Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry


ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Theoretical Analysis of Anticancer Cellular Effects of Glycoside Amides

Author(s): Vasil Tsanov* and Hristo Tsanov

Volume 22, Issue 6, 2022

Published on: 12 January, 2022

Page: [1171 - 1200] Pages: 30

DOI: 10.2174/1871520621666210903122831

Price: $65


Background: This article is a continuation of Theoretical Analysis for the Safe Form and Dosage of Amygdalin Product and Theoretical Study of the Process of Passage of Glycoside Amides through the Cell Membrane of Cancer Cell. They consider some possible natural modifications and hypothesize that it is not nitrile glycosides that have antitumor properties but their amide / carboxyl derivatives. The possibility of using this circumstance in conservative oncology is also considered. A mechanism for crossing the cell membrane and overcoming the immune functions of the cancer cell is presented.

The physiologically active cancer cell itself is quite inert to external influences. It is far more stable than any physiologically active structural and/or functional organismal cell. Its defenses are discussed in detail in the article, and its main weakness was defined, namely: the cancer cell feeds mainly on carbohydrates and/ or carbohydrate complexes. In an effort to preserve its gene set, it has evolved to counteract biologically active substances by maximally preventing its passage through its cell membrane.

It is this property that could be used to minimize its effect on the whole body. In the same article, based on theoretical calculations and literature references, a hypothesis is stated: cancers could turn from severe infectious to controlled chronic ones (similar to diabetes, chronic hepatitis, etc.)

Objective: The pharmaceutical form allows deviation from the chemically pure substance. It is a convenient and at the same time accessible (from a financial and/or technological point of view) form for admission by patients.

Due to the great variety of natural glycosamide nitriles (starting material for the production of amide/ carboxylic acid), modern pharmacology allows their combined intake by chemical nature and concentration of the active form crossing the cell membrane.

Natural nitrile glycosides hydrolyzed to amide/carboxylic acid are still unexplored but with great theoretical potential. As biologically active substances, these compounds also have significant toxicity. One of the purposes of this article is to organize laboratory tests on animals.

Methods: A comparative analysis is performed on the basis of stoichiometric calculations for the concentration of the active form and the prediction of the bioactivity. For this purpose, the following methodology is applied: Data analysis for active anticancer cell molecular form and Determination of the drug dose. The derived chemicals obtained immediately after the passage of glycosamide across the cancer cell membrane are: (R)-2-hydroxy-2-phenylacetamide, (R)-2- hydroxy-2-(4-hydroxyphenyl)acetamide, (R)-2-hydroxy-2-(3-hydroxyphenyl)acetamide, 2-hydroxy-2-methylpropanamide, (S)-2-hydroxy-2-methylbutanamide, 2-hydroxy-3-methylbut-2-enamide, (2Z,4E)-4-(2-amino-1-hydroxy-2-oxoethylide ne)hex-2-enedioic acid, (S)-1-hydroxycyclopent-2-ene-1-carboxamide, (1S,4S)-1,4-dihydroxycyclopent-2-ene-1-carbox amide, (1R,4R)-1,4,5-trihydroxycyclopent-2-ene-1-carboxamide, (Z)-2-((4S,6R)-4,6-dihydroxycyclohex-2-en-1-ylidene) acetamide, (R)-2-hydroxy-3-methylbutanamide, (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide, (Z)-2-((4R,5R,6S)-5,6-dihydroxy-4-methoxycyclohex-2-en-1-ylidene)acetamide, (E)-2-((4R,6S)-4,6-dihydroxycyclohex- 2-en-1-ylidene)acetamide и (E)-2-((4S,5R,6R)-4,5,6-trihydroxycyclohex-2-en-1-ylidene)acetamide.

Results: The use of two or more pharmaceutical forms would not prevent their penetration, subject to the mass ratios between the active antitumor amide and the active carboxyl transfer form.

Conclusion: Amides resulting from the hydrolysis of nitrile glycosides would have the ability to cross the cell membrane of a cancer cell and thus cause its cellular response. The pharmaceutical form must represent the exact amide / carboxylic acid ratio for the corresponding active anticancer cell form.

Keywords: Anticancer cellular effects, glycoside amides, druglikeness, active carboxyl transfer, nitrile glycosides, theoretical analysis.

Graphical Abstract
Tsanov, V.; Tsanov, H. Theoretical analysis for the safe form and dosage of amygdalin product. Anticancer. Agents Med. Chem., 2020, 20(7), 897-908.
[] [PMID: 32167430]
Tsanov, V.; Tsanov, H. Theoretical study of the process of passage of glycoside amides through the cell membrane of cancer cell. Anticancer. Agents Med. Chem., 2020, 21(12), 1612-1623.
[] [PMID: 33155916]
DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab., 2008, 7(1), 11-20.
[] [PMID: 18177721]
Huiyan, S.; Liang, Ch.; Sha, C.; Yanchun, L.; Ying, X. Warburg effects in cancer and normal proliferating cells: Two tales of the same name, genomics. Proteomics & Bioinformatics, 2019, 17(3), 273-286.
Krakhmal, N.V.; Zavyalova, M.V.; Denisov, E.V.; Vtorushin, S.V.; Perelmuter, V.M. Cancer invasion: Patterns and mechanisms. Acta. naturae, 2015, 7(2), 17-28.
Yamaguchi, H.; Wyckoff, J.; Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol., 2005, 17(5), 559-564.
[] [PMID: 16098726]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog., 2013, 18(1-2), 43-73.
[] [PMID: 23237552]
Janiszewska, M.; Primi, M.C.; Izard, T. Cell adhesion in cancer: Beyond the migration of single cells. J. Biol. Chem., 2020, 295(8), 2495-2505.
[] [PMID: 31937589]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[] [PMID: 28127048]
Ribeiro, T.; Lemos, F.; Preto, M.; Azevedo, J.; Sousa, M.L.; Leão, P.N.; Campos, A.; Linder, S.; Vitorino, R.; Vasconcelos, V.; Urbatzka, R. Cytotoxicity of portoamides in human cancer cells and analysis of the molecular mechanisms of action. PLoS One, 2017, 12(12)e0188817
[] [PMID: 29216224]
Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1266-1272.
[] [PMID: 30116377]
Shi, J.; Chen, Q.; Xu, M.; Xia, Q.; Zheng, T.; Teng, J.; Li, M.; Fan, L. Recent updates and future perspectives about amygdalin as a potential anticancer agent: A review. Cancer Med., 2019, 8(6), 3004-3011.
[] [PMID: 31066207]
Qian, L.; Xie, B.; Wang, Y.; Qian, J. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5363-5370.
[PMID: 26191238]
Makarević, J.; Rutz, J.; Juengel, E.; Kaulfuss, S.; Tsaur, I.; Nelson, K.; Pfitzenmaier, J.; Haferkamp, A.; Blaheta, R.A. Amygdalin influences bladder cancer cell adhesion and invasion in vitro. PLoS One, 2014, 9(10)e110244
[] [PMID: 25333694]
Makarević, J.; Rutz, J.; Juengel, E.; Kaulfuss, S.; Reiter, M.; Tsaur, I.; Bartsch, G.; Haferkamp, A.; Blaheta, R.A. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2. PLoS One, 2014, 9(8)e105590
[] [PMID: 25136960]
Makarević, J.; Tsaur, I.; Juengel, E.; Borgmann, H.; Nelson, K.; Thomas, C.; Bartsch, G.; Haferkamp, A.; Blaheta, R.A. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro. Life Sci., 2016, 147, 137-142.
[] [PMID: 26827990]
Syrigos, K.N.; Rowlinson-Busza, G.; Epenetos, A.A. In vitro cytotoxicity following specific activation of amygdalin by beta-glucosidase conjugated to a bladder cancer-associated monoclonal antibody. Int. J. Cancer, 1998, 78(6), 712-719.
[<712:AID-IJC8>3.0.CO;2-D] [PMID: 9833764]
Juengel, E.; Thomas, A.; Rutz, J.; Makarevic, J.; Tsaur, I.; Nelson, K.; Haferkamp, A.; Blaheta, R.A. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro. Int. J. Mol. Med., 2016, 37(2), 526-532.
[] [PMID: 26709398]
Chang, H.K.; Shin, M.S.; Yang, H.Y.; Lee, J.W.; Kim, Y.S.; Lee, M.H.; Kim, J.; Kim, K.H.; Kim, C.J. Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biol. Pharm. Bull., 2006, 29(8), 1597-1602.
[] [PMID: 16880611]
Chen, Y.; Ma, J.; Wang, F.; Hu, J.; Cui, A.; Wei, C.; Yang, Q.; Li, F. Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells. Immunopharmacol. Immunotoxicol., 2013, 35(1), 43-51.
[] [PMID: 23137229]
Park, H.J.; Yoon, S.H.; Han, L.S.; Zheng, L.T.; Jung, K.H.; Uhm, Y.K.; Lee, J.H.; Jeong, J.S.; Joo, W.S.; Yim, S.V.; Chung, J.H.; Hong, S.P. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World J. Gastroenterol., 2005, 11(33), 5156-5161.
[PMID: 16127745]
Lee, H.M.; Moon, A. Amygdalin regulates apoptosis and adhesion in Hs578T triple‐negative breast cancer cells. Biomol. Ther. (Seoul), 2016, 24(1), 62-66.
[] [PMID: 26759703]
Kwon, H.Y.; Hong, S.P.; Hahn, D.H.; Kim, J.H. Apoptosis induction of Persicae Semen extract in human promyelocytic leukemia (HL-60) cells. Arch. Pharm. Res., 2003, 26(2), 157-161.
[] [PMID: 12643594]
Ouyang, X.; Zhou, S.; Su, C.T.; Ge, Z.; Li, R.; Kwoh, C.K. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J. Comput. Chem., 2013, 34(4), 326-336.
[] [PMID: 23034731]
National Library of Medicine. National Center for Biotechnology Information., (Accessed December 29, 2020).
Allinger, N.L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc., 1977, 99(25), 8127-8134.
Halgren, T.A. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem., 1996, 17, 553-586.
Molinspiration. drug-likeness & bioactivity score. (Accessed December 29, 2020).
Kristiansen, K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol. Ther., 2004, 103(1), 21-80.
[] [PMID: 15251227]
Kaczorowski, G.J.; McManus, O.B.; Priest, B.T.; Garcia, M.L. Ion channels as drug targets: the next GPCRs. J. Gen. Physiol., 2008, 131(5), 399-405.
[] [PMID: 18411331]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[] [PMID: 29455673]
Zhao, L.; Zhou, S.; Gustafsson, J.Å. Nuclear Receptors: Recent Drug Discovery for Cancer Therapies. Endocr. Rev., 2019, 40(5), 1207-1249.
[] [PMID: 30869771]
Srikanth, S.; Chen, Z. Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy. Front. Pharmacol., 2016, 7, 470.
[] [PMID: 28008315]
Eatemadi, A.; Aiyelabegan, H.T.; Negahdari, B.; Mazlomi, M.A.; Daraee, H.; Daraee, N.; Eatemadi, R.; Sadroddiny, E. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed. Pharmacother. = Biomedecine & pharmacother., 2017, 86, 221-231.
Aoyagi, T.; Ishizuka, M.; Takeuchi, T.; Umezawa, H. Enzyme inhibitors in relation to cancer therapy. Jpn. J. Antibiot., 1977, 30(Suppl.), 121-132.
[PMID: 612703]
Scatena, R.; Bottoni, P.; Pontoglio, A.; Mastrototaro, L.; Giardina, B. Glycolytic enzyme inhibitors in cancer treatment. Expert Opin. Investig. Drugs, 2008, 17(10), 1533-1545.
[] [PMID: 18808312]
Song, Y.; Wu, F.; Wu, J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J. Hematol. Oncol., 2016, 9(1), 49.
[] [PMID: 27316347]
Li, X.; Li, X.; Li, Y.; Yu, C.; Xue, W.; Hu, J.; Li, B.; Wang, P.; Zhu, F. What makes species productive of anti-cancer drugs? clues from drugs’ species origin, druglikeness, target and pathway. Anticancer. Agents Med. Chem., 2019, 19(2), 194-203.
[] [PMID: 30370862]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[] [PMID: 11259830]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[] [PMID: 10746014]
Oprea, T.I. Property distribution of drug-related chemical databases. J. Comput. Aided Mol. Des., 2000, 14(3), 251-264.
[] [PMID: 10756480]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[] [PMID: 12036371]
Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. The Chemistry Development Kit (CDK): An open-source Java library for chemo-and bioinformatics. J. Chem. Inf. Comput. Sci., 2003, 43(2), 493-500.
[] [PMID: 12653513]
Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 2008, 3(3), 435-444.
[] [PMID: 18064617]
Kerns, E.; Di, L. Drug-like properties: concepts, structure design and methods: from ADME to toxicity optimization; Academic Press, 2008.
Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem., 2012, 4(2), 90-98.
[] [PMID: 22270643]
Yusof, I.; Segall, M.D. Considering the impact drug-like properties have on the chance of success. Drug Discov. Today, 2013, 18(13-14), 659-666.
[] [PMID: 23458995]
Drug Likeness Tool (DruLiTo). Drug-likeness rules, (Accessed December 23, 2020).
Doak, B.C.; Over, B.; Giordanetto, F.; Kihlberg, J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol., 2014, 21(9), 1115-1142.
[] [PMID: 25237858]
Azad, I.; Nasibullah, M.; Khan, T.; Hassan, F.; Akhter, Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J. Mol. Graph. Model., 2018, 81, 211-228.
[] [PMID: 29609141]
Kadam, R.U.; Roy, N. Recent trends in drug-likeness prediction: A comprehensive review of In silico methods. Indian J. Pharm. Sci., 2007, 69(5), 609-615.
Ani, R.; Anand, P.S.; Sreenath, B.; Deepa, O.S. In Silico Prediction Tool for Drug-likeness of Compounds based on Ligand Based Screening. Int. J. Res. Pharm. Sci., 2020, 11(4), 6273-6281.
Jablonsky, M.; Haz, A.; Burčová, Z.; Kreps, F.; Jablonsky, J. Pharmacokinetic Properties of Biomass-extracted Substances Isolated by Green Solvents. BioResources, 2019, 14, 6294-6303.
Bozhanov, Em.; Vuchkov, Iv. Statistical methods for modeling and optimization of multifactor objects; Into. Sec, 2007, 21, 92-106.
Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed; Cengage Learning: Boston, MA, 2011, pp. 508-510.
Box, G.; Wilson, K. On the experimental attainment of optimum conditions JRSS 1951, 13, 1-45.
Böcker, A.; Derksen, S.; Schmidt, E.; Teckentrup, A.; Schneider, G. A hierarchical clustering approach for large compound libraries. J. Chem. Inf. Model., 2005, 45(4), 807-815.
[] [PMID: 16045274]
U.S. EPA, Toxicity Estimation Software Tool /TEST/. (Accessed November 15, 2020).
Russom, C.L. Pesticide Acute MOA Database: Overview of procedures used in compiling the database and summary of results; US EPA: Duluth, MN, 2013, p. 26.
Martin, T.M.; Lilavois, C.R.; Barron, M.G. Prediction of pesticide acute toxicity using two-dimensional chemical descriptors and target species classification In: SAR QSAR Environ. Res; , 2017; 28, pp. (6)525-539.
[] [PMID: 28703021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy