, D.H.; Hasty, A.H. Toll-like receptor 4 deficiency promotes the alternative activation of adipose tissue macrophages. Diabetes, 2012, 61(11), 2718-2727.
[http://dx.doi.org/10.2337/db11-1595] [PMID: 22751700]
[51]
Wang, P.; Mariman, E.; Renes, J.; Keijer, J. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell. Physiol., 2008, 216(1), 3-13.
[http://dx.doi.org/10.1002/jcp.21386] [PMID: 18264975]
[52]
Kosteli, A.; Sugaru, E.; Haemmerle, G.; Martin, J.F.; Lei, J.; Zechner, R.; Ferrante, A.W., Jr. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest., 2010, 120(10), 3466-3479.
[http://dx.doi.org/10.1172/JCI42845] [PMID: 20877011]
[53]
Olefsky, J.M.; Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol., 2010, 72, 219-246.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135846] [PMID: 20148674]
[54]
Zhang, F.; Parayath, N.N.; Ene, C.I.; Stephan, S.B.; Koehne, A.L.; Coon, M.E.; Holland, E.C.; Stephan, M.T. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun., 2019, 10(1), 3974.
[http://dx.doi.org/10.1038/s41467-019-11911-5] [PMID: 31481662]
[55]
Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol., 2019, 12(1), 76.
[http://dx.doi.org/10.1186/s13045-019-0760-3] [PMID: 31300030]
[56]
Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, 25(12), 677-686.
[http://dx.doi.org/10.1016/j.it.2004.09.015] [PMID: 15530839]
[57]
Noël, W.; Raes, G.; Hassanzadeh Ghassabeh, G.; De Baetselier, P.; Beschin, A. Alternatively activated macrophages during parasite infections. Trends Parasitol., 2004, 20(3), 126-133.
[http://dx.doi.org/10.1016/j.pt.2004.01.004] [PMID: 15036034]
[58]
Moraes-Vieira, P.M.; Yore, M.M.; Dwyer, P.M.; Syed, I.; Aryal, P.; Kahn, B.B. RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab., 2014, 19(3), 512-526.
[http://dx.doi.org/10.1016/j.cmet.2014.01.018] [PMID: 24606904]
[59]
Goerdt, S.; Politz, O.; Schledzewski, K.; Birk, R.; Gratchev, A.; Guillot, P.; Hakiy, N.; Klemke, C.D.; Dippel, E.; Kodelja, V.; Orfanos, C.E. Alternative versus classical activation of macrophages. Pathobiology, 1999, 67(5-6), 222-226.
[http://dx.doi.org/10.1159/000028096] [PMID: 10725788]
[60]
Hao, N.B.; Lu, M.H.; Fan, Y.H.; Cao, Y.L.; Zhang, Z.R.; Yang, S.M. Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol., 2012, 2012, 948098.
[http://dx.doi.org/10.1155/2012/948098] [PMID: 22778768]
[61]
Cucak, H.; Grunnet, L.G.; Rosendahl, A. Accumulation of M1- like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J. Leukoc. Biol., 2014, 95(1), 149-160.
[http://dx.doi.org/10.1189/jlb.0213075] [PMID: 24009176]
[62]
Nizet, V.; Johnson, R.S. Interdependence of hypoxic and innate immune responses. Nat. Rev. Immunol., 2009, 9(9), 609-617.
[http://dx.doi.org/10.1038/nri2607] [PMID: 19704417]
[63]
Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol., 2013, 229(2), 176-185.
[http://dx.doi.org/10.1002/path.4133] [PMID: 23096265]
[64]
Lee, C.G.; Homer, R.J.; Zhu, Z.; Lanone, S.; Wang, X.; Koteliansky, V.; Shipley, J.M.; Gotwals, P.; Noble, P.; Chen, Q.; Senior, R.M.; Elias, J.A. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J. Exp. Med., 2001, 194(6), 809-821.
[http://dx.doi.org/10.1084/jem.194.6.809] [PMID: 11560996]
[65]
Sierra-Filardi, E.; Vega, M.A.; Sánchez-Mateos, P.; Corbí, A.L.; Puig-Kroger, A. Heme oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release. Immunobiology, 2010, 215(9-10), 788-795.
[http://dx.doi.org/10.1016/j.imbio.2010.05.020] [PMID: 20580464]
[66]
Spencer, M.; Yao-Borengasser, A.; Unal, R.; Rasouli, N.; Gurley, C.M.; Zhu, B.; Peterson, C.A.; Kern, P.A. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am. J. Physiol. Endocrinol. Metab., 2010, 299(6), E1016-E1027.
[http://dx.doi.org/10.1152/ajpendo.00329.2010] [PMID: 20841504]
[67]
Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, 8(12), 958-969.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[68]
Vats, D.; Mukundan, L.; Odegaard, J.I.; Zhang, L.; Smith, K.L.; Morel, C.R.; Wagner, R.A.; Greaves, D.R.; Murray, P.J.; Chawla, A. Oxidative metabolism and PGC-1beta attenuate macrophage- mediated inflammation. Cell Metab., 2006, 4(1), 13-24.
[http://dx.doi.org/10.1016/j.cmet.2006.05.011] [PMID: 16814729]
[69]
Rodríguez-Prados, J.C.; Través, P.G.; Cuenca, J.; Rico, D.; Aragonés, J.; Martín-Sanz, P.; Cascante, M.; Boscá, L. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol., 2010, 185(1), 605-614.
[http://dx.doi.org/10.4049/jimmunol.0901698] [PMID: 20498354]
[70]
Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795.
[http://dx.doi.org/10.1172/JCI59643] [PMID: 22378047]
[71]
Castoldi, A.; Naffah de Souza, C.; Câmara, N.O.; Moraes-Vieira, P.M. The macrophage switch in obesity development. Front. Immunol., 2016, 6, 637.
[http://dx.doi.org/10.3389/fimmu.2015.00637] [PMID: 26779183]
[72]
Yore, M.M.; Syed, I.; Moraes-Vieira, P.M.; Zhang, T.; Herman, M.A.; Homan, E.A.; Patel, R.T.; Lee, J.; Chen, S.; Peroni, O.D.; Dhaneshwar, A.S.; Hammarstedt, A.; Smith, U.; McGraw, T.E.; Saghatelian, A.; Kahn, B.B. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell, 2014, 159(2), 318-332.
[http://dx.doi.org/10.1016/j.cell.2014.09.035] [PMID: 25303528]
[73]
Orr, J.S.; Kennedy, A.; Anderson-Baucum, E.K.; Webb, C.D.; Fordahl, S.C.; Erikson, K.M.; Zhang, Y.; Etzerodt, A.; Moestrup, S.K.; Hasty, A.H. Obesity alters adipose tissue macrophage iron content and tissue iron distribution. Diabetes, 2014, 63(2), 421-432.
[http://dx.doi.org/10.2337/db13-0213] [PMID: 24130337]
[74]
Mokdad, A.H.; Ford, E.S.; Bowman, B.A.; Dietz, W.H.; Vinicor, F.; Bales, V.S.; Marks, J.S. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA, 2003, 289(1), 76-79.
[http://dx.doi.org/10.1001/jama.289.1.76] [PMID: 12503980]
[75]
Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; Chen, H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest., 2003, 112(12), 1821-1830.
[http://dx.doi.org/10.1172/JCI200319451] [PMID: 14679177]
[76]
Martinez-Useros, J.; Garcia-Foncillas, J. Obesity and colorectal cancer: molecular features of adipose tissue. J. Transl. Med., 2016, 14, 21.
[http://dx.doi.org/10.1186/s12967-016-0772-5] [PMID: 26801617]
[77]
Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med., 1996, 334(5), 292-295.
[http://dx.doi.org/10.1056/NEJM199602013340503] [PMID: 8532024]
[78]
Ekmen, N.; Helvaci, A.; Gunaldi, M.; Sasani, H.; Yildirmak, S.T. Leptin as an important link between obesity and cardiovascular risk factors in men with acute myocardial infarction. Indian Heart J., 2016, 68(2), 132-137.
[http://dx.doi.org/10.1016/j.ihj.2015.07.032] [PMID: 27133319]
[79]
Huang, X.F.; Koutcherov, I.; Lin, S.; Wang, H.Q.; Storlien, L. Localization of leptin receptor mRNA expression in mouse brain. Neuroreport, 1996, 7(15-17), 2635-2638.
[http://dx.doi.org/10.1097/00001756-199611040-00045] [PMID: 8981437]
[80]
White, D.W.; Tartaglia, L.A. Leptin and OB-R: body weight regulation by a cytokine receptor. Cytokine Growth Factor Rev., 1996, 7(4), 303-309.
[http://dx.doi.org/10.1016/S1359-6101(96)00040-8] [PMID: 9023054]
[81]
Al-Shibli, S.M.; Harun, N.; Ashour, A.E.; Mohd Kasmuri, M.H.B.; Mizan, S. Expression of leptin and leptin receptors in colorectal cancer-an immunohistochemical study. PeerJ, 2019, 7, e7624.
[http://dx.doi.org/10.7717/peerj.7624] [PMID: 31592340]
[82]
Chia, V.M.; Newcomb, P.A.; Lampe, J.W.; White, E.; Mandelson, M.T.; McTiernan, A.; Potter, J.D. Leptin concentrations, leptin receptor polymorphisms, and colorectal adenoma risk. Cancer Epidemiol. Biomarkers Prev., 2007, 16(12), 2697-2703.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-0467] [PMID: 18086776]
[83]
Slattery, M.L.; Wolff, R.K. Leptin and colorectal cancer: an undefined link. Nat. Clin. Pract. Gastroenterol. Hepatol., 2007, 4(3), 118-119.
[http://dx.doi.org/10.1038/ncpgasthep0743] [PMID: 17339849]
[84]
Amemori, S.; Ootani, A.; Aoki, S.; Fujise, T.; Shimoda, R.; Kakimoto, T.; Shiraishi, R.; Sakata, Y.; Tsunada, S.; Iwakiri, R.; Fujimoto, K. Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(3), G923-G929.
[http://dx.doi.org/10.1152/ajpgi.00145.2006] [PMID: 17170030]
[85]
Jaffe, T.; Schwartz, B. Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways. Int. J. Cancer, 2008, 123(11), 2543-2556.
[http://dx.doi.org/10.1002/ijc.23821] [PMID: 18767036]
[86]
Chen, H.; Charlat, O.; Tartaglia, L.A.; Woolf, E.A.; Weng, X.; Ellis, S.J.; Lakey, N.D.; Culpepper, J.; Moore, K.J.; Breitbart, R.E.; Duyk, G.M.; Tepper, R.I.; Morgenstern, J.P. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell, 1996, 84(3), 491-495.
[http://dx.doi.org/10.1016/S0092-8674(00)81294-5] [PMID: 8608603]
[87]
Clément, K.; Vaisse, C.; Lahlou, N.; Cabrol, S.; Pelloux, V.; Cassuto, D.; Gourmelen, M.; Dina, C.; Chambaz, J.; Lacorte, J.M.; Basdevant, A.; Bougneres, P.; Lebouc, Y.; Froguel, P.; Guy- Grand, B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 1998, 392(6674), 398-401.
[http://dx.doi.org/10.1038/32911] [PMID: 9537324]
[88]
Chehab, F.F.; Lim, M.E.; Lu, R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat. Genet., 1996, 12(3), 318-320.
[http://dx.doi.org/10.1038/ng0396-318] [PMID: 8589726]
[89]
Chehab, F.F.; Mounzih, K.; Lu, R.; Lim, M.E. Early onset of reproductive function in normal female mice treated with leptin. Science, 1997, 275(5296), 88-90.
[http://dx.doi.org/10.1126/science.275.5296.88] [PMID: 8974400]
[90]
Farooqi, I.S.; Volders, K.; Stanhope, R.; Heuschkel, R.; White, A.; Lank, E.; Keogh, J.; O’Rahilly, S.; Creemers, J.W. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J. Clin. Endocrinol. Metab., 2007, 92(9), 3369-3373.
[http://dx.doi.org/10.1210/jc.2007-0687] [PMID: 17595246]
[91]
Gratuze, M.; El Khoury, N.B.; Turgeon, A.; Julien, C.; Marcouiller, F.; Morin, F.; Whittington, R.A.; Marette, A.; Calon, F.; Planel, E. Tau hyperphosphorylation in the brain of ob/ob mice is due to hypothermia: Importance of thermoregulation in linking diabetes and Alzheifs disease. Neurobiol. Dis., 2017, 98, 1-8.
[http://dx.doi.org/10.1016/j.nbd.2016.10.004] [PMID: 27793638]
[92]
Coleman, D.L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia, 1978, 14(3), 141-148.
[http://dx.doi.org/10.1007/BF00429772] [PMID: 350680]
[93]
Cao, R.; Brakenhielm, E.; Wahlestedt, C.; Thyberg, J.; Cao, Y. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc. Natl. Acad. Sci. USA, 2001, 98(11), 6390-6395.
[http://dx.doi.org/10.1073/pnas.101564798] [PMID: 11344271]
[94]
Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; Eto, K.; Akanuma, Y.; Froguel, P.; Foufelle, F.; Ferre, P.; Carling, D.; Kimura, S.; Nagai, R.; Kahn, B.B.; Kadowaki, T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med., 2002, 8(11), 1288-1295.
[http://dx.doi.org/10.1038/nm788] [PMID: 12368907]
[95]
Bełtowski, J. Adiponectin and resistin-new hormones of white adipose tissue. Med. Sci. Monit., 2003, 9(2), RA55-RA61.
[PMID: 12601307]
[96]
Yokota, T.; Oritani, K.; Takahashi, I.; Ishikawa, J.; Matsuyama, A.; Ouchi, N.; Kihara, S.; Funahashi, T.; Tenner, A.J.; Tomiyama, Y.; Matsuzawa, Y. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood, 2000, 96(5), 1723-1732.
[http://dx.doi.org/10.1182/blood.V96.5.1723] [PMID: 10961870]
[97]
Goldstein, B.J.; Scalia, R. Adiponectin: A novel adipokine linking adipocytes and vascular function. J. Clin. Endocrinol. Metab., 2004, 89(6), 2563-2568.
[http://dx.doi.org/10.1210/jc.2004-0518] [PMID: 15181024]
[98]
Bråkenhielm, E.; Veitonmaki, N.; Cao, R.; Kihara, S.; Matsuzawa, Y.; Zhivotovsky, B.; Funahashi, T.; Cao, Y. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2476-2481.
[http://dx.doi.org/10.1073/pnas.0308671100] [PMID: 14983034]
[99]
Wang, Y.; Lam, K.S.; Xu, J.Y.; Lu, G.; Xu, L.Y.; Cooper, G.J.; Xu, A. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J. Biol. Chem., 2005, 280(18), 18341-18347.
[http://dx.doi.org/10.1074/jbc.M501149200] [PMID: 15734737]
[100]
Hu, E.; Liang, P.; Spiegelman, B.M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem., 1996, 271(18), 10697-10703.
[http://dx.doi.org/10.1074/jbc.271.18.10697] [PMID: 8631877]
[101]
Fujisawa, T.; Endo, H.; Tomimoto, A.; Sugiyama, M.; Takahashi, H.; Saito, S.; Inamori, M.; Nakajima, N.; Watanabe, M.; Kubota, N.; Yamauchi, T.; Kadowaki, T.; Wada, K.; Nakagama, H.; Nakajima, A. Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition. Gut, 2008, 57(11), 1531-1538.
[http://dx.doi.org/10.1136/gut.2008.159293] [PMID: 18676419]
[102]
Han, G.; Wang, L.; Zhao, R.; Yue, Z.; Zhou, X.; Hu, X.; Cao, Y.; Dai, D.; Liu, J. Leptin promotes human glioblastoma growth through activating Signal Transducers and Activators of Transcription 3 signaling. Brain Res. Bull., 2012, 87(2-3), 274-279.
[http://dx.doi.org/10.1016/j.brainresbull.2011.11.007] [PMID: 22133921]
[103]
Liu, Y.; Lv, L.; Xiao, W.; Gong, C.; Yin, J.; Wang, D.; Sheng, H. Leptin activates STAT3 and ERK1/2 pathways and induces endometrial cancer cell proliferation. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2011, 31(3), 365.
[http://dx.doi.org/10.1007/s11596-011-0382-7] [PMID: 21671179]
[104]
Endo, H.; Hosono, K.; Uchiyama, T.; Sakai, E.; Sugiyama, M.; Takahashi, H.; Nakajima, N.; Wada, K.; Takeda, K.; Nakagama, H.; Nakajima, A. Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut, 2011, 60(10), 1363-1371.
[http://dx.doi.org/10.1136/gut.2010.235754] [PMID: 21406387]
[105]
Saxena, N.K.; Vertino, P.M.; Anania, F.A.; Sharma, D. leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. J. Biol. Chem., 2007, 282(18), 13316-13325.
[http://dx.doi.org/10.1074/jbc.M609798200] [PMID: 17344214]
[106]
Knight, B.B.; Oprea-Ilies, G.M.; Nagalingam, A.; Yang, L.; Cohen, C.; Saxena, N.K.; Sharma, D. Survivin upregulation, dependent on leptin-EGFR-Notch1 axis, is essential for leptin-induced migration of breast carcinoma cells. Endocr. Relat. Cancer, 2011, 18(4), 413-428.
[http://dx.doi.org/10.1530/ERC-11-0075] [PMID: 21555376]
[107]
Yeh, W.L.; Lu, D.Y.; Lee, M.J.; Fu, W.M. Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia, 2009, 57(4), 454-464.
[http://dx.doi.org/10.1002/glia.20773] [PMID: 18814267]
[108]
Fava, G.; Alpini, G.; Rychlicki, C.; Saccomanno, S.; DeMorrow, S.; Trozzi, L.; Candelaresi, C.; Venter, J.; Di Sario, A.; Marzioni, M.; Bearzi, I.; Glaser, S.; Alvaro, D.; Marucci, L.; Francis, H.; Svegliati-Baroni, G.; Benedetti, A. Leptin enhances cholangiocarcinoma cell growth. Cancer Res., 2008, 68(16), 6752-6761.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6682] [PMID: 18701500]
[109]
Saxena, N.K.; Sharma, D.; Ding, X.; Lin, S.; Marra, F.; Merlin, D.; Anania, F.A. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res., 2007, 67(6), 2497-2507.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3075] [PMID: 17363567]
[110]
Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci., 2017, 18(6), E1321.
[http://dx.doi.org/10.3390/ijms18061321] [PMID: 28635626]
[111]
Zhao, P.; Zhang, Z. TNF-α promotes colon cancer cell migration and invasion by upregulating TROP-2. Oncol. Lett., 2018, 15(3), 3820-3827.
[http://dx.doi.org/10.3892/ol.2018.7735] [PMID: 29467899]
[112]
Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer, 2009, 9(5), 361-371.
[http://dx.doi.org/10.1038/nrc2628] [PMID: 19343034]
[113]
Wajant, H.; Siegmund, D. TNFR1 and TNFR2 in the control of the life and death balance of macrophages. Front. Cell Dev. Biol., 2019, 7, 91.
[http://dx.doi.org/10.3389/fcell.2019.00091] [PMID: 31192209]
[114]
Wajant, H.; Pfizenmaier, K.; Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ., 2003, 10(1), 45-65.
[http://dx.doi.org/10.1038/sj.cdd.4401189] [PMID: 12655295]
[115]
Kamata, H.; Honda, S.; Maeda, S.; Chang, L.; Hirata, H.; Karin, M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell, 2005, 120(5), 649-661.
[http://dx.doi.org/10.1016/j.cell.2004.12.041] [PMID: 15766528]
[116]
Lin, A.; Dibling, B. The true face of JNK activation in apoptosis. Aging Cell, 2002, 1(2), 112-116.
[http://dx.doi.org/10.1046/j.1474-9728.2002.00014.x] [PMID: 12882340]
[117]
Ye, Z.; Shi, M.; Chan, T.; Sas, S.; Xu, S.; Xiang, J. Engineered CD8+ cytotoxic T cells with fiber-modified adenovirus-mediated TNF-alpha gene transfection counteract immunosuppressive interleukin-10-secreting lung metastasis and solid tumors. Cancer Gene Ther., 2007, 14(7), 661-675.
[http://dx.doi.org/10.1038/sj.cgt.7701039] [PMID: 17479109]
[118]
Ziprin, P.; Ridgway, P.F.; Pfistermuller, K.L.; Peck, D.H.; Darzi, A.W. ICAM-1 mediated tumor-mesothelial cell adhesion is modulated by IL-6 and TNF-alpha: a potential mechanism by which surgical trauma increases peritoneal metastases. Cell Commun. Adhes., 2003, 10(3), 141-154.
[http://dx.doi.org/10.1080/15419060390262561] [PMID: 14668061]
[119]
van Grevenstein, W.M.; Hofland, L.J.; van Rossen, M.E.; van Koetsveld, P.M.; Jeekel, J.; van Eijck, C.H. Inflammatory cytokines stimulate the adhesion of colon carcinoma cells to mesothelial monolayers. Dig. Dis. Sci., 2007, 52(10), 2775-2783.
[http://dx.doi.org/10.1007/s10620-007-9778-4] [PMID: 17394066]
[120]
Choo, M.K.; Sakurai, H.; Koizumi, K.; Saiki, I. TAK1-mediated stress signaling pathways are essential for TNF-alpha-promoted pulmonary metastasis of murine colon cancer cells. Int. J. Cancer, 2006, 118(11), 2758-2764.
[http://dx.doi.org/10.1002/ijc.21734] [PMID: 16385569]
[121]
Kitakata, H.; Nemoto-Sasaki, Y.; Takahashi, Y.; Kondo, T.; Mai, M.; Mukaida, N. Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Cancer Res., 2002, 62(22), 6682-6687.
[PMID: 12438267]
[122]
Kulbe, H.; Hagemann, T.; Szlosarek, P.W.; Balkwill, F.R.; Wilson, J.L. The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res., 2005, 65(22), 10355-10362.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0957] [PMID: 16288025]
[123]
Mochizuki, Y.; Nakanishi, H.; Kodera, Y.; Ito, S.; Yamamura, Y.; Kato, T.; Hibi, K.; Akiyama, S.; Nakao, A.; Tatematsu, M. TNF-alpha promotes progression of peritoneal metastasis as demonstrated using a green fluorescence protein (GFP)-tagged human gastric cancer cell line. Clin. Exp. Metastasis, 2004, 21(1), 39-47.
[http://dx.doi.org/10.1023/B:CLIN.0000017181.01474.35] [PMID: 15065601]
[124]
Alkhamesi, N.A.; Ziprin, P.; Pfistermuller, K.; Peck, D.H.; Darzi, A.W. ICAM-1 mediated peritoneal carcinomatosis, a target for therapeutic intervention. Clin. Exp. Metastasis, 2005, 22(6), 449-459.
[http://dx.doi.org/10.1007/s10585-005-2893-8] [PMID: 16320108]
[125]
Ramos-Nino, M.E. The role of chronic inflammation in obesity-associated cancers. ISRN Oncol., 2013, 2013, 697521.
[http://dx.doi.org/10.1155/2013/697521] [PMID: 23819063]
[126]
Wang, X.; Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin., 2008, 29(11), 1275-1288.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00889.x] [PMID: 18954521]
[127]
Hotamisligil, G.S.; Arner, P.; Caro, J.F.; Atkinson, R.L.; Spiegelman, B.M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest., 1995, 95(5), 2409-2415.
[http://dx.doi.org/10.1172/JCI117936] [PMID: 7738205]
[128]
Tzanavari, T.; Giannogonas, P.; Karalis, K.P. TNF-alpha and obesity. Curr. Dir. Autoimmun., 2010, 11, 145-156.
[http://dx.doi.org/10.1159/000289203] [PMID: 20173393]
[129]
Kim, S.; Keku, T.O.; Martin, C.; Galanko, J.; Woosley, J.T.; Schroeder, J.C.; Satia, J.A.; Halabi, S.; Sandler, R.S. Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Res., 2008, 68(1), 323-328.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2924] [PMID: 18172326]
[130]
Huang, X.F.; Chen, J.Z. Obesity, the PI3K/Akt signal pathway and colon cancer. Obes. Rev., 2009, 10(6), 610-616.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00607.x] [PMID: 19527447]
[131]
Bruun, J.M.; Lihn, A.S.; Verdich, C.; Pedersen, S.B.; Toubro, S.; Astrup, A.; Richelsen, B. Regulation of adiponectin by adipose tissue-derived cytokines: In vivo and in vitro investigations in humans. Am. J. Physiol. Endocrinol. Metab., 2003, 285(3), E527-E533.
[http://dx.doi.org/10.1152/ajpendo.00110.2003] [PMID: 12736161]
[132]
Molina, A.; Vendrell, J.; Gutiérrez, C.; Simón, I.; Masdevall, C.; Soler, J.; Gómez, J.M. Insulin resistance, leptin and TNF-alpha system in morbidly obese women after gastric bypass. Obes. Surg., 2003, 13(4), 615-621.
[http://dx.doi.org/10.1381/096089203322190844] [PMID: 12935365]
[133]
Zhao, T.; Li, H.; Liu, Z. Tumor necrosis factor receptor 2 promotes growth of colorectal cancer via the PI3K/AKT signaling pathway. Oncol. Lett., 2017, 13(1), 342-346.
[http://dx.doi.org/10.3892/ol.2016.5403] [PMID: 28123565]
[134]
Han, M.S.; White, A.; Perry, R.J.; Camporez, J.P.; Hidalgo, J.; Shulman, G.I.; Davis, R.J. Regulation of adipose tissue inflammation by interleukin 6. Proc. Natl. Acad. Sci. USA, 2020, 117(6), 2751-2760.
[http://dx.doi.org/10.1073/pnas.1920004117] [PMID: 31980524]
[135]
Grivennikov, S.; Karin, E.; Terzic, J.; Mucida, D.; Yu, G.Y.; Vallabhapurapu, S.; Scheller, J.; Rose-John, S.; Cheroutre, H.; Eckmann, L.; Karin, M. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 2009, 15(2), 103-113.
[http://dx.doi.org/10.1016/j.ccr.2009.01.001] [PMID: 19185845]
[136]
Corvinus, F.M.; Orth, C.; Moriggl, R.; Tsareva, S.A.; Wagner, S.; Pfitzner, E.B.; Baus, D.; Kaufmann, R.; Huber, L.A.; Zatloukal, K.; Beug, H.; Ohlschlager, P.; Schutz, A.; Halbhuber, K.J.; Friedrich, K. Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia, 2005, 7(6), 545-555.
[http://dx.doi.org/10.1593/neo.04571] [PMID: 16036105]
[137]
Krogh-Madsen, R.; Plomgaard, P.; Keller, P.; Keller, C.; Pedersen, B.K. Insulin stimulates interleukin-6 and tumor necrosis factor-alpha gene expression in human subcutaneous adipose tissue. Am. J. Physiol. Endocrinol. Metab., 2004, 286(2), E234-E238.
[http://dx.doi.org/10.1152/ajpendo.00274.2003] [PMID: 14532168]
[138]
Peairs, A.T.; Rankin, J.W. Inflammatory response to a high-fat, low-carbohydrate weight loss diet: effect of antioxidants. Obesity (Silver Spring), 2008, 16(7), 1573-1578.
[http://dx.doi.org/10.1038/oby.2008.252] [PMID: 18451774]
[139]
Park, H.S.; Park, J.Y.; Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res. Clin. Pract., 2005, 69(1), 29-35.
[http://dx.doi.org/10.1016/j.diabres.2004.11.007] [PMID: 15955385]
[140]
Li, Y.Y.; Hsieh, L.L.; Tang, R.P.; Liao, S.K.; Yeh, K.Y. Interleukin-6 (IL-6) released by macrophages induces IL-6 secretion in the human colon cancer HT-29 cell line. Hum. Immunol., 2009, 70(3), 151-158.
[http://dx.doi.org/10.1016/j.humimm.2009.01.004] [PMID: 19272324]
[141]
Waldner, M.J.; Foersch, S.; Neurath, M.F. Interleukin-6-a key regulator of colorectal cancer development. Int. J. Biol. Sci., 2012, 8(9), 1248-1253.
[http://dx.doi.org/10.7150/ijbs.4614] [PMID: 23136553]
[142]
Loffler, D.; Brocke-Heidrich, K.; Pfeifer, G.; Stocsits, C.; Hackermuller, J.; Kretzschmar, A.K.; Burger, R.; Gramatzki, M.; Blumert, C.; Bauer, K.; Cvijic, H.; Ullmann, A.K.; Stadler, P.F.; Horn, F. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood, 2007, 110(4), 1330-1333.
[http://dx.doi.org/10.1182/blood-2007-03-081133] [PMID: 17496199]
[143]
Wang, Y.; van Boxel-Dezaire, A.H.; Cheon, H.; Yang, J.; Stark, G.R. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc. Natl. Acad. Sci. USA, 2013, 110(42), 16975-16980.
[http://dx.doi.org/10.1073/pnas.1315862110] [PMID: 24082147]
[144]
Wegiel, B.; Bjartell, A.; Culig, Z.; Persson, J.L. Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival. Int. J. Cancer, 2008, 122(7), 1521-1529.
[http://dx.doi.org/10.1002/ijc.23261] [PMID: 18027847]
[145]
Raiko, J.R.; Oikonen, M.; Wendelin-Saarenhovi, M.; Siitonen, N.; Kahonen, M.; Lehtimaki, T.; Viikari, J.; Jula, A.; Loo, B.M.; Huupponen, R.; Saarikoski, L.; Juonala, M.; Raitakari, O.T. Plasminogen activator inhitor-1 associates with cardiovascular risk factors in healthy young adults in the Cardiovascular Risk in Young Finns Study. Atherosclerosis, 2012, 224(1), 208-212.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.06.062] [PMID: 22840426]
[146]
Ahirwar, A.K.; Jain, A.; Goswami, B.; Bhatnagar, M.K.; Bhatacharjee, J. Imbalance between protective (adiponectin) and prothrombotic (Plasminogen Activator Inhibitor-1) adipokines in metabolic syndrome. Diabetes Metab. Syndr., 2014, 8(3), 152-155.
[http://dx.doi.org/10.1016/j.dsx.2014.04.035] [PMID: 25042166]
[147]
Wang, B.; Jenkins, J.R.; Trayhurn, P. Expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture: integrated response to TNF-alpha. Am. J. Physiol. Endocrinol. Metab., 2005, 288(4), E731-E740.
[http://dx.doi.org/10.1152/ajpendo.00475.2004] [PMID: 15562246]
[148]
Wang, L.; Chen, L.; Liu, Z.; Liu, Y.; Luo, M.; Chen, N.; Deng, X.; Luo, Y.; He, J.; Zhang, L.; Hill, M.A.; Li, R.; Wu, J. PAI-1 exacerbates white adipose tissue dysfunction and metabolic dysregulation in high fat diet-induced obesity. Front. Pharmacol., 2018, 9, 1087.
[http://dx.doi.org/10.3389/fphar.2018.01087] [PMID: 30319420]
[149]
Chen, H.; Peng, H.; Liu, W.; Sun, Y.; Su, N.; Tang, W.; Zhang, X.; Wang, J.; Cui, L.; Hu, P.; Liu, S. Silencing of plasminogen activator inhibitor-1 suppresses colorectal cancer progression and liver metastasis. Surgery, 2015, 158(6), 1704-1713.
[http://dx.doi.org/10.1016/j.surg.2015.04.053] [PMID: 26275833]
[150]
Arner, E.; Forrest, A.R.; Ehrlund, A.; Mejhert, N.; Itoh, M.; Kawaji, H.; Lassmann, T.; Laurencikiene, J.; Rydén, M.; Arner, P.; Consortium, F. Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells. PLoS One, 2014, 9(3), e80274.
[http://dx.doi.org/10.1371/journal.pone.0080274] [PMID: 24676332]
[151]
Muller, T.D.; Nogueiras, R.; Andermann, M.L.; Andrews, Z.B.; Anker, S.D.; Argente, J.; Batterham, R.L.; Benoit, S.C.; Bowers, C.Y.; Broglio, F.; Casanueva, F.F.; D’Alessio, D.; Depoortere, I.; Geliebter, A.; Ghigo, E.; Cole, P.A.; Cowley, M.; Cummings, D.E.; Dagher, A.; Diano, S.; Dickson, S.L.; Diéguez, C.; Granata, R.; Grill, H.J.; Grove, K.; Habegger, K.M.; Heppner, K.; Heiman, M.L.; Holsen, L.; Holst, B.; Inui, A.; Jansson, J.O.; Kirchner, H.; Korbonits, M.; Laferrere, B.; LeRoux, C.W.; Lopez, M.; Morin, S.; Nakazato, M.; Nass, R.; Perez-Tilve, D.; Pfluger, P.T.; Schwartz, T.W.; Seeley, R.J.; Sleeman, M.; Sun, Y.; Sussel, L.; Tong, J.; Thorner, M.O.; van der Lely, A.J.; van der Ploeg, L.H.; Zigman, J.M.; Kojima, M.; Kangawa, K.; Smith, R.G.; Horvath, T.; Tschop, M.H. Ghrelin. Mol. Metab., 2015, 4(6), 437-460.
[http://dx.doi.org/10.1016/j.molmet.2015.03.005] [PMID: 26042199]
[152]
Bonfili, L.; Cuccioloni, M.; Cecarini, V.; Mozzicafreddo, M.; Palermo, F.A.; Cocci, P.; Angeletti, M.; Eleuteri, A.M. Ghrelin induces apoptosis in colon adenocarcinoma cells via proteasome inhibition and autophagy induction. Apoptosis, 2013, 18(10), 1188-1200.
[http://dx.doi.org/10.1007/s10495-013-0856-0] [PMID: 23632965]
[153]
Granata, R.; Baragli, A.; Settanni, F.; Scarlatti, F.; Ghigo, E. Unraveling the role of the ghrelin gene peptides in the endocrine pancreas. J. Mol. Endocrinol., 2010, 45(3), 107-118.
[http://dx.doi.org/10.1677/JME-10-0019] [PMID: 20595321]
[154]
Granata, R.; Settanni, F.; Biancone, L.; Trovato, L.; Nano, R.; Bertuzzi, F.; Destefanis, S.; Annunziata, M.; Martinetti, M.; Catapano, F.; Ghe, C.; Isgaard, J.; Papotti, M.; Ghigo, E.; Muccioli, G. Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3Œ,5Œ-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-Kinase/Akt signaling. Endocrinology, 2007, 148(2), 512-529.
[http://dx.doi.org/10.1210/en.2006-0266] [PMID: 17068144]
[155]
Bustin, S.A.; Jenkins, P.J. The growth hormone-insulin-like growth factor-I axis and colorectal cancer. Trends Mol. Med., 2001, 7(10), 447-454.
[http://dx.doi.org/10.1016/S1471-4914(01)02104-9] [PMID: 11597519]
[156]
Lien, G.S.; Lin, C.H.; Yang, Y.L.; Wu, M.S.; Chen, B.C. Ghrelin induces colon cancer cell proliferation through the GHS-R, Ras, PI3K, Akt, and mTOR signaling pathways. Eur. J. Pharmacol., 2016, 776, 124-131.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.044] [PMID: 26879868]
[157]
Nikolopoulos, D.; Theocharis, S.; Moutsios-Rentzos, A.; Kouraklis, G.; Kostakis, A. The role of serum total ghrelin level elevation in colon cancer patients. J. BUON, 2014, 19(2), 388-393.
[PMID: 24965396]
[158]
Nakae, J.; Kido, Y.; Accili, D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr. Rev., 2001, 22(6), 818-835.
[http://dx.doi.org/10.1210/edrv.22.6.0452] [PMID: 11739335]
[159]
Ma, J.; Giovannucci, E.; Pollak, M.; Leavitt, A.; Tao, Y.; Gaziano, J.M.; Stampfer, M.J. A prospective study of plasma C-peptide and colorectal cancer risk in men. J. Natl. Cancer Inst., 2004, 96(7), 546-553.
[http://dx.doi.org/10.1093/jnci/djh082] [PMID: 15069117]
[160]
Ullrich, A.; Bell, J.R.; Chen, E.Y.; Herrera, R.; Petruzzelli, L.M.; Dull, T.J.; Gray, A.; Coussens, L.; Liao, Y.C.; Tsubokawa, M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature, 1985, 313(6005), 756-761.
[http://dx.doi.org/10.1038/313756a0] [PMID: 2983222]
[161]
Kanzaki, M.; Pessin, J.E. Signal integration and the specificity of insulin action. Cell Biochem. Biophys., 2001, 35(2), 191-209.
[http://dx.doi.org/10.1385/CBB:35:2:191] [PMID: 11892791]
[162]
Siddle, K. Signalling by insulin and IGF receptors: supporting acts and new players. J. Mol. Endocrinol., 2011, 47(1), R1-R10.
[http://dx.doi.org/10.1530/JME-11-0022] [PMID: 21498522]
[163]
Mosthaf, L.; Grako, K.; Dull, T.J.; Coussens, L.; Ullrich, A.; McClain, D.A. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J., 1990, 9(8), 2409-2413.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07416.x] [PMID: 2369896]
[164]
Belfiore, A.; Frasca, F.; Pandini, G.; Sciacca, L.; Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev., 2009, 30(6), 586-623.
[http://dx.doi.org/10.1210/er.2008-0047] [PMID: 19752219]
[165]
Frasca, F.; Pandini, G.; Sciacca, L.; Pezzino, V.; Squatrito, S.; Belfiore, A.; Vigneri, R. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch. Physiol. Biochem., 2008, 114(1), 23-37.
[http://dx.doi.org/10.1080/13813450801969715] [PMID: 18465356]
[166]
Chen, X.; Liang, H.; Song, Q.; Xu, X.; Cao, D. Insulin promotes progression of colon cancer by upregulation of ACAT1. Lipids Health Dis., 2018, 17(1), 122.
[http://dx.doi.org/10.1186/s12944-018-0773-x] [PMID: 29793481]
[167]
Aaronson, S.A. Growth factors and cancer. Science, 1991, 254(5035), 1146-1153.
[http://dx.doi.org/10.1126/science.1659742] [PMID: 1659742]
[168]
Grimberg, A.; Cohen, P. Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J. Cell. Physiol., 2000, 183(1), 1-9.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200004)183:1<1::AID-JCP1>3.0.CO;2-J] [PMID: 10699960]
[169]
Warren, R.S.; Yuan, H.; Matli, M.R.; Ferrara, N.; Donner, D.B. Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J. Biol. Chem., 1996, 271(46), 29483-29488.
[http://dx.doi.org/10.1074/jbc.271.46.29483] [PMID: 8910616]
[170]
Kajantie, E.; Fall, C.H.; Seppala, M.; Koistinen, R.; Dunkel, L.; Yliharsila, H.; Osmond, C.; Andersson, S.; Barker, D.J.; Forsén, T.; Holt, R.I.; Phillips, D.I.; Eriksson, J. Serum insulin-like growth factor (IGF)-I and IGF-binding protein-1 in elderly people: relationships with cardiovascular risk factors, body composition, size at birth, and childhood growth. J. Clin. Endocrinol. Metab., 2003, 88(3), 1059-1065.
[http://dx.doi.org/10.1210/jc.2002-021380] [PMID: 12629086]
[171]
Singh, P.; Rubin, N. Insulinlike growth factors and binding proteins in colon cancer. Gastroenterology, 1993, 105(4), 1218-1237.
[http://dx.doi.org/10.1016/0016-5085(93)90971-E] [PMID: 7691674]
[172]
Calle, E.E.; Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer, 2004, 4(8), 579-591.
[http://dx.doi.org/10.1038/nrc1408] [PMID: 15286738]
[173]
Valentinis, B.; Morrione, A.; Peruzzi, F.; Prisco, M.; Reiss, K.; Baserga, R. Anti-apoptotic signaling of the IGF-I receptor in fibroblasts following loss of matrix adhesion. Oncogene, 1999, 18(10), 1827-1836.
[http://dx.doi.org/10.1038/sj.onc.1202471] [PMID: 10086337]
[174]
Williams, A.C.; Collard, T.J.; Perks, C.M.; Newcomb, P.; Moorghen, M.; Holly, J.M.; Paraskeva, C. Increased p53-dependent apoptosis by the insulin-like growth factor binding protein IGFBP-3 in human colonic adenoma-derived cells. Cancer Res., 2000, 60(1), 22-27.
[PMID: 10646845]
[175]
Chen, Y.; Guillemin, G.J. Kynurenine pathway metabolites in humans: disease and healthy States. Int. J. Tryptophan Res., 2009, 2, 1-19.
[http://dx.doi.org/10.4137/IJTR.S2097] [PMID: 22084578]
[176]
Stone, T.W.; Darlington, L.G. Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discov., 2002, 1(8), 609-620.
[http://dx.doi.org/10.1038/nrd870] [PMID: 12402501]
[177]
Schwarcz, R.; Stone, T. W. The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology, 2017, 112(Pt B), 237-247.
[http://dx.doi.org/10.1016/j.neuropharm.2016.08.003]
[178]
Samad, N.; Yasmin, F.; Naheed, S.; Bari, A.Z.; Ayaz, M.M.; Zaman, A.; Akbar, A.; Saeed, S.; Ullah, N. Serum levels of leptin, zinc and tryptophan in obese subjects with sleep deficits. Pak. J. Pharm. Sci., 2017, 30(4), 1431-1438.
[PMID: 29043993]
[179]
Chaves Filho, A.J.M.; Lima, C.N.C.; Vasconcelos, S.M.M.; de Lucena, D.F.; Maes, M.; Macedo, D. IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80(Pt C), 234-249.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.035] [PMID: 28595944]
[180]
Oh, J.S.; Seo, H.S.; Kim, K.H.; Pyo, H.; Chung, B.C.; Lee, J. Urinary profiling of tryptophan and its related metabolites in patients with metabolic syndrome by liquid chromatography-electrospray ionization/mass spectrometry. Anal. Bioanal. Chem., 2017, 409(23), 5501-5512.
[http://dx.doi.org/10.1007/s00216-017-0486-4] [PMID: 28710517]
[181]
Oxenkrug, G.; van der Hart, M.; Roeser, J.; Summergrad, P. Peripheral Tryptophan - Kynurenine metabolism associated with metabolic syndrome is different in Parkinson’s and Alzheifs diseases. Endocrinol. Diabetes Metab. J., 2017, 1(4)
[PMID: 29292800]
[182]
Rebnord, E.W.; Strand, E.; Midttun, O.; Svingen, G.F.T.; Christensen, M.H.E.; Ueland, P.M.; Mellgren, G.; NjOlstad, P.R.; Tell, G.S.; Nygård, O.K.; Pedersen, E.R. The kynurenine: tryptophan ratio as a predictor of incident type 2 diabetes mellitus in individuals with coronary artery disease. Diabetologia, 2017, 60(9), 1712-1721.
[http://dx.doi.org/10.1007/s00125-017-4329-9] [PMID: 28612106]
[183]
Venkateswaran, N.; Lafita-Navarro, M.C.; Hao, Y.H.; Kilgore, J.A.; Perez-Castro, L.; Braverman, J.; Borenstein-Auerbach, N.; Kim, M.; Lesner, N.P.; Mishra, P.; Brabletz, T.; Shay, J.W.; DeBerardinis, R.J.; Williams, N.S.; Yilmaz, O.H.; Conacci-Sorrell, M. MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer. Genes Dev., 2019, 33(17-18), 1236-1251.
[http://dx.doi.org/10.1101/gad.327056.119] [PMID: 31416966]
[184]
Bujisic, B.; Martinon, F. IRE1 gives weight to obesity-associated inflammation. Nat. Immunol., 2017, 18(5), 479-480.
[http://dx.doi.org/10.1038/ni.3725] [PMID: 28418390]
[185]
Shan, B.; Wang, X.; Wu, Y.; Xu, C.; Xia, Z.; Dai, J.; Shao, M.; Zhao, F.; He, S.; Yang, L.; Zhang, M.; Nan, F.; Li, J.; Liu, J.; Liu, J.; Jia, W.; Qiu, Y.; Song, B.; Han, J.J.; Rui, L.; Duan, S.Z.; Liu, Y. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat. Immunol., 2017, 18(5), 519-529.
[http://dx.doi.org/10.1038/ni.3709] [PMID: 28346409]
[186]
Shirasuna, K.; Karasawa, T.; Takahashi, M. Role of the NLRP3 inflammasome in preeclampsia. Front. Endocrinol. (Lausanne), 2020, 11, 80.
[http://dx.doi.org/10.3389/fendo.2020.00080] [PMID: 32161574]
[187]
Ahechu, P.; Zozaya, G.; Martí, P.; Hernández-Lizoáin, J.L.; Baixauli, J.; Unamuno, X.; Fruhbeck, G.; Catalán, V. NLRP3 inflammasome: A possible link between obesity-associated low-grade chronic inflammation and colorectal cancer development. Front. Immunol., 2018, 9, 2918.
[http://dx.doi.org/10.3389/fimmu.2018.02918] [PMID: 30619282]
[188]
Stone, T.W.; McPherson, M.; Gail Darlington, L. Obesity and cancer: Existing and new hypotheses for a causal connection. EBioMedicine, 2018, 30, 14-28.
[http://dx.doi.org/10.1016/j.ebiom.2018.02.022] [PMID: 29526577]
[189]
Bliss, E.S.; Whiteside, E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front. Physiol., 2018, 9, 900.
[http://dx.doi.org/10.3389/fphys.2018.00900] [PMID: 30050464]
[190]
Parikh, A.; Thevenin, C. Physiology, gastrointestinal hormonal control. In: StatPearls; Treasure Island, FL, 2021.
[191]
Liddle, R.A. Interactions of gut endocrine cells with epithelium and neurons. Compr. Physiol., 2018, 8(3), 1019-1030.
[http://dx.doi.org/10.1002/cphy.c170044] [PMID: 29978902]
[192]
Chen, G.Y. The role of the gut microbiome in colorectal cancer. Clin. Colon Rectal Surg., 2018, 31(3), 192-198.
[http://dx.doi.org/10.1055/s-0037-1602239] [PMID: 29720905]
[193]
Khan, M.T.; Nieuwdorp, M.; Backhed, F. Microbial modulation of insulin sensitivity. Cell Metab., 2014, 20(5), 753-760.
[http://dx.doi.org/10.1016/j.cmet.2014.07.006] [PMID: 25176147]
[194]
Campisciano, G.; de Manzini, N.; Delbue, S.; Cason, C.; Cosola, D.; Basile, G.; Ferrante, P.; Comar, M.; Palmisano, S. The obesity-related gut bacterial and viral dysbiosis can impact the risk of colon cancer development. Microorganisms, 2020, 8(3), E431.
[http://dx.doi.org/10.3390/microorganisms8030431] [PMID: 32204328]
[195]
Davis, C.D. The gut microbiome and its role in obesity. Nutr. Today, 2016, 51(4), 167-174.
[http://dx.doi.org/10.1097/NT.0000000000000167] [PMID: 27795585]
[196]
Yoon, K.; Kim, N. The effect of microbiota on colon carcinogenesis. J. Cancer Prev., 2018, 23(3), 117-125.
[http://dx.doi.org/10.15430/JCP.2018.23.3.117] [PMID: 30370256]
[197]
Vannucci, L.; Stepankova, R.; Kozakova, H.; Fiserova, A.; Rossmann, P.; Tlaskalova-Hogenova, H. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int. J. Oncol., 2008, 32(3), 609-617.
[http://dx.doi.org/10.3892/ijo.32.3.609] [PMID: 18292938]
[198]
Kado, S.; Uchida, K.; Funabashi, H.; Iwata, S.; Nagata, Y.; Ando, M.; Onoue, M.; Matsuoka, Y.; Ohwaki, M.; Morotomi, M. Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res., 2001, 61(6), 2395-2398.
[PMID: 11289103]
[199]
Tomkovich, S.; Yang, Y.; Winglee, K.; Gauthier, J.; Muhlbauer, M.; Sun, X.; Mohamadzadeh, M.; Liu, X.; Martin, P.; Wang, G.P.; Oswald, E.; Fodor, A.A.; Jobin, C. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res., 2017, 77(10), 2620-2632.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3472] [PMID: 28416491]
[200]
Xu, P.; Hong, F.; Wang, J.; Cong, Y.; Dai, S.; Wang, S.; Wang, J.; Jin, X.; Wang, F.; Liu, J.; Zhai, Y. Microbiome remodeling via the montmorillonite adsorption-excretion axis prevents obesity-related metabolic disorders. EBioMedicine, 2017, 16, 251-261.
[http://dx.doi.org/10.1016/j.ebiom.2017.01.019] [PMID: 28126594]
[201]
Tai, N.; Wong, F.S.; Wen, L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord., 2015, 16(1), 55-65.
[http://dx.doi.org/10.1007/s11154-015-9309-0] [PMID: 25619480]
[202]
Maldonado, R.F.; Sá-Correia, I.; Valvano, M.A. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol. Rev., 2016, 40(4), 480-493.
[http://dx.doi.org/10.1093/femsre/fuw007] [PMID: 27075488]
[203]
Martens, E.C.; Neumann, M.; Desai, M.S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat. Rev. Microbiol., 2018, 16(8), 457-470.
[http://dx.doi.org/10.1038/s41579-018-0036-x] [PMID: 29904082]
[204]
Liu, W.T.; Jing, Y.Y.; Yan, F.; Han, Z.P.; Lai, F.B.; Zeng, J.X.; Yu, G.F.; Fan, Q.M.; Li, R.; Zhao, Q.D.; Wu, M.C.; Wei, L.X. LPS-induced CXCR4-dependent migratory properties and a mesenchymal-like phenotype of colorectal cancer cells. Cell Adhes. Migr., 2017, 11(1), 13-23.
[http://dx.doi.org/10.1080/19336918.2015.1134404] [PMID: 26745593]
[205]
Lopetuso, L.R.; Petito, V.; Graziani, C.; Schiavoni, E.; Paroni Sterbini, F.; Poscia, A.; Gaetani, E.; Franceschi, F.; Cammarota, G.; Sanguinetti, M.; Masucci, L.; Scaldaferri, F.; Gasbarrini, A. Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: Time for microbial marker of gastrointestinal disorders. Dig. Dis., 2018, 36(1), 56-65.
[http://dx.doi.org/10.1159/000477205] [PMID: 28683448]
[206]
Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; Huttley, G.A.; Kelley, S.T.; Knights, D.; Koenig, J.E.; Ley, R.E.; Lozupone, C.A.; McDonald, D.; Muegge, B.D.; Pirrung, M.; Reeder, J.; Sevinsky, J.R.; Turnbaugh, P.J.; Walters, W.A.; Widmann, J.; Yatsunenko, T.; Zaneveld, J.; Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 2010, 7(5), 335-336.
[http://dx.doi.org/10.1038/nmeth.f.303] [PMID: 20383131]
[207]
Ritari, J.; Salojarvi, J.; Lahti, L.; de Vos, W.M. Improved taxonomic assignment of human intestinal 16S rRNA sequences by a dedicated reference database. BMC Genomics, 2015, 16, 1056.
[http://dx.doi.org/10.1186/s12864-015-2265-y] [PMID: 26651617]
[208]
Rideout, J.R.; He, Y.; Navas-Molina, J.A.; Walters, W.A.; Ursell, L.K.; Gibbons, S.M.; Chase, J.; McDonald, D.; Gonzalez, A.; Robbins-Pianka, A.; Clemente, J.C.; Gilbert, J.A.; Huse, S.M.; Zhou, H.W.; Knight, R.; Caporaso, J.G. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ, 2014, 2, e545.
[http://dx.doi.org/10.7717/peerj.545] [PMID: 25177538]
[209]
Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, 26(19), 2460-2461.
[http://dx.doi.org/10.1093/bioinformatics/btq461] [PMID: 20709691]
[210]
Li, X.; Shimizu, Y.; Kimura, I. Gut microbial metabolite short-chain fatty acids and obesity. Biosci. Microbiota Food Health, 2017, 36(4), 135-140.
[http://dx.doi.org/10.12938/bmfh.17-010] [PMID: 29038768]
[211]
Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11(10), 577-591.
[http://dx.doi.org/10.1038/nrendo.2015.128] [PMID: 26260141]
[212]
Sun, J.; Kato, I. Gut microbiota, inflammation and colorectal cancer. Genes Dis., 2016, 3(2), 130-143.
[http://dx.doi.org/10.1016/j.gendis.2016.03.004] [PMID: 28078319]
[213]
Gomes, S.D.; Oliveira, C.S.; Azevedo-Silva, J.; Casanova, M.R.; Barreto, J.; Pereira, H.; Chaves, S.R.; Rodrigues, L.R.; Casal, M.; Côrte-Real, M.; Baltazar, F.; Preto, A. The role of diet related short-chain fatty acids in colorectal cancer metabolism and survival: Prevention and therapeutic implications. Curr. Med. Chem., 2020, 27(24), 4087-4108.
[http://dx.doi.org/10.2174/0929867325666180530102050] [PMID: 29848266]
[214]
Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; de Vos, W.M.; Cani, P.D. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA, 2013, 110(22), 9066-9071.
[http://dx.doi.org/10.1073/pnas.1219451110] [PMID: 23671105]
[215]
Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; Myridakis, A.; Delzenne, N.M.; Klievink, J.; Bhattacharjee, A.; van der Ark, K.C.; Aalvink, S.; Martinez, L.O.; Dumas, M.E.; Maiter, D.; Loumaye, A.; Hermans, M.P.; Thissen, J.P.; Belzer, C.; de Vos, W.M.; Cani, P.D. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med., 2017, 23(1), 107-113.
[http://dx.doi.org/10.1038/nm.4236] [PMID: 27892954]
[216]
Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; de Barsy, M.; Loumaye, A.; Hermans, M.P.; Thissen, J.P.; de Vos, W.M.; Cani, P.D. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med., 2019, 25(7), 1096-1103.
[http://dx.doi.org/10.1038/s41591-019-0495-2] [PMID: 31263284]
[217]
Aindelis, G.; Tiptiri-Kourpeti, A.; Lampri, E.; Spyridopoulou, K.; Lamprianidou, E.; Kotsianidis, I.; Ypsilantis, P.; Pappa, A.; Chlichlia, K. Immune responses raised in an experimental colon carcinoma model following oral administration of Lactobacillus casei. Cancers (Basel), 2020, 12(2), E368.
[http://dx.doi.org/10.3390/cancers12020368] [PMID: 32033490]
[218]
Van der Jeught, K.; Xu, H.C.; Li, Y.J.; Lu, X.B.; Ji, G. Drug resistance and new therapies in colorectal cancer. World J. Gastroenterol., 2018, 24(34), 3834-3848.
[http://dx.doi.org/10.3748/wjg.v24.i34.3834] [PMID: 30228778]
[219]
Martini, G.; Troiani, T.; Cardone, C.; Vitiello, P.; Sforza, V.; Ciardiello, D.; Napolitano, S.; Della Corte, C.M.; Morgillo, F.; Raucci, A.; Cuomo, A.; Selvaggi, F.; Ciardiello, F.; Martinelli, E. Present and future of metastatic colorectal cancer treatment: A review of new candidate targets. World J. Gastroenterol., 2017, 23(26), 4675-4688.
[http://dx.doi.org/10.3748/wjg.v23.i26.4675] [PMID: 28765689]
[220]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - role and significance in cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[221]
Malinowsky, K.; Nitsche, U.; Janssen, K.P.; Bader, F.G.; Spath, C.; Drecoll, E.; Keller, G.; Hofler, H.; Slotta-Huspenina, J.; Becker, K.F. Activation of the PI3K/AKT pathway correlates with prognosis in stage II colon cancer. Br. J. Cancer, 2014, 110(8), 2081-2089.
[http://dx.doi.org/10.1038/bjc.2014.100] [PMID: 24619078]
[222]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[223]
Osaki, M.; Oshimura, M.; Ito, H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis, 2004, 9(6), 667-676.
[http://dx.doi.org/10.1023/B:APPT.0000045801.15585.dd] [PMID: 15505410]
[224]
Testa, J.R.; Bellacosa, A. AKT plays a central role in tumorigenesis. Proc. Natl. Acad. Sci. USA, 2001, 98(20), 10983-10985.
[http://dx.doi.org/10.1073/pnas.211430998] [PMID: 11572954]
[225]
Zhang, Y.J.; Dai, Q.; Sun, D.F.; Xiong, H.; Tian, X.Q.; Gao, F.H.; Xu, M.H.; Chen, G.Q.; Han, Z.G.; Fang, J.Y. mTOR signaling pathway is a target for the treatment of colorectal cancer. Ann. Surg. Oncol., 2009, 16(9), 2617-2628.
[http://dx.doi.org/10.1245/s10434-009-0555-9] [PMID: 19517193]
[226]
Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res., 2002, 12(1), 9-18.
[http://dx.doi.org/10.1038/sj.cr.7290105] [PMID: 11942415]
[227]
Roslan, N.H.; Makpol, S.; Mohd Yusof, Y.A. A review on dietary intervention in obesity associated colon cancer. Asian Pac. J. Cancer Prev., 2019, 20(5), 1309-1319.
[http://dx.doi.org/10.31557/APJCP.2019.20.5.1309] [PMID: 31127882]
[228]
Donohoe, F.; Wilkinson, M.; Baxter, E.; Brennan, D.J. Mitogen-activated protein kinase (MAPK) and obesity-related cancer. Int. J. Mol. Sci., 2020, 21(4), E1241.
[http://dx.doi.org/10.3390/ijms21041241] [PMID: 32069845]
[229]
Ye, T.H.; Yang, F.F.; Zhu, Y.X.; Li, Y.L.; Lei, Q.; Song, X.J.; Xia, Y.; Xiong, Y.; Zhang, L.D.; Wang, N.Y.; Zhao, L.F.; Gou, H.F.; Xie, Y.M.; Yang, S.Y.; Yu, L.T.; Yang, L.; Wei, Y.Q. Inhibition of Stat3 signaling pathway by nifuroxazide improves antitumor immunity and impairs colorectal carcinoma metastasis. Cell Death Dis., 2017, 8(1), e2534.
[http://dx.doi.org/10.1038/cddis.2016.452] [PMID: 28055016]
[230]
Lee, H.; Jeong, A.J.; Ye, S.K. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep., 2019, 52(7), 415-423.
[http://dx.doi.org/10.5483/BMBRep.2019.52.7.152] [PMID: 31186087]
[231]
Malley, C.O.; Pidgeon, G.P. The mTOR pathway in obesity driven gastrointestinal cancers: Potential targets and clinical trials. BBA Clin., 2015, 5, 29-40.
[http://dx.doi.org/10.1016/j.bbacli.2015.11.003] [PMID: 27051587]
[232]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[233]
Roelands, J.; Kuppen, P. J. K.; Vermeulen, L.; Maccali, C.; Decock, J.; Wang, E. MArincola, F. M.; Bedognetti, D.; Hendrickx, W. Immunogenomic Classification of Colorectal Cancer and Therapeutic Implications. Int. J. Mol. Sci., 2017, 18(10), 2229.
[http://dx.doi.org/10.3390/ijms18102229]
[234]
Francipane, M. G.; Lagasse, E. Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor Torin-1. Oncotarget, 2013, 4(11), 1948-62.
[http://dx.doi.org/10.18632/oncotarget.1310]
[235]
Ying, J.; Tsujii, M.; Kondo, J.; Hayashi, Y.; Kato, M.; Akasaka, T.; Inoue, T.; Shiraishi, E. Inoue, T.; Hiyama, S.; Tsujii, Y.; MAekawa, A.; Kawai, S.; Fujinara, T.; Araki, M.; Shinzaki, S.; Watabe, K.; Nishida, T.; Iijima, H.; Takehara, T., The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells. Int. J. Oncol., 2015, 46(4), 1551-9.
[http://dx.doi.org/10.3892/ijo.2015.2851]
[236]
Lin, L.; Hutzen, B.; Li, P.K.; Ball, S.; Zuo, M.; DeAngelis, S.; Foust, E.; Sobo, M.; Friedman, L.; Bhasin, D.; Cen, L.; Li, C.; Lin, J. A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia, 2010, 12(1), 39-50.
[http://dx.doi.org/10.1593/neo.91196]
[237]
Lin, L.; Liu, A.; Peng, Z.; Lin, H. J.; Li, P. K.; Li., C.; Lin, J. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res., 2011, 71(23), 7226-37.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4660]
[238]
Spitzner, M.; Roesler, B.; Bielfeld, C.; Emons, G.; Gaedcke, J.; Wolff, H. A.; Rave-Frank, M.; Kramer, F.; Beissbarth, T.; Kitz, J.; Wienands, J.; Ghadimi, B. M.; Ebner, R.; Ried, T.; Grade, M. STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy in vitro and in vivo. Int J Cancer, 2014, 134(4), 997-1007.
[http://dx.doi.org/10.1002/ijc.28429]
[239]
Zhao, C.; Wang, W.; Yu, W.; Jou, D.; Wang, Y.; Ma, H.; Xiao, H.; Qin, H.; Zhang, C.; Lu, J.; Li, S.; Li, C.; Lin, J.; Lin, L. A novel small molecule STAT3 inhibitor , LY5, inhibits cell viability, colony formation, and migration of colon and liver cancer cells. Oncotarget, 2016, 7(11), 12917-26.
[http://dx.doi.org/10.18632/oncotarget.7338]
[240]
Gedaly, R.; Angulo, P.; Hundley, J.; Daily, M. F.; Chen, C.; Koch, A.; Evers, B. M. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res., 2010, 30(12), 4951-8.
[PMID: 21187475]
[241]
Hong, Z.; Xiao, M.; Yang, Y.; Han, Z.; Cao, Y.; Li, C.; Wu, Y.; Gong, Q; Zhou, X.; Xu, D.; Meng, L.; Ma, D.; Zhou, J. Arsenic disulfide synergizes with the phosphoinositide 3-kinase inhibitor PI-103 to eradicate acute myeloid leukemia stem cells by inducing differentiation. Carcinogenesis, 2011, 32(10), 1550-8.
[http://dx.doi.org/10.1093/carcin/bgr176]
[242]
Mazzoletti, M.; Bortolin, F.; Brunelli, L.; PAstorelli, R.; Di Giandomenico, S.; Erba, E.; Ubezio, P.; broggini, M. Combination of PI3K/mTOR inhibitors: Antitumor activity and molecular correlates. Cancer Res., 2011, 71(13), 4573-84.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4322]
[243]
Prevo, R.; Deutsch, E.; Sampson, O.; Diplexcito, J.; Cengel, K.; Harper, J.; O’Neill, P; McKenna, W. G.; Patel, S.; Bernhard, E. J. Class I PI3 kinase inhibition by the pyridinylfuranopyrimidine inhibitor PI-103 enhances tumor radiosensitivity. Cancer Res., 2008, 68(14), 5915-23.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy