Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Neurodegenerative Disorders and the Current State, Pathophysiology, and Management of Parkinson’s Disease

Author(s): Rahul and Yasir Siddique*

Volume 21, Issue 7, 2022

Published on: 07 December, 2021

Page: [574 - 595] Pages: 22

DOI: 10.2174/1871527320666210903101841

Price: $65

Abstract

In the last few decades, major knowledge has been gained about pathophysiological aspects and molecular pathways behind Parkinson’s Disease (PD). Based on neurotoxicological studies and postmortem investigations, there is a general concept of how environmental toxicants (neurotoxins, pesticides, insecticides) and genetic factors (genetic mutations in PD-associated proteins) cause depletion of dopamine from substantia nigra pars compacta region of the midbrain and modulate cellular processes leading to the pathogenesis of PD. α-Synuclein, a neuronal protein accumulation in oligomeric form, called protofibrils, is associated with cellular dysfunction and neuronal death, thus possibly contributing to PD propagation. With advances made in identifying loci that contribute to PD, molecular pathways involved in disease pathogenesis are now clear, and introducing therapeutic strategy at the right time may delay the progression. Biomarkers for PD have helped monitor PD progression; therefore, personalized therapeutic strategies can be facilitated. In order to further improve PD diagnostic and prognostic accuracy, independent validation of biomarkers is required.

Keywords: Neurodegenerative diseases, α-Synuclein, Parkinson’s disease, dopamine, prognostic, therapeutic strategy.

Graphical Abstract
[1]
Alzheimer’s Association 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 2011; 7(2): 208-44.
[http://dx.doi.org/10.1016/j.jalz.2011.02.004] [PMID: 21414557]
[2]
Bekris LM, Mata IF, Zabetian CP. The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 2010; 23(4): 228-42.
[http://dx.doi.org/10.1177/0891988710383572] [PMID: 20938043]
[3]
Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species-the good, the bad and the ugly. Acta Physiol (Oxf) 2015; 214(3): 329-48.
[http://dx.doi.org/10.1111/apha.12515] [PMID: 25912260]
[4]
Schlecht R, Erbse AH, Bukau B, Mayer MP. Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 2011; 18(3): 345-51.
[http://dx.doi.org/10.1038/nsmb.2006] [PMID: 21278757]
[5]
Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell 2004; 14(1): 95-104.
[http://dx.doi.org/10.1016/S1097-2765(04)00151-0] [PMID: 15068806]
[6]
Rochet JC, Lansbury PT Jr. Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 2000; 10(1): 60-8.
[http://dx.doi.org/10.1016/S0959-440X(99)00049-4] [PMID: 10679462]
[7]
Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006; 75: 333-66.
[http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901] [PMID: 16756495]
[8]
Wendler P, Shorter J, Plisson C, Cashikar AG, Lindquist S, Saibil HR. Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 2007; 131(7): 1366-77.
[http://dx.doi.org/10.1016/j.cell.2007.10.047] [PMID: 18160044]
[9]
Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum: Brothers in arms. Mol Cell 2010; 40(2): 238-52.
[http://dx.doi.org/10.1016/j.molcel.2010.10.001] [PMID: 20965419]
[10]
Klionsky DJ, Baehrecke EH, Brumell JH, et al. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 2011; 7(11): 1273-94.
[http://dx.doi.org/10.4161/auto.7.11.17661] [PMID: 21997368]
[11]
Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010; 40(2): 280-93.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[12]
Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095): 885-9.
[http://dx.doi.org/10.1038/nature04724] [PMID: 16625204]
[13]
Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007; 6(4): 304-12.
[http://dx.doi.org/10.1038/nrd2272] [PMID: 17396135]
[14]
Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 2011; 6: 193-222.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130242] [PMID: 21034221]
[15]
Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 1998; 95(11): 6469-73.
[http://dx.doi.org/10.1073/pnas.95.11.6469] [PMID: 9600990]
[16]
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 461-91.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[17]
Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 2002; 14(2): 223-36.
[http://dx.doi.org/10.1176/jnp.14.2.223] [PMID: 11983801]
[18]
Dorsey ER, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2018; 17(11): 939-53.
[http://dx.doi.org/10.1016/S1474-4422(18)30295-3] [PMID: 30287051]
[19]
Driver JA, Logroscino G, Gaziano JM, Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 2009; 72(5): 432-8.
[http://dx.doi.org/10.1212/01.wnl.0000341769.50075.bb] [PMID: 19188574]
[20]
Rocca WA. The burden of Parkinson’s disease: a worldwide perspective. Lancet Neurol 2018; 17(11): 928-9.
[http://dx.doi.org/10.1016/S1474-4422(18)30355-7] [PMID: 30287052]
[21]
Lee A, Gilbert RM. Epidemiology of Parkinson disease. Neurol Clin 2016; 34(4): 955-65.
[http://dx.doi.org/10.1016/j.ncl.2016.06.012] [PMID: 27720003]
[22]
Razdan S, Kaul RL, Motta A, Kaul S, Bhatt RK. Prevalence and pattern of major neurological disorders in rural Kashmir (India) in 1986. Neuroepidemiology 1994; 13(3): 113-9.
[http://dx.doi.org/10.1159/000110368] [PMID: 8015664]
[23]
Gourie-Devi M, Gururaj G, Satishchandra P, Subbakrishna DK. Prevalence of neurological disorders in Bangalore, India: a community-based study with a comparison between urban and rural areas. Neuroepidemiology 2004; 23(6): 261-8.
[http://dx.doi.org/10.1159/000080090] [PMID: 15297791]
[24]
Das SK, Biswas A, Roy T, et al. A random sample survey for prevalence of major neurological disorders in Kolkata. Indian J Med Res 2006; 124(2): 163-72.
[PMID: 17015930]
[25]
Bharucha NE, Bharucha EP, Bharucha AE, Bhise AV, Schoenberg BS. Prevalence of Parkinson’s disease in the Parsi community of Bombay, India. Arch Neurol 1988; 45(12): 1321-3.
[http://dx.doi.org/10.1001/archneur.1988.00520360039008] [PMID: 3264148]
[26]
Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 2008; 1147: 93-104.
[http://dx.doi.org/10.1196/annals.1427.023] [PMID: 19076434]
[27]
Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol 2013; 47(2): 495-508.
[http://dx.doi.org/10.1007/s12035-012-8280-y] [PMID: 22622968]
[28]
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in Lewy bodies. Nature 1997; 388(6645): 839-40.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[29]
Hsu LJ, Sagara Y, Arroyo A, et al. α-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 2000; 157(2): 401-10.
[http://dx.doi.org/10.1016/S0002-9440(10)64553-1] [PMID: 10934145]
[30]
Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B. Aggregated and monomeric α-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J Biol Chem 2003; 278(14): 11753-9.
[http://dx.doi.org/10.1074/jbc.M208641200] [PMID: 12551928]
[31]
Alim MA, Ma QL, Takeda K, et al. Demonstration of a role for α-synuclein as a functional microtubule-associated protein. J Alzheimers Dis 2004; 6(4): 435-42.
[http://dx.doi.org/10.3233/JAD-2004-6412] [PMID: 15345814]
[32]
McNaught KS, Jnobaptiste R, Jackson T, Jengelley TA. The pattern of neuronal loss and survival may reflect differential expression of proteasome activators in Parkinson’s disease. Synapse 2010; 64(3): 241-50.
[http://dx.doi.org/10.1002/syn.20719] [PMID: 19924695]
[33]
Logroscino G. The role of early life environmental risk factors in Parkinson disease: what is the evidence? Environ Health Perspect 2005; 113(9): 1234-8.
[http://dx.doi.org/10.1289/ehp.7573] [PMID: 16140634]
[34]
Lill CM. Genetics of Parkinson’s disease. Mol Cell Probes 2016; 30(6): 386-96.
[http://dx.doi.org/10.1016/j.mcp.2016.11.001] [PMID: 27818248]
[35]
Gao HM, Hong JS. Gene-environment interactions: key to unraveling the mystery of Parkinson’s disease. Prog Neurobiol 2011; 94(1): 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2011.03.005] [PMID: 21439347]
[36]
Verstraeten A, Theuns J, Van Broeckhoven C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 2015; 31(3): 140-9.
[http://dx.doi.org/10.1016/j.tig.2015.01.004] [PMID: 25703649]
[37]
Kalinderi K, Bostantjopoulou S, Fidani L. The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol Scand 2016; 134(5): 314-26.
[http://dx.doi.org/10.1111/ane.12563] [PMID: 26869347]
[38]
Polymeropoulos MH, Higgins JJ, Golbe LI, et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 1996; 274(5290): 1197-9.
[http://dx.doi.org/10.1126/science.274.5290.1197] [PMID: 8895469]
[39]
Zarranz JJ, Alegre J, Gómez-Esteban JC, et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004; 55(2): 164-73.
[http://dx.doi.org/10.1002/ana.10795] [PMID: 14755719]
[40]
Krüger R, Kuhn W, Müller T, et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998; 18(2): 106-8.
[http://dx.doi.org/10.1038/ng0298-106] [PMID: 9462735]
[41]
Proukakis C, Dudzik CG, Brier T, et al. A novel α-synuclein missense mutation in Parkinson disease. Neurology 2013; 80(11): 1062-4.
[http://dx.doi.org/10.1212/WNL.0b013e31828727ba] [PMID: 23427326]
[42]
Lesage S, Anheim M, Letournel F, et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 2013; 73(4): 459-71.
[http://dx.doi.org/10.1002/ana.23894] [PMID: 23526723]
[43]
Papadimitriou D, Antonelou R, Miligkos M, et al. Motor and nonmotor features of carriers of the p. A53T alpha-synuclein mutation: a longitudinal study. Mov Disord 2016; 31(8): 1226-30.
[http://dx.doi.org/10.1002/mds.26615] [PMID: 27028329]
[44]
Kasten M, Klein C. The many faces of alpha-synuclein mutations. Mov Disord 2013; 28(6): 697-701.
[http://dx.doi.org/10.1002/mds.25499] [PMID: 23674458]
[45]
Singleton AB, Farrer M, Johnson J, et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003; 302(5646): 841-2.
[http://dx.doi.org/10.1126/science.1090278] [PMID: 14593171]
[46]
Ahn TB, Kim SY, Kim JY, et al. α-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology 2008; 70(1): 43-9.
[http://dx.doi.org/10.1212/01.wnl.0000271080.53272.c7] [PMID: 17625105]
[47]
Nishioka K, Ross OA, Ishii K, et al. Expanding the clinical phenotype of SNCA duplication carriers. Mov Disord 2009; 24(12): 1811-9.
[http://dx.doi.org/10.1002/mds.22682] [PMID: 19562770]
[48]
Hoffman-Zacharska D, Koziorowski D, Ross OA, et al. Novel A18T and pA29S substitutions in α-synuclein may be associated with sporadic Parkinson’s disease. Parkinsonism Relat Disord 2013; 19(11): 1057-60.
[http://dx.doi.org/10.1016/j.parkreldis.2013.07.011] [PMID: 23916651]
[49]
Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 2013; 28(6): 811-3.
[http://dx.doi.org/10.1002/mds.25421] [PMID: 23457019]
[50]
Proukakis C, Houlden H, Schapira AH. Somatic alpha-synuclein mutations in Parkinson’s disease: hypothesis and preliminary data. Mov Disord 2013; 28(6): 705-12.
[http://dx.doi.org/10.1002/mds.25502] [PMID: 23674490]
[51]
Sironi F, Trotta L, Antonini A, et al. α-Synuclein multiplication analysis in Italian familial Parkinson disease. Parkinsonism Relat Disord 2010; 16(3): 228-31.
[http://dx.doi.org/10.1016/j.parkreldis.2009.09.008] [PMID: 19833540]
[52]
Campêlo CLDC, Silva RH. Genetic variants in snca and the risk of sporadic parkinson’s disease and clinical outcomes: a review. Parkinson’s Dis 2017; 2017: 4318416.
[53]
Nuytemans K, Meeus B, Crosiers D, et al. Relative contribution of simple mutations vs. copy number variations in five Parkinson disease genes in the Belgian population. Hum Mutat 2009; 30(7): 1054-61.
[http://dx.doi.org/10.1002/humu.21007] [PMID: 19405094]
[54]
Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996; 55(3): 259-72.
[http://dx.doi.org/10.1097/00005072-199603000-00001] [PMID: 8786384]
[55]
Hansen C, Angot E, Bergström AL, et al. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 2011; 121(2): 715-25.
[http://dx.doi.org/10.1172/JCI43366] [PMID: 21245577]
[56]
Parnetti L, Chiasserini D, Bellomo G, et al. Cerebrospinal fluid Tau/α-synuclein ratio in Parkinson’s disease and degenerative dementias. Mov Disord 2011; 26(8): 1428-35.
[http://dx.doi.org/10.1002/mds.23670] [PMID: 21469206]
[57]
Sierks MR, Chatterjee G, McGraw C, Kasturirangan S, Schulz P, Prasad S. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease. Integr Biol 2011; 3(12): 1188-96.
[http://dx.doi.org/10.1039/c1ib00018g] [PMID: 22076255]
[58]
Lin CH, Yang SY, Horng HE, et al. Plasma α-synuclein predicts cognitive decline in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2017; 88(10): 818-24.
[http://dx.doi.org/10.1136/jnnp-2016-314857] [PMID: 28550072]
[59]
Hoepken HH, Gispert S, Azizov M, et al. Parkinson patient fibroblasts show increased alpha-synuclein expression. Exp Neurol 2008; 212(2): 307-13.
[http://dx.doi.org/10.1016/j.expneurol.2008.04.004] [PMID: 18511044]
[60]
Devic I, Hwang H, Edgar JS, et al. Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain 2011; 134(Pt 7): e178.
[http://dx.doi.org/10.1093/brain/awr015] [PMID: 21349902]
[61]
George JM. The synucleins. Genome Biol 2002; 3(1): S3002.
[PMID: 11806835]
[62]
Brás IC, Dominguez-Meijide A, Gerhardt E, et al. Synucleinopathies: Where we are and where we need to go. J Neurochem 2020; 153(4): 433-54.
[http://dx.doi.org/10.1111/jnc.14965] [PMID: 31957016]
[63]
Vargas KJ, Schrod N, Davis T, et al. Synucleins Have Multiple Effects on Presynaptic Architecture. Cell Rep 2017; 18(1): 161-73.
[http://dx.doi.org/10.1016/j.celrep.2016.12.023] [PMID: 28052246]
[64]
Sulzer D, Edwards RH. The physiological role of α-synuclein and its relationship to Parkinson’s Disease. J Neurochem 2019; 150(5): 475-86.
[http://dx.doi.org/10.1111/jnc.14810] [PMID: 31269263]
[65]
Atias M, Tevet Y, Sun J, et al. Synapsins regulate α-synuclein functions. Proc Natl Acad Sci USA 2019; 116(23): 11116-8.
[http://dx.doi.org/10.1073/pnas.1903054116] [PMID: 31110014]
[66]
Zaltieri M, Grigoletto J, Longhena F, et al. α-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. J Cell Sci 2015; 128(13): 2231-43.
[http://dx.doi.org/10.1242/jcs.157867] [PMID: 25967550]
[67]
Venda LL, Cragg SJ, Buchman VL, Wade-Martins R. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci 2010; 33(12): 559-68.
[http://dx.doi.org/10.1016/j.tins.2010.09.004] [PMID: 20961626]
[68]
Cartelli D, Aliverti A, Barbiroli A, et al. α-Synuclein is a Novel Microtubule Dynamase. Sci Rep 2016; 6: 33289.
[http://dx.doi.org/10.1038/srep33289] [PMID: 27628239]
[69]
Sousa VL, Bellani S, Giannandrea M, et al. alpha-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell 2009; 20(16): 3725-39.
[http://dx.doi.org/10.1091/mbc.e08-03-0302] [PMID: 19553474]
[70]
Jeannotte AM, Sidhu A. Regulation of the norepinephrine transporter by α-synuclein-mediated interactions with microtubules. Eur J Neurosci 2007; 26(6): 1509-20.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05757.x] [PMID: 17714497]
[71]
Chadchankar H, Ihalainen J, Tanila H, Yavich L. Decreased reuptake of dopamine in the dorsal striatum in the absence of α-synuclein. Brain Res 2011; 1382: 37-44.
[http://dx.doi.org/10.1016/j.brainres.2011.01.064] [PMID: 21276428]
[72]
Guo JT, Chen AQ, Kong Q, Zhu H, Ma CM, Qin C. Inhibition of vesicular monoamine transporter-2 activity in α-synuclein stably transfected SH-SY5Y cells. Cell Mol Neurobiol 2008; 28(1): 35-47.
[http://dx.doi.org/10.1007/s10571-007-9227-0] [PMID: 17985233]
[73]
Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004; 44(4): 601-7.
[http://dx.doi.org/10.1016/j.neuron.2004.11.005] [PMID: 15541309]
[74]
Rosenbusch KE, Kortholt A. Activation mechanism of lrrk2 and its cellular functions in parkinson's disease. J Parkinsons Dis 2016; 2016
[75]
West AB, Cookson MR. Identification of bona-fide LRRK2 kinase substrates. Mov Disord 2016; 31(8): 1140-1.
[http://dx.doi.org/10.1002/mds.26647] [PMID: 27126091]
[76]
Aasly JO, Toft M, Fernandez-Mata I, et al. Clinical features of LRRK2-associated Parkinson’s disease in central Norway. Ann Neurol 2005; 57(5): 762-5.
[http://dx.doi.org/10.1002/ana.20456] [PMID: 15852371]
[77]
Di Fonzo A, Rohé CF, Ferreira J, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet 2005; 365(9457): 412-5.
[http://dx.doi.org/10.1016/S0140-6736(05)17829-5] [PMID: 15680456]
[78]
Poulopoulos M, Cortes E, Vonsattel JP, et al. Clinical and pathological characteristics of LRRK2 G2019S patients with PD. J Mol Neurosci 2012; 47(1): 139-43.
[http://dx.doi.org/10.1007/s12031-011-9696-y] [PMID: 22194196]
[79]
Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 2008; 7(7): 583-90.
[http://dx.doi.org/10.1016/S1474-4422(08)70117-0] [PMID: 18539534]
[80]
Marras C, Schüle B, Munhoz RP, et al. Phenotype in parkinsonian and nonparkinsonian LRRK2 G2019S mutation carriers. Neurology 2011; 77(4): 325-33.
[http://dx.doi.org/10.1212/WNL.0b013e318227042d] [PMID: 21753163]
[81]
Correia Guedes L, Ferreira JJ, Rosa MM, Coelho M, Bonifati V, Sampaio C. Worldwide frequency of G2019S LRRK2 mutation in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 2010; 16(4): 237-42.
[http://dx.doi.org/10.1016/j.parkreldis.2009.11.004] [PMID: 19945904]
[82]
Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 2004; 56(3): 336-41.
[http://dx.doi.org/10.1002/ana.20256] [PMID: 15349860]
[83]
Ibáñez P, Lesage S, Lohmann E, et al. Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain 2006; 129(Pt 3): 686-94.
[http://dx.doi.org/10.1093/brain/awl005] [PMID: 16401616]
[84]
Rogaeva E, Johnson J, Lang AE, et al. Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Arch Neurol 2004; 61(12): 1898-904.
[http://dx.doi.org/10.1001/archneur.61.12.1898] [PMID: 15596610]
[85]
Hatano Y, Sato K, Elibol B, et al. PARK6-linked autosomal recessive early-onset parkinsonism in Asian populations. Neurology 2004; 63(8): 1482-5.
[http://dx.doi.org/10.1212/01.WNL.0000142258.29304.FE] [PMID: 15505170]
[86]
Bonifati V, Rohé CF, Breedveld GJ, et al. Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 2005; 65(1): 87-95.
[http://dx.doi.org/10.1212/01.wnl.0000167546.39375.82] [PMID: 16009891]
[87]
Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W. PINK1, Parkin, and mitochondrial quality control: what can we learn about Parkinson’s disease pathobiology? J Parkinsons Dis 2017; 7(1): 13-29.
[http://dx.doi.org/10.3233/JPD-160989] [PMID: 27911343]
[88]
Takanashi M, Li Y, Hattori N. Absence of Lewy pathology associated with PINK1 homozygous mutation. Neurology 2016; 86(23): 2212-3.
[http://dx.doi.org/10.1212/WNL.0000000000002744] [PMID: 27164705]
[89]
Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 2012; 33(9): 1340-4.
[http://dx.doi.org/10.1002/humu.22117] [PMID: 22581678]
[90]
Eggers C, Schmidt A, Hagenah J, et al. Progression of subtle motor signs in PINK1 mutation carriers with mild dopaminergic deficit. Neurology 2010; 74(22): 1798-805.
[http://dx.doi.org/10.1212/WNL.0b013e3181e0f79c] [PMID: 20513816]
[91]
Lim KL, Ng XH, Grace LGY, Yao TP. Mitochondrial dynamics and Parkinson’s disease: focus on parkin. Antioxid Redox Signal 2012; 16(9): 935-49.
[http://dx.doi.org/10.1089/ars.2011.4105] [PMID: 21668405]
[92]
Keeney PM, Xie J, Capaldi RA, Bennett JP Jr. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 2006; 26(19): 5256-64.
[http://dx.doi.org/10.1523/JNEUROSCI.0984-06.2006] [PMID: 16687518]
[93]
Wang C, Ko HS, Thomas B, et al. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum Mol Genet 2005; 14(24): 3885-97.
[http://dx.doi.org/10.1093/hmg/ddi413] [PMID: 16278233]
[94]
Rubio de la Torre E, Luzón-Toro B, Forte-Lago I, Minguez-Castellanos A, Ferrer I, Hilfiker S. Combined kinase inhibition modulates parkin inactivation. Hum Mol Genet 2009; 18(5): 809-23.
[PMID: 19050041]
[95]
Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. nature 1998; 392(6676): 605-8.
[96]
Lücking CB, Abbas N, Dürr A, et al. Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. Lancet 1998; 352(9137): 1355-6.
[http://dx.doi.org/10.1016/S0140-6736(05)60746-5] [PMID: 9802278]
[97]
Marder KS, Tang MX, Mejia-Santana H, et al. Predictors of parkin mutations in early-onset Parkinson disease: the consortium on risk for early-onset Parkinson disease study. Arch Neurol 2010; 67(6): 731-8.
[http://dx.doi.org/10.1001/archneurol.2010.95] [PMID: 20558392]
[98]
Li X, Gehring K. Structural studies of parkin and sacsin: Mitochondrial dynamics in neurodegenerative diseases. Mov Disord 2015; 30(12): 1610-9.
[http://dx.doi.org/10.1002/mds.26357] [PMID: 26359782]
[99]
Rüb C, Wilkening A, Voos W. Mitochondrial quality control by the PINK1/Parkin system. Cell Tissue Res 2017; 367(1): 111-23.
[http://dx.doi.org/10.1007/s00441-016-2485-8] [PMID: 27586587]
[100]
Hedrich K, Eskelson C, Wilmot B, et al. Distribution, type, and origin of Parkin mutations: review and case studies. Mov Disord 2004; 19(10): 1146-57.
[http://dx.doi.org/10.1002/mds.20234] [PMID: 15390068]
[101]
Pramstaller PP, Schlossmacher MG, Jacques TS, et al. Lewy body Parkinson’s disease in a large pedigree with 77 Parkin mutation carriers. Ann Neurol 2005; 58(3): 411-22.
[http://dx.doi.org/10.1002/ana.20587] [PMID: 16130111]
[102]
Periquet M, Latouche M, Lohmann E, et al. Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 2003; 126(Pt 6): 1271-8.
[http://dx.doi.org/10.1093/brain/awg136] [PMID: 12764050]
[103]
Lin Y, Zeng YF, Cai NQ, Lin XZ, Wang N, He J. Analysis of exon dosage using multiplex ligation-dependent probe amplification in chinese patients with early-onset parkinson’s disease. Eur Neurol 2019; 81(5-6): 246-53.
[http://dx.doi.org/10.1159/000503421] [PMID: 31618739]
[104]
Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 2000; 97(24): 13354-9.
[http://dx.doi.org/10.1073/pnas.240347797] [PMID: 11078524]
[105]
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183(5): 795-803.
[http://dx.doi.org/10.1083/jcb.200809125] [PMID: 19029340]
[106]
van Duijn CM, Dekker MC, Bonifati V, et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet 2001; 69(3): 629-34.
[http://dx.doi.org/10.1086/322996] [PMID: 11462174]
[107]
Bonifati V, Rizzu P, Van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. science 2003; 299(5604): 256-9.
[108]
Kilarski LL, Pearson JP, Newsway V, et al. Systematic review and UK-based study of PARK2 (parkin), PINK1, PARK7 (DJ-1) and LRRK2 in early-onset Parkinson’s disease. Mov Disord 2012; 27(12): 1522-9.
[http://dx.doi.org/10.1002/mds.25132] [PMID: 22956510]
[109]
Clark LN, Afridi S, Mejia-Santana H, et al. Analysis of an early-onset Parkinson’s disease cohort for DJ-1 mutations. Mov Disord 2004; 19(7): 796-800.
[http://dx.doi.org/10.1002/mds.20131] [PMID: 15254937]
[110]
Neumann M, Müller V, Görner K, Kretzschmar HA, Haass C, Kahle PJ. Pathological properties of the Parkinson’s disease-associated protein DJ-1 in α-synucleinopathies and tauopathies: relevance for multiple system atrophy and Pick’s disease. Acta Neuropathol 2004; 107(6): 489-96.
[http://dx.doi.org/10.1007/s00401-004-0834-2] [PMID: 14991385]
[111]
da Costa CA. DJ-1: a newcomer in Parkinson’s disease pathology. Curr Mol Med 2007; 7(7): 650-7.
[http://dx.doi.org/10.2174/156652407782564426] [PMID: 18045143]
[112]
Waragai M, Wei J, Fujita M, et al. Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem Biophys Res Commun 2006; 345(3): 967-72.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.011] [PMID: 16707095]
[113]
Waragai M, Nakai M, Wei J, et al. Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson’s disease. Neurosci Lett 2007; 425(1): 18-22.
[http://dx.doi.org/10.1016/j.neulet.2007.08.010] [PMID: 17720313]
[114]
Lin X, Cook TJ, Zabetian CP, et al. DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep 2012; 2: 954.
[http://dx.doi.org/10.1038/srep00954] [PMID: 23233873]
[115]
Vilariño-Güell C, Wider C, Ross OA, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet 2011; 89(1): 162-7.
[http://dx.doi.org/10.1016/j.ajhg.2011.06.001] [PMID: 21763482]
[116]
Lesage S, Condroyer C, Klebe S, et al. Identification of VPS35 mutations replicated in French families with Parkinson disease. Neurology 2012; 78(18): 1449-50.
[http://dx.doi.org/10.1212/WNL.0b013e318253d5f2] [PMID: 22517097]
[117]
Ando M, Funayama M, Li Y, et al. VPS35 mutation in Japanese patients with typical Parkinson’s disease. Mov Disord 2012; 27(11): 1413-7.
[http://dx.doi.org/10.1002/mds.25145] [PMID: 22991136]
[118]
Chen X, Kordich JK, Williams ET, et al. Parkinson’s disease-linked D620N VPS35 knockin mice manifest tau neuropathology and dopaminergic neurodegeneration. Proc Natl Acad Sci USA 2019; 116(12): 5765-74.
[http://dx.doi.org/10.1073/pnas.1814909116] [PMID: 30842285]
[119]
Inoshita T, Arano T, Hosaka Y, et al. Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in Drosophila. Hum Mol Genet 2017; 26(15): 2933-48.
[http://dx.doi.org/10.1093/hmg/ddx179] [PMID: 28482024]
[120]
Zimprich A, Benet-Pagès A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 2011; 89(1): 168-75.
[http://dx.doi.org/10.1016/j.ajhg.2011.06.008] [PMID: 21763483]
[121]
Sharma M, Ioannidis JP, Aasly JO, et al. A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. J Med Genet 2012; 49(11): 721-6.
[http://dx.doi.org/10.1136/jmedgenet-2012-101155] [PMID: 23125461]
[122]
Simón-Sánchez J, van Hilten JJ, van de Warrenburg B, et al. Genome-wide association study confirms extant PD risk loci among the Dutch. Eur J Hum Genet 2011; 19(6): 655-61.
[http://dx.doi.org/10.1038/ejhg.2010.254] [PMID: 21248740]
[123]
Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 2009; 41(12): 1303-7.
[http://dx.doi.org/10.1038/ng.485] [PMID: 19915576]
[124]
Pankratz N, Wilk JB, Latourelle JC, et al. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 2009; 124(6): 593-605.
[http://dx.doi.org/10.1007/s00439-008-0582-9] [PMID: 18985386]
[125]
Hamza TH, Zabetian CP, Tenesa A, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 2010; 42(9): 781-5.
[http://dx.doi.org/10.1038/ng.642] [PMID: 20711177]
[126]
Schrag A, Ben-Shlomo Y, Quinn N. How common are complications of Parkinson’s disease? J Neurol 2002; 249(4): 419-23.
[http://dx.doi.org/10.1007/s004150200032] [PMID: 11967646]
[127]
Chapuis S, Ouchchane L, Metz O, Gerbaud L, Durif F. Impact of the motor complications of Parkinson’s disease on the quality of life. Mov Disord 2005; 20(2): 224-30.
[http://dx.doi.org/10.1002/mds.20279] [PMID: 15384126]
[128]
Bhidayasiri R, Trenkwalder C. Getting a good night sleep? The importance of recognizing and treating nocturnal hypokinesia in Parkinson’s disease. Parkinsonism Relat Disord 2018; 50: 10-8.
[http://dx.doi.org/10.1016/j.parkreldis.2018.01.008] [PMID: 29336905]
[129]
Chen W, Hopfner F, Becktepe JS, Deuschl G. Rest tremor revisited: Parkinson’s disease and other disorders. Transl Neurodegener 2017; 6(1): 16.
[http://dx.doi.org/10.1186/s40035-017-0086-4] [PMID: 28638597]
[130]
di Biase L, Summa S, Tosi J, et al. Quantitative analysis of bradykinesia and rigidity in Parkinson’s disease. Front Neurol 2018; 9: 121.
[http://dx.doi.org/10.3389/fneur.2018.00121] [PMID: 29568281]
[131]
Palakurthi B, Burugupally SP. Postural instability in Parkinson’s disease: A review. Brain Sci 2019; 9(9): 239.
[http://dx.doi.org/10.3390/brainsci9090239] [PMID: 31540441]
[132]
Gallagher DA, Schrag A. Psychosis, apathy, depression and anxiety in Parkinson’s disease. Neurobiol Dis 2012; 46(3): 581-9.
[http://dx.doi.org/10.1016/j.nbd.2011.12.041] [PMID: 22245219]
[133]
Pappert EJ, Goetz CG, Niederman FG, Raman R, Leurgans S. Hallucinations, sleep fragmentation, and altered dream phenomena in Parkinson’s disease. Mov Disord 1999; 14(1): 117-21.
[http://dx.doi.org/10.1002/1531-8257(199901)14:1<117::AID-MDS1019>3.0.CO;2-0] [PMID: 9918353]
[134]
Birkmayer W, Riederer P. Responsibility of extrastriatal areas for the appearance of psychotic symptoms (clinical and biochemical human post-mortem findings). J Neur Trans 1975; 37(2): 175-82.
[http://dx.doi.org/10.1007/BF01663632] [PMID: 1185162]
[135]
Reijnders JS, Ehrt U, Weber WE, Aarsland D, Leentjens AF. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 2008; 23(2): 183-9.
[http://dx.doi.org/10.1002/mds.21803] [PMID: 17987654]
[136]
Feldmann A, Illes Z, Kosztolanyi P, et al. Morphometric changes of gray matter in Parkinson’s disease with depression: a voxel-based morphometry study. Mov Disord 2008; 23(1): 42-6.
[http://dx.doi.org/10.1002/mds.21765] [PMID: 17973326]
[137]
van Mierlo TJ, Chung C, Foncke EM, Berendse HW, van den Heuvel OA. Depressive symptoms in Parkinson’s disease are related to decreased hippocampus and amygdala volume. Mov Disord 2015; 30(2): 245-52.
[http://dx.doi.org/10.1002/mds.26112] [PMID: 25600157]
[138]
Deng X, Tang CY, Zhang J, et al. The cortical thickness correlates of clinical manifestations in the mid-stage sporadic Parkinson’s disease. Neurosci Lett 2016; 633: 279-89.
[http://dx.doi.org/10.1016/j.neulet.2016.09.042] [PMID: 27721206]
[139]
Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005; 128(Pt 6): 1314-22.
[http://dx.doi.org/10.1093/brain/awh445] [PMID: 15716302]
[140]
Di Giuda D, Camardese G, Bentivoglio AR, et al. Dopaminergic dysfunction and psychiatric symptoms in movement disorders: a 123I-FP-CIT SPECT study. Eur J Nucl Med Mol Imaging 2012; 39(12): 1937-48.
[http://dx.doi.org/10.1007/s00259-012-2232-7] [PMID: 22976499]
[141]
Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 2008; 23(6): 837-44.
[http://dx.doi.org/10.1002/mds.21956] [PMID: 18307261]
[142]
Churchyard A, Lees AJ. The relationship between dementia and direct involvement of the hippocampus and amygdala in Parkinson’s disease. Neurology 1997; 49(6): 1570-6.
[http://dx.doi.org/10.1212/WNL.49.6.1570] [PMID: 9409348]
[143]
Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 2003; 23(15): 6351-6.
[http://dx.doi.org/10.1523/JNEUROSCI.23-15-06351.2003] [PMID: 12867520]
[144]
Louter M, van der Marck MA, Pevernagie DA, Munneke M, Bloem BR, Overeem S. Sleep matters in Parkinson’s disease: use of a priority list to assess the presence of sleep disturbances. Eur J Neurol 2013; 20(2): 259-65.
[http://dx.doi.org/10.1111/j.1468-1331.2012.03836.x] [PMID: 22900781]
[145]
Schapira AH. Sleep attacks (sleep episodes) with pergolide. Lancet 2000; 355(9212): 1332-3.
[146]
Marin RS, Fogel BS, Hawkins J, Duffy J, Krupp B. Apathy: a treatable syndrome. J Neuropsychiatry Clin Neurosci 1995; 7(1): 23-30.
[http://dx.doi.org/10.1176/jnp.7.1.23] [PMID: 7711487]
[147]
Santangelo G, Barone P, Cuoco S, et al. Apathy in untreated, de novo patients with Parkinson’s disease: validation study of Apathy Evaluation Scale. J Neurol 2014; 261(12): 2319-28.
[http://dx.doi.org/10.1007/s00415-014-7498-1] [PMID: 25228003]
[148]
Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24(2): 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[149]
Starkstein SE. Apathy in Parkinson’s disease: diagnostic and etiological dilemmas. Mov Disord 2012; 27(2): 174-8.
[http://dx.doi.org/10.1002/mds.24061] [PMID: 22237755]
[150]
Carriere N, Besson P, Dujardin K, et al. Apathy in Parkinson’s disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis. Mov Disord 2014; 29(7): 897-903.
[http://dx.doi.org/10.1002/mds.25904] [PMID: 24817690]
[151]
Devos D, Moreau C, Maltête D, et al. Rivastigmine in apathetic but dementia and depression-free patients with Parkinson’s disease: a double-blind, placebo-controlled, randomised clinical trial. J Neurol Neurosurg Psychiatry 2014; 85(6): 668-74.
[http://dx.doi.org/10.1136/jnnp-2013-306439] [PMID: 24218528]
[152]
Thobois S, Lhommée E, Klinger H, et al. Parkinsonian apathy responds to dopaminergic stimulation of D2/D3 receptors with piribedil. Brain 2013; 136(Pt 5): 1568-77.
[http://dx.doi.org/10.1093/brain/awt067] [PMID: 23543483]
[153]
Czernecki V, Pillon B, Houeto JL, Pochon JB, Levy R, Dubois B. Motivation, reward, and Parkinson’s disease: influence of dopatherapy. Neuropsychologia 2002; 40(13): 2257-67.
[http://dx.doi.org/10.1016/S0028-3932(02)00108-2] [PMID: 12417456]
[154]
Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; 1(8649): 1269.
[http://dx.doi.org/10.1016/S0140-6736(89)92366-0] [PMID: 2566813]
[155]
Yoshino H, Nakagawa-Hattori Y, Kondo T, Mizuno Y. Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1992; 4(1): 27-34.
[http://dx.doi.org/10.1007/BF02257619] [PMID: 1347219]
[156]
Lopez-Fabuel I, Martin-Martin L, Resch-Beusher M, Azkona G, Sanchez-Pernaute R, Bolaños JP. Mitochondrial respiratory chain disorganization in Parkinson’s disease-relevant PINK1 and DJ1 mutants. Neurochem Int 2017; 109: 101-5.
[http://dx.doi.org/10.1016/j.neuint.2017.03.023] [PMID: 28408307]
[157]
Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989; 52(2): 381-9.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb09133.x] [PMID: 2911023]
[158]
Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 1998; 70(1): 268-75.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70010268.x] [PMID: 9422371]
[159]
Alam ZI, Jenner A, Daniel SE, et al. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 1997; 69(3): 1196-203.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69031196.x] [PMID: 9282943]
[160]
Sian J, Dexter DT, Lees AJ, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 1994; 36(3): 348-55.
[http://dx.doi.org/10.1002/ana.410360305] [PMID: 8080242]
[161]
Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219(4587): 979-80.
[http://dx.doi.org/10.1126/science.6823561] [PMID: 6823561]
[162]
Markey SP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA. Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 1984; 311(5985): 464-7.
[http://dx.doi.org/10.1038/311464a0] [PMID: 6332988]
[163]
Mullin S, Schapira AH. Pathogenic mechanisms of neurodegeneration in Parkinson disease. Neurol Clin 2015; 33(1): 1-17.
[http://dx.doi.org/10.1016/j.ncl.2014.09.010] [PMID: 25432720]
[164]
Burchell VS, Nelson DE, Sanchez-Martinez A, et al. The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 2013; 16(9): 1257-65.
[http://dx.doi.org/10.1038/nn.3489] [PMID: 23933751]
[165]
Wamer WG, Wei RR. In vitro photooxidation of nucleic acids by ultraviolet A radiation. Photochem Photobiol 1997; 65(3): 560-3.
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08605.x] [PMID: 9077142]
[166]
Zhang J, Perry G, Smith MA, et al. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 1999; 154(5): 1423-9.
[http://dx.doi.org/10.1016/S0002-9440(10)65396-5] [PMID: 10329595]
[167]
Michell AW, Lewis SJ, Foltynie T, Barker RA. Biomarkers and Parkinson’s disease. Brain 2004; 127(Pt 8): 1693-705.
[http://dx.doi.org/10.1093/brain/awh198] [PMID: 15215212]
[168]
Sato S, Mizuno Y, Hattori N. Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease. Neurology 2005; 64(6): 1081-3.
[http://dx.doi.org/10.1212/01.WNL.0000154597.24838.6B] [PMID: 15781836]
[169]
Viswanath V, Wu Y, Boonplueang R, et al. Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease. J Neurosci 2001; 21(24): 9519-28.
[http://dx.doi.org/10.1523/JNEUROSCI.21-24-09519.2001] [PMID: 11739563]
[170]
Leng Y, Chuang DM. Endogenous α-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J Neurosci 2006; 26(28): 7502-12.
[http://dx.doi.org/10.1523/JNEUROSCI.0096-06.2006] [PMID: 16837598]
[171]
Plun-Favreau H, Klupsch K, Moisoi N, et al. The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol 2007; 9(11): 1243-52.
[http://dx.doi.org/10.1038/ncb1644] [PMID: 17906618]
[172]
Machida Y, Chiba T, Takayanagi A, et al. Common anti-apoptotic roles of parkin and alpha-synuclein in human dopaminergic cells. Biochem Biophys Res Commun 2005; 332(1): 233-40.
[http://dx.doi.org/10.1016/j.bbrc.2005.04.124] [PMID: 15896322]
[173]
Xu J, Zhong N, Wang H, et al. The Parkinson’s disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Hum Mol Genet 2005; 14(9): 1231-41.
[http://dx.doi.org/10.1093/hmg/ddi134] [PMID: 15790595]
[174]
Vermes I, Steur EN, Reutelingsperger C, Haanen C. Decreased concentration of annexin V in parkinsonian cerebrospinal fluid: speculation on the underlying cause. Mov Disord 1999; 14(6): 1008-10.
[http://dx.doi.org/10.1002/1531-8257(199911)14:6<1008::AID-MDS1015>3.0.CO;2-E] [PMID: 10584677]
[175]
Chen H, Zhang SM, Hernán MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 2003; 60(8): 1059-64.
[http://dx.doi.org/10.1001/archneur.60.8.1059] [PMID: 12925360]
[176]
Teismann P, Tieu K, Choi DK, et al. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA 2003; 100(9): 5473-8.
[http://dx.doi.org/10.1073/pnas.0837397100] [PMID: 12702778]
[177]
Hunot S, Dugas N, Faucheux B, et al. FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 1999; 19(9): 3440-7.
[http://dx.doi.org/10.1523/JNEUROSCI.19-09-03440.1999] [PMID: 10212304]
[178]
Wu DC, Teismann P, Tieu K, et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 2003; 100(10): 6145-50.
[http://dx.doi.org/10.1073/pnas.0937239100] [PMID: 12721370]
[179]
Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 1994; 165(1-2): 208-10.
[http://dx.doi.org/10.1016/0304-3940(94)90746-3] [PMID: 8015728]
[180]
Mogi M, Harada M, Kondo T, et al. Interleukin-1 β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neurosci Lett 1994; 180(2): 147-50.
[http://dx.doi.org/10.1016/0304-3940(94)90508-8] [PMID: 7700568]
[181]
Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T. Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci Lett 1995; 193(2): 129-32.
[http://dx.doi.org/10.1016/0304-3940(95)11686-Q] [PMID: 7478158]
[182]
Mogi M, Harada M, Kondo T, Riederer P, Nagatsu T. Interleukin-2 but not basic fibroblast growth factor is elevated in parkinsonian brain. Short communication. J Neural Transm (Vienna) 1996; 103(8-9): 1077-81.
[http://dx.doi.org/10.1007/BF01291792] [PMID: 9013395]
[183]
Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1 β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 1996; 211(1): 13-6.
[http://dx.doi.org/10.1016/0304-3940(96)12706-3] [PMID: 8809836]
[184]
Guo J, Sun Z, Xiao S, et al. Proteomic analysis of the cerebrospinal fluid of Parkinson’s disease patients. Cell Res 2009; 19(12): 1401-3.
[http://dx.doi.org/10.1038/cr.2009.131] [PMID: 19949427]
[185]
Scalzo P, de Miranda AS, Guerra Amaral DC, de Carvalho Vilela M, Cardoso F, Teixeira AL. Serum levels of chemokines in Parkinson’s disease. Neuroimmunomodulation 2011; 18(4): 240-4.
[http://dx.doi.org/10.1159/000323779] [PMID: 21430395]
[186]
Chang D, Nalls MA, Hallgrímsdóttir IB, et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 2017; 49(10): 1511-1516..
[http://dx.doi.org/10.1038/ng.3955] [PMID: 28892059]
[187]
Kannarkat GT, Cook DA, Lee JK, et al. Common genetic variant association with altered HLA expression, synergy with pyrethroid exposure, and risk for Parkinson’s disease: an observational and case-control study. NPJ Parkinsons Dis 2015; 1(1): 1-9.
[http://dx.doi.org/10.1038/npjparkd.2015.2] [PMID: 27148593]
[188]
Sulzer D, Alcalay RN, Garretti F, et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 2017; 546(7660): 656-61.
[http://dx.doi.org/10.1038/nature22815] [PMID: 28636593]
[189]
Pavese N, Brooks DJ. Imaging neurodegeneration in Parkinson’s disease. Biochim Biophys Acta 2009; 1792(7): 722-9.
[http://dx.doi.org/10.1016/j.bbadis.2008.10.003] [PMID: 18992326]
[190]
Ravina B, Marek K, Eberly S, et al. Dopamine transporter imaging is associated with long-term outcomes in Parkinson’s disease. Mov Disord 2012; 27(11): 1392-7.
[http://dx.doi.org/10.1002/mds.25157] [PMID: 22976926]
[191]
Ulla M, Bonny JM, Ouchchane L, Rieu I, Claise B, Durif F. Is R2* a new MRI biomarker for the progression of Parkinson’s disease? A longitudinal follow-up. PLoS One 2013; 8(3): e57904.
[http://dx.doi.org/10.1371/journal.pone.0057904] [PMID: 23469252]
[192]
Summerfield C, Junqué C, Tolosa E, et al. Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol 2005; 62(2): 281-5.
[http://dx.doi.org/10.1001/archneur.62.2.281] [PMID: 15710857]
[193]
Berg D, Behnke S, Seppi K, et al. Enlarged hyperechogenic substantia nigra as a risk marker for Parkinson’s disease. Mov Disord 2013; 28(2): 216-9.
[http://dx.doi.org/10.1002/mds.25192] [PMID: 23115051]
[194]
Taki J, Yoshita M, Yamada M, Tonami N. Significance of 123I-MIBG scintigraphy as a pathophysiological indicator in the assessment of Parkinson’s disease and related disorders: it can be a specific marker for Lewy body disease. Ann Nucl Med 2004; 18(6): 453-61.
[http://dx.doi.org/10.1007/BF02984560] [PMID: 15515743]
[195]
Gerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 2006; 21(2): 404-12.
[http://dx.doi.org/10.1016/j.nbd.2005.08.002] [PMID: 16182554]
[196]
Bagchi DP, Yu L, Perlmutter JS, et al. Binding of the radioligand SIL23 to α-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One 2013; 8(2): e55031.
[http://dx.doi.org/10.1371/journal.pone.0055031] [PMID: 23405108]
[197]
Hale CM, Cheng Q, Ortuno D, et al. Identification of modulators of autophagic flux in an image-based high content siRNA screen. Autophagy 2016; 12(4): 713-26.
[http://dx.doi.org/10.1080/15548627.2016.1147669] [PMID: 27050463]
[198]
Wong YC, Krainc D. Lysosomal trafficking defects link Parkinson’s disease with Gaucher’s disease. Mov Disord 2016; 31(11): 1610-8.
[http://dx.doi.org/10.1002/mds.26802] [PMID: 27619775]
[199]
Park JS, Blair NF, Sue CM. The role of ATP13A2 in Parkinson’s disease: Clinical phenotypes and molecular mechanisms. Mov Disord 2015; 30(6): 770-9.
[http://dx.doi.org/10.1002/mds.26243] [PMID: 25900096]
[200]
Robak LA, Jansen IE, van Rooij J, et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain 2017; 140(12): 3191-203.
[http://dx.doi.org/10.1093/brain/awx285] [PMID: 29140481]
[201]
Zech M, Nübling G, Castrop F, et al. Niemann-Pick C disease gene mutations and age-related neurodegenerative disorders. PLoS One 2013; 8(12): e82879.
[http://dx.doi.org/10.1371/journal.pone.0082879] [PMID: 24386122]
[202]
Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 2014; 46(9): 989-93.
[http://dx.doi.org/10.1038/ng.3043] [PMID: 25064009]
[203]
McNally KE, Cullen PJ. Endosomal retrieval of cargo: retromer is not alone. Trends Cell Biol 2018; 28(10): 807-22.
[http://dx.doi.org/10.1016/j.tcb.2018.06.005] [PMID: 30072228]
[204]
Seaman MN. The retromer complex - endosomal protein recycling and beyond. J Cell Sci 2012; 125(Pt 20): 4693-702.
[http://dx.doi.org/10.1242/jcs.103440] [PMID: 23148298]
[205]
Vietri M, Radulovic M, Stenmark H. The many functions of ESCRTs. Nat Rev Mol Cell Biol 2020; 21(1): 25-42.
[http://dx.doi.org/10.1038/s41580-019-0177-4] [PMID: 31705132]
[206]
Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci 2017; 42(1): 42-56.
[http://dx.doi.org/10.1016/j.tibs.2016.08.016] [PMID: 27669649]
[207]
García-Sanz P, Orgaz L, Bueno-Gil G, et al. N370S-GBA1 mutation causes lysosomal cholesterol accumulation in Parkinson’s disease. Mov Disord 2017; 32(10): 1409-22.
[http://dx.doi.org/10.1002/mds.27119] [PMID: 28779532]
[208]
Nagle MW, Latourelle JC, Labadorf A, et al. The 4p16. 3 Parkinson disease risk locus is associated with GAK expression and genes involved with the synaptic vesicle membrane. PLoS One 2016; 11(8): e0160925.
[http://dx.doi.org/10.1371/journal.pone.0160925] [PMID: 27508417]
[209]
LeWitt PA, Fahn S. Levodopa therapy for Parkinson disease: A look backward and forward. Neurology 2016; 86(14)(Suppl. 1): S3-S12.
[http://dx.doi.org/10.1212/WNL.0000000000002509] [PMID: 27044648]
[210]
Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol 2006; 5(8): 677-87.
[http://dx.doi.org/10.1016/S1474-4422(06)70521-X] [PMID: 16857573]
[211]
Cenci MA. Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 2014; 5: 242.
[http://dx.doi.org/10.3389/fneur.2014.00242] [PMID: 25566170]
[212]
Poewe W, Antonini A. Novel formulations and modes of delivery of levodopa. Mov Disord 2015; 30(1): 114-20.
[http://dx.doi.org/10.1002/mds.26078] [PMID: 25476691]
[213]
Antonini A, Fung VS, Boyd JT, et al. Effect of levodopa-carbidopa intestinal gel on dyskinesia in advanced Parkinson’s disease patients. Mov Disord 2016; 31(4): 530-7.
[http://dx.doi.org/10.1002/mds.26528] [PMID: 26817533]
[214]
Müller T. Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs 2015; 75(2): 157-74.
[http://dx.doi.org/10.1007/s40265-014-0343-0] [PMID: 25559423]
[215]
Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: a randomised, double-blind, controlled trial. Lancet Neurol 2016; 15(2): 154-65.
[http://dx.doi.org/10.1016/S1474-4422(15)00336-1] [PMID: 26725544]
[216]
Fox SH, Katzenschlager R, Lim SY, et al. The Movement Disorder Society evidence‐based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord 2011; 26(S3)(Suppl. 3): S2-S41.
[http://dx.doi.org/10.1002/mds.23829] [PMID: 22021173]
[217]
Schapira AH, Fox SH, Hauser RA, et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with Parkinson disease and motor fluctuations: a randomized clinical trial. JAMA Neurol 2017; 74(2): 216-24.
[http://dx.doi.org/10.1001/jamaneurol.2016.4467] [PMID: 27942720]
[218]
Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA 2014; 311(16): 1670-83.
[http://dx.doi.org/10.1001/jama.2014.3654] [PMID: 24756517]
[219]
Jankovic J, Poewe W. Therapies in Parkinson’s disease. Curr Opin Neurol 2012; 25(4): 433-47.
[http://dx.doi.org/10.1097/WCO.0b013e3283542fc2] [PMID: 22691758]
[220]
Frankel JP, Lees AJ, Kempster PA, Stern GM. Subcutaneous apomorphine in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 1990; 53(2): 96-101.
[http://dx.doi.org/10.1136/jnnp.53.2.96] [PMID: 2313313]
[221]
Katzenschlager R, Hughes A, Evans A, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: a prospective study using single-dose challenges. Mov Disord 2005; 20(2): 151-7.
[http://dx.doi.org/10.1002/mds.20276] [PMID: 15390035]
[222]
Storch A, Schneider CB, Wolz M, et al. Nonmotor fluctuations in Parkinson disease: severity and correlation with motor complications. Neurology 2013; 80(9): 800-9.
[http://dx.doi.org/10.1212/WNL.0b013e318285c0ed] [PMID: 23365054]
[223]
Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord 2013; 28(2): 131-44.
[http://dx.doi.org/10.1002/mds.25273] [PMID: 23225267]
[224]
Connolly B, Fox SH. Treatment of cognitive, psychiatric, and affective disorders associated with Parkinson’s disease. Neurotherapeutics 2014; 11(1): 78-91.
[http://dx.doi.org/10.1007/s13311-013-0238-x] [PMID: 24288035]
[225]
Cummings J, Isaacson S, Mills R, et al. Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 2014; 383(9916): 533-40.
[http://dx.doi.org/10.1016/S0140-6736(13)62106-6] [PMID: 24183563]
[226]
Seppi K, Weintraub D, Coelho M, et al. The Movement Disorder Society evidence‐based medicine review update: treatments for the non‐motor symptoms of Parkinson’s disease. Mov Disord 2011; 26(S3)(Suppl. 3): S42-80.
[http://dx.doi.org/10.1002/mds.23884] [PMID: 22021174]
[227]
Perez-Lloret S, Rey MV, Pavy-Le Traon A, Rascol O. Emerging drugs for autonomic dysfunction in Parkinson’s disease. Expert OpinEmerg DR 2013; 18(1): 39-53.
[http://dx.doi.org/10.1517/14728214.2013.766168] [PMID: 23373820]
[228]
Deuschl G, Agid Y. Subthalamic neurostimulation for Parkinson’s disease with early fluctuations: balancing the risks and benefits. Lancet Neurol 2013; 12(10): 1025-34.
[http://dx.doi.org/10.1016/S1474-4422(13)70151-0] [PMID: 24050735]
[229]
Hamani C, Temel Y. Deep brain stimulation for psychiatric disease: contributions and validity of animal models. Sci Transl Med 2012; 4(142): 142rv8-8.
[http://dx.doi.org/10.1126/scitranslmed.3003722]
[230]
Kordower JH, Bjorklund A. Trophic factor gene therapy for Parkinson’s disease. Mov Disord 2013; 28(1): 96-109.
[http://dx.doi.org/10.1002/mds.25344] [PMID: 23390096]
[231]
Gill SS, Patel NK, Hotton GR, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003; 9(5): 589-95.
[http://dx.doi.org/10.1038/nm850] [PMID: 12669033]
[232]
Kordower JH, Herzog CD, Dass B, et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 2006; 60(6): 706-15.
[http://dx.doi.org/10.1002/ana.21032] [PMID: 17192932]
[233]
Mittermeyer G, Christine CW, Rosenbluth KH, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 2012; 23(4): 377-81.
[http://dx.doi.org/10.1089/hum.2011.220] [PMID: 22424171]
[234]
Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 2014; 383(9923): 1138-46.
[http://dx.doi.org/10.1016/S0140-6736(13)61939-X] [PMID: 24412048]
[235]
Björklund A, Björklund T, Kirik D. Gene Therapy for Dopamine Replacement in Parkinson’s Disease. Sci Transl Med 2009; 1(2): 2ps2-2.
[236]
Carlsson T, Winkler C, Burger C, et al. Reversal of dyskinesias in an animal model of Parkinson’s disease by continuous L-DOPA delivery using rAAV vectors. Brain 2005; 128(Pt 3): 559-69.
[http://dx.doi.org/10.1093/brain/awh374] [PMID: 15659429]
[237]
Kanaan NM, Sellnow RC, Boye SL, et al. Rationally engineered AAV capsids improve transduction and volumetric spread in the CNS. Mol Ther Nucleic Acids 2017; 8: 184-97.
[http://dx.doi.org/10.1016/j.omtn.2017.06.011] [PMID: 28918020]
[238]
Tordo J, O’Leary C, Antunes ASLM, et al. A novel adeno-associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency. Brain 2018; 141(7): 2014-31.
[http://dx.doi.org/10.1093/brain/awy126] [PMID: 29788236]
[239]
Tervo DGR, Hwang BY, Viswanathan S, et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 2016; 92(2): 372-82.
[http://dx.doi.org/10.1016/j.neuron.2016.09.021] [PMID: 27720486]
[240]
Jackson KL, Dayton RD, Deverman BE, Klein RL. Better targeting, better efficiency for wide-scale neuronal transduction with the synapsin promoter and AAV-PHP. B. Front Mol Neurosci 2016; 9: 116.
[PMID: 27867348]
[241]
Georgiou E, Sidiropoulou K, Richter J, et al. Gene therapy targeting oligodendrocytes provides therapeutic benefit in a leukodystrophy model. Brain 2017; 140(3): 599-616.
[http://dx.doi.org/10.1093/brain/aww351] [PMID: 28100454]
[242]
Dashkoff J, Lerner EP, Truong N, et al. Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9. Mol Ther Methods Clin Dev 2016; 3: 16081.
[http://dx.doi.org/10.1038/mtm.2016.81] [PMID: 27933308]
[243]
McCormack AL, Mak SK, Henderson JM, Bumcrot D, Farrer MJ, Di Monte DA. α-synuclein suppression by targeted small interfering RNA in the primate substantia nigra. PLoS One 2010; 5(8): e12122.
[http://dx.doi.org/10.1371/journal.pone.0012122] [PMID: 20711464]
[244]
Quan Z, Zheng D, Qing H. Regulatory roles of long non-coding RNAs in the central nervous system and associated neurodegenerative diseases. Front Cell Neurosci 2017; 11: 175.
[http://dx.doi.org/10.3389/fncel.2017.00175] [PMID: 28713244]
[245]
Chen L, Watson C, Morsch M, et al. Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium phosphate-lipid nanoparticles. Front Neurosci 2017; 11: 476.
[http://dx.doi.org/10.3389/fnins.2017.00476] [PMID: 28912673]
[246]
Du SH, Qiao DF, Chen CX, et al. Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through caspase-11 signaling pathway in astrocytes. Front Mol Neurosci 2017; 10: 409.
[http://dx.doi.org/10.3389/fnmol.2017.00409] [PMID: 29311802]
[247]
Ye Q, Chen C, Si E, et al. Mitochondrial effects of PGC-1alpha silencing in MPP+ treated human SH-SY5Y neuroblastoma cells. Front Mol Neurosci 2017; 10: 164.
[http://dx.doi.org/10.3389/fnmol.2017.00164] [PMID: 28611589]
[248]
Beg T, Jyoti S, Naz F, et al. Protective Effect of Kaempferol on the Transgenic Drosophila Model of Alzheimer’s Disease. CNS Neurol Disord Drug Targets 2018; 17(6): 421-9.
[http://dx.doi.org/10.2174/1871527317666180508123050] [PMID: 29745345]
[249]
Macchi B, Di Paola R, Marino-Merlo F, Felice MR, Cuzzocrea S, Mastino A. Inflammatory and cell death pathways in brain and peripheral blood in Parkinson’s disease. CNS Neurol Disord Drug Targets 2015; 14(3): 313-24.
[http://dx.doi.org/10.2174/1871527314666150225124928] [PMID: 25714978]
[250]
Soreq L, Bergman H, Israel Z, Soreq H. Overlapping molecular signatures in Parkinson’s patients’ leukocytes before and after treatment and in mouse model brain regions. CNS Neurol Disord Drug Targets 2013; 12(8): 1086-93.
[http://dx.doi.org/10.2174/187152731131200119] [PMID: 24040822]
[251]
Perju-Dumbravă L, Muntean ML, Muresanu DF. Cerebrovascular profile assessment in Parkinson’s disease patients. CNS Neurol Disord Drug Targets 2014; 13(4): 712-7.
[http://dx.doi.org/10.2174/1871527313666140618110409] [PMID: 24040791]
[252]
Parra-Cid C, Orozco-Castillo E, García-López J, et al. Early Expression of Neuronal Dopaminergic Markers in a Parkinson’s Disease Model in Rats Implanted with Enteric Stem Cells (ENSCs). CNS Neurol Disord Drug Targets 2020; 19(2): 148-62.
[http://dx.doi.org/10.2174/1871527319666200417123948] [PMID: 32303175]
[253]
Majláth Z, Obál I, Vecsei L. Treatment possibilities for psychosis in Parkinson’s disease with an emphasis on the newly approved drug: Pimavanserin. CNS Neurol Disord Drug Targets 2017; 16(3): 234-43.
[http://dx.doi.org/10.2174/1871527315666161006104347] [PMID: 27719624]
[254]
Chitre NM, Moniri NH, Murnane KS. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS Neurol Disord Drug Targets 2019; 18(10): 735-49.
[http://dx.doi.org/10.2174/1871527318666191114093749] [PMID: 31724519]
[255]
Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 2007; 30(5): 228-35.
[http://dx.doi.org/10.1016/j.tins.2007.03.008] [PMID: 17408758]
[256]
Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K. Adenosine- dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 1997; 20(10): 482-7.
[http://dx.doi.org/10.1016/S0166-2236(97)01096-5] [PMID: 9347617]
[257]
Canals M, Marcellino D, Fanelli F, et al. Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 2003; 278(47): 46741-9.
[http://dx.doi.org/10.1074/jbc.M306451200] [PMID: 12933819]
[258]
Flajolet M, Wang Z, Futter M, et al. FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat Neurosci 2008; 11(12): 1402-9.
[http://dx.doi.org/10.1038/nn.2216] [PMID: 18953346]
[259]
Shen HY, Chen JF. Adenosine A(2A) receptors in psychopharmacology: modulators of behavior, mood and cognition. Curr Neuropharmacol 2009; 7(3): 195-206.
[http://dx.doi.org/10.2174/157015909789152191] [PMID: 20190961]
[260]
Jenner P. An overview of adenosine A2A receptor antagonists in Parkinson’s disease. Int Rev Neurobiol 2014; 119: 71-86.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00003-9] [PMID: 25175961]
[261]
Zhou SJ, Zhu ME, Shu D, et al. Preferential enhancement of working memory in mice lacking adenosine A(2A) receptors. Brain Res 2009; 1303: 74-83.
[http://dx.doi.org/10.1016/j.brainres.2009.09.082] [PMID: 19785999]
[262]
O’Neill M, Brown VJ. The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-6002 on reversal learning in rats. Neurobiol Learn Mem 2007; 88(1): 75-81.
[http://dx.doi.org/10.1016/j.nlm.2007.03.003] [PMID: 17467309]
[263]
Li Y, He Y, Chen M, et al. Optogenetic activation of adenosine A 2A receptor signaling in the dorsomedial striatopallidal neurons suppresses goal-directed behavior. Neuropsychopharmacology 2016; 41(4): 1003-13.
[http://dx.doi.org/10.1038/npp.2015.227] [PMID: 26216520]
[264]
Wei CJ, Augusto E, Gomes CA, et al. Regulation of fear responses by striatal and extrastriatal adenosine A2A receptors in forebrain. Biol Psychiatry 2014; 75(11): 855-63.
[http://dx.doi.org/10.1016/j.biopsych.2013.05.003] [PMID: 23820821]
[265]
Ko WKD, Camus SM, Li Q, et al. An evaluation of istradefylline treatment on Parkinsonian motor and cognitive deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque models. Neuropharmacology 2016; 110(Pt A): 48-58.
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.012] [PMID: 27424102]
[266]
Mizuno Y, Kondo T. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov Disord 2013; 28(8): 1138-41.
[http://dx.doi.org/10.1002/mds.25418] [PMID: 23483627]
[267]
Hauser RA, Shulman LM, Trugman JM, et al. Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord 2008; 23(15): 2177-85.
[http://dx.doi.org/10.1002/mds.22095] [PMID: 18831530]
[268]
Iijima M, Orimo S, Terashi H, et al. Efficacy of istradefylline for gait disorders with freezing of gait in Parkinson’s disease: A single-arm, open-label, prospective, multicenter study. Expert Opin Pharmacother 2019; 20(11): 1405-11.
[http://dx.doi.org/10.1080/14656566.2019.1614167] [PMID: 31039621]
[269]
Fujioka S, Yoshida R, Nose K, et al. A new therapeutic strategy with istradefylline for postural deformities in Parkinson’s disease. Neurol Neurochir Pol 2019; 53(4): 291-5.
[http://dx.doi.org/10.5603/PJNNS.a2019.0036] [PMID: 31441493]
[270]
Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 2018; 109(Pt B): 249-57.
[http://dx.doi.org/10.1016/j.nbd.2017.04.004] [PMID: 28400134]
[271]
Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 2002; 51(3): 296-301.
[http://dx.doi.org/10.1002/ana.10113] [PMID: 11891824]
[272]
Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004; 304(5674): 1158-60.
[http://dx.doi.org/10.1126/science.1096284] [PMID: 15087508]
[273]
Selvaraj S, Piramanayagam S. Impact of gene mutation in the development of Parkinson’s disease. Genes Dis 2019; 6(2): 120-8.
[http://dx.doi.org/10.1016/j.gendis.2019.01.004] [PMID: 31193965]
[274]
Repici M, Giorgini F. DJ-1 in Parkinson’s disease: Clinical insights and therapeutic perspectives. J Clin Med 2019; 8(9): 1377.
[http://dx.doi.org/10.3390/jcm8091377] [PMID: 31484320]
[275]
Williams ET, Chen X, Moore DJ. VPS35, the retromer complex and Parkinson’s disease. J Parkinsons Dis 2017; 7(2): 219-33.
[http://dx.doi.org/10.3233/JPD-161020] [PMID: 28222538]
[276]
Dehay B, Ramirez A, Martinez-Vicente M, et al. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc Natl Acad Sci USA 2012; 109(24): 9611-6.
[http://dx.doi.org/10.1073/pnas.1112368109] [PMID: 22647602]
[277]
Ramirez A, Heimbach A, Gründemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006; 38(10): 1184-91.
[http://dx.doi.org/10.1038/ng1884] [PMID: 16964263]
[278]
Balestrino R, Schapira AHV. Glucocerebrosidase and Parkinson disease: molecular, clinical, and therapeutic implications. Neuroscientist 2018; 24(5): 540-59.
[http://dx.doi.org/10.1177/1073858417748875] [PMID: 29400127]
[279]
Stott SR, Randle SJ, Al Rawi S, et al. Loss of FBXO7 results in a Parkinson’s-like dopaminergic degeneration via an RPL23-MDM2-TP53 pathway. J Pathol 2019; 249(2): 241-54.
[http://dx.doi.org/10.1002/path.5312] [PMID: 31144295]
[280]
Shen T, Hu J, Jiang Y, et al. Early-onset Parkinson’s disease caused by PLA2G6 compound heterozygous mutation, a case report and literature review. Front Neurol 2019; 10: 915.
[http://dx.doi.org/10.3389/fneur.2019.00915] [PMID: 31496990]
[281]
Ng ASL, Tan YJ, Lu Z, et al. Plasma ubiquitin C-terminal hydrolase L1 levels reflect disease stage and motor severity in Parkinson’s disease. Aging (Albany NY) 2020; 12(2): 1488-95.
[http://dx.doi.org/10.18632/aging.102695] [PMID: 31932518]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy