Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Pharmacological Actions and Underlying Mechanisms of Catechin: A Review

Author(s): Aadrika Baranwal , Punita Aggarwal, Amita Rai and Nitesh Kumar*

Volume 22, Issue 5, 2022

Published on: 04 January, 2022

Page: [821 - 833] Pages: 13

DOI: 10.2174/1389557521666210902162120

Open Access Journals Promotions 2
Abstract

Background: Catechin is a phytochemical and is a major component of our daily use beverages, which has shown great potential in improving general health and fighting against several medical conditions. Clinical studies have confirmed its effectiveness in conditions ranging from acute upper respiratory tract infection, neuroprotection, to cardio-protection effects. Though most studies relate their potential to anti-oxidative action and radical scavenging action, still the mechanism of action is not clearly understood.

Objective: The present review article is focused on addressing various pharmacological actions and underlying mechanisms of catechin. Additionally, we will try to figure out the major adverse effect and success in trials with catechin and lead to a conclusion for its effectiveness.

Methods: This review article is based on the recent/ most cited papers of PubMed and Scopus databases.

Description: Catechin can regulate Nrf2 and NFkB pathways in ways that impact oxidative stress and inflammation by influencing gene expression. Other pathways like MAPKs and COMT and receptor tyrosine kinase are also affected by catechin and EGCG that alter their action and barge the cellular activity. This review article explored the structural aspect of catechin and its different isomers and analogs. It also evaluated its various therapeutic and pharmacological arrays.

Conclusion: Catechin and its stereo-isomers have shown their effectiveness as anti-inflammatory, anti-diabetic, anti-cancer, anti-neuroprotective, bactericidal, memory enhancer, anti-arthritis, and hepato-protective mainly through its activity to alter the pathway by NF-κB, Nrf-2, TLR4/NF-κB, COMT, and MAPKs.

Keywords: Catechin, EGCG (epigallocatechin gallate), epicatechin, endothelial dysfunction, anti-inflammatory, antioxidant.

« Previous
Graphical Abstract
[1]
Bankeu, J.J.; Mustafa, S.A.; Gojayev, A.S.; Lenta, B.D.; Tchamo Noungoué, D.; Ngouela, S.A.; Asaad, K.; Choudhary, M.I.; Prigge, S.; Guliyev, A.A.; Nkengfack, A.E.; Tsamo, E.; Shaiq Ali, M. Ceramide and Cerebroside from the stem bark of Ficus mucuso (Moraceae). Chem. Pharm. Bull. (Tokyo), 2010, 58(12), 1661-1665.
[http://dx.doi.org/10.1248/cpb.58.1661] [PMID: 21139276]
[2]
Hubert, D.J.; Dawe, A.; Florence, N.T.; Gilbert, K.D.; Angele, T.N.; Buonocore, D.; Finzi, P.V.; Vidari, G.; Bonaventure, N.T.; Marzatico, F.; Paul, M.F. In vitro hepatoprotective and antioxidant activities of crude extract and isolated compounds from Ficus gnaphalocarpa. Inflammopharmacology, 2011, 19(1), 35-43.
[http://dx.doi.org/10.1007/s10787-010-0070-4] [PMID: 21088994]
[3]
Mbaveng, A.T.; Ignat, A.G.; Ngameni, B.; Zaharia, V.; Ngadjui, B.T.; Kuete, V. In vitro antibacterial activities of p-toluenesulfonyl-hydrazinothiazoles and hydrazinoselenazoles against multi-drug resistant Gram-negative phenotypes. BMC Pharmacol. Toxicol., 2016, 17, 3.
[http://dx.doi.org/10.1186/s40360-016-0046-0] [PMID: 26782344]
[4]
Bickii, J.; Njifutie, N.; Foyere, J.A.; Basco, L.K.; Ringwald, P. In vitro antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae). J. Ethnopharmacol., 2000, 69(1), 27-33.
[http://dx.doi.org/10.1016/S0378-8741(99)00117-8] [PMID: 10661881]
[5]
Esmat, A.Y.; Said, M.M.; Soliman, A.A.; El-Masry, K.S.; Badiea, E.A. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats. Nutrition, 2013, 29(1), 258-267.
[http://dx.doi.org/10.1016/j.nut.2012.06.004] [PMID: 23085016]
[6]
Hamdy, A.H.; Mettwally, W.S.; El Fotouh, M.A.; Rodriguez, B.; El-Dewany, A.I.; El-Toumy, S.A.; Hussein, A.A. Bioactive phenolic compounds from the Egyptian Red Sea seagrass Thalassodendron ciliatum. Z. Naturforsch. C J. Biosci., 2012, 67(5-6), 291-296.
[http://dx.doi.org/10.1515/znc-2012-5-608] [PMID: 22888534]
[7]
Adesida, A.; Farombi, E.O. Free radical scavenging activities of guava extract in vitro. Afr. J. Med. Med. Sci., 2012, 41(Suppl.), 81-90.
[PMID: 23678641]
[8]
Ikewuchi, J.C.; Onyeike, E.N.; Uwakwe, A.A.; Ikewuchi, C.C. Effect of aqueous extract of the leaves of Acalypha wilkesiana ‘Godseffiana’ Muell Arg (Euphorbiaceae) on the hematology, plasma biochemistry and ocular indices of oxidative stress in alloxan induced diabetic rats. J. Ethnopharmacol., 2011, 137(3), 1415-1424.
[http://dx.doi.org/10.1016/j.jep.2011.08.015] [PMID: 21864665]
[9]
Nkobole, N.; Houghton, P.J.; Hussein, A.; Lall, N. Antidiabetic activity of Terminalia sericea constituents. Nat. Prod. Commun., 2011, 6(11), 1585-1588.
[http://dx.doi.org/10.1177/1934578X1100601106] [PMID: 22224265]
[10]
Theo, A.; Masebe, T.; Suzuki, Y.; Kikuchi, H.; Wada, S.; Obi, C.L.; Bessong, P.O.; Usuzawa, M.; Oshima, Y.; Hattori, T. Peltophorum africanum, a traditional South African medicinal plant, contains an anti HIV-1 constituent, betulinic acid. Tohoku J. Exp. Med., 2009, 217(2), 93-99.
[http://dx.doi.org/10.1620/tjem.217.93] [PMID: 19212101]
[11]
Gadkari, P. Catechins: Sources, extraction and encapsulation: A review. Food Bioprod. Process., 2013, 93, 122-138.
[12]
Ncube, N.; Afolayan, A.; Okoh, A. Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. Afr. J. Biotechnol., 2008, 7, 1797-1806.
[http://dx.doi.org/10.5897/AJB07.613]
[13]
Hayes, S. Remington: The science and practice of pharmacy, volume I and volume II. Twenty-second edition. In: J. Med. Libr. Assoc; , 2014; 102, pp. (3)220-221.
[14]
Bae, J.; Kim, N.; Shin, Y.; Kim, S-Y.; Kim, Y-J. Activity of catechins and their applications. Biomed. Dermatol., 2020, 4(1), 8.
[http://dx.doi.org/10.1186/s41702-020-0057-8]
[15]
(a) Fraga, C.G.; Oteiza, P.I. Dietary flavonoids: Role of (-)-epicatechin and related procyanidins in cell signaling. Free Radic. Biol. Med., 2011, 51(4), 813-823.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.002] [PMID: 21699974]
(b) May, M.J.; Ghosh, S. Signal transduction through NF-kappa B. Immunol. Today, 1998, 19(2), 80-88.
[http://dx.doi.org/10.1016/S0167-5699(97)01197-3] [PMID: 9509763]
[16]
Wang, L.; Lee, W.; Cui, Y. R.; Ahn, G.; Jeon, Y. J. Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways. Environ. Pollut., 2019, 252(Pt B), 1318-1324.
[17]
Shimizu, M.; Shirakami, Y.; Moriwaki, H. Targeting receptor tyrosine kinases for chemoprevention by green tea catechin, EGCG. Int. J. Mol. Sci., 2008, 9(6), 1034-1049.
[http://dx.doi.org/10.3390/ijms9061034] [PMID: 19325845]
[18]
(a) Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; Ionescu, C.; Berindan-Neagoe, I. A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers (Basel), 2019, 11(10), E1618.
[http://dx.doi.org/10.3390/cancers11101618] [PMID: 31652660]
(b) Han, J.; Wu, J.; Silke, J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000 Res., 2020, 9, 9.
[http://dx.doi.org/10.12688/f1000research.22092.1] [PMID: 32612808]
[19]
Landis-Piwowar, K.; Chen, D.; Chan, T.H.; Dou, Q.P. Inhibition of catechol-Omicron-methyltransferase activity in human breast cancer cells enhances the biological effect of the green tea polyphenol (-)-EGCG. Oncol. Rep., 2010, 24(2), 563-569.
[PMID: 20596647]
[20]
Z, A.; Badole, S.; Shende, P.; Hegde, M.; Bodhankar, S. Antioxidant Role of Catechin in Health and Disease. Polyphenols Human Health Dis., 2013, 1, 267-271.
[21]
Dhalla, N.S.; Temsah, R.M.; Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens., 2000, 18(6), 655-673.
[http://dx.doi.org/10.1097/00004872-200018060-00002] [PMID: 10872549]
[22]
Katalinić, V.; Milos, M.; Modun, D.; Musić, I.; Boban, M. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem., 2004, 86(4), 593-600.
[http://dx.doi.org/10.1016/j.foodchem.2003.10.007]
[23]
Lotito, S.B.; Fraga, C.G. (+)-Catechin as antioxidant: mechanisms preventing human plasma oxidation and activity in red wines. Biofactors, 1999, 10(2-3), 125-130.
[http://dx.doi.org/10.1002/biof.5520100207] [PMID: 10609873]
[24]
Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol., 1990, 186, 343-355.
[http://dx.doi.org/10.1016/0076-6879(90)86128-I] [PMID: 2172711]
[25]
Fathima, A.; Rao, J.R. Selective toxicity of Catechin-a natural flavonoid towards bacteria. Appl. Microbiol. Biotechnol., 2016, 100(14), 6395-6402.
[http://dx.doi.org/10.1007/s00253-016-7492-x] [PMID: 27052380]
[26]
Janeiro, P.; Oliveira Brett, A.M. Catechin electrochemical oxidation mechanisms. Anal. Chim. Acta, 2004, 518(1), 109-115.
[http://dx.doi.org/10.1016/j.aca.2004.05.038]
[27]
Babu, P.V.; Sabitha, K.E.; Shyamaladevi, C.S. Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem. Biol. Interact., 2006, 162(2), 114-120.
[http://dx.doi.org/10.1016/j.cbi.2006.04.009] [PMID: 16860299]
[28]
(a) Saeki, K.; Hayakawa, S.; Isemura, M.; Miyase, T. Importance of a pyrogallol-type structure in catechin compounds for apoptosis-inducing activity. Phytochemistry, 2000, 53(3), 391-394.
[http://dx.doi.org/10.1016/S0031-9422(99)00513-0] [PMID: 10703063]
(b) Ishii, T.; Ichikawa, T.; Minoda, K.; Kusaka, K.; Ito, S.; Suzuki, Y.; Akagawa, M.; Mochizuki, K.; Goda, T.; Nakayama, T. Human serum albumin as an antioxidant in the oxidation of (-)-epigallocatechin gallate: Participation of reversible covalent binding for interaction and stabilization. Biosci. Biotechnol. Biochem., 2011, 75(1), 100-106.
[http://dx.doi.org/10.1271/bbb.100600] [PMID: 21228463]
[29]
Furushima, D.; Nishimura, T.; Takuma, N.; Iketani, R.; Mizuno, T.; Matsui, Y.; Yamaguchi, T.; Nakashima, Y.; Yamamoto, S.; Hibi, M.; Yamada, H. Prevention of acute upper respiratory infections by consumption of catechins in healthcare workers: A randomized, placebo-controlled trial. Nutrients, 2019, 12(1), E4.
[http://dx.doi.org/10.3390/nu12010004] [PMID: 31861349]
[30]
Samavat, H.; Ursin, G.; Emory, T.H.; Lee, E.; Wang, R.; Torkelson, C.J.; Dostal, A.M.; Swenson, K.; Le, C.T.; Yang, C.S.; Yu, M.C.; Yee, D.; Wu, A.H.; Yuan, J.M.; Kurzer, M.S. A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer. Cancer Prev. Res. (Phila.), 2017, 10(12), 710-718.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0187] [PMID: 28904061]
[31]
Inami, S.; Takano, M.; Yamamoto, M.; Murakami, D.; Tajika, K.; Yodogawa, K.; Yokoyama, S.; Ohno, N.; Ohba, T.; Sano, J.; Ibuki, C.; Seino, Y.; Mizuno, K. Tea catechin consumption reduces circulating oxidized low-density lipoprotein. Int. Heart J., 2007, 48(6), 725-732.
[http://dx.doi.org/10.1536/ihj.48.725] [PMID: 18160764]
[32]
Ud-Din, S.; Foden, P.; Mazhari, M.; Al-Habba, S.; Baguneid, M.; Bulfone-Paus, S.; McGeorge, D.; Bayat, A.; Double-Blind, A. A double-blind, randomized trial shows the role of zonal priming and direct topical application of epigallocatechin-3-gallate in the modulation of cutaneous scarring in human skin. J. Invest. Dermatol., 2019, 139(8), 1680-1690.e16.
[http://dx.doi.org/10.1016/j.jid.2019.01.030] [PMID: 30822414]
[33]
Dower, J.I.; Geleijnse, J.M.; Kroon, P.A.; Philo, M.; Mensink, M.; Kromhout, D.; Hollman, P.C. Does epicatechin contribute to the acute vascular function effects of dark chocolate? A randomized, crossover study. Mol. Nutr. Food Res., 2016, 60(11), 2379-2386.
[http://dx.doi.org/10.1002/mnfr.201600045] [PMID: 27329037]
[34]
Micali, S.; Territo, A.; Pirola, G.M.; Ferrari, N.; Sighinolfi, M.C.; Martorana, E.; Navarra, M.; Bianchi, G. Effect of green tea catechins in patients with high-grade prostatic intraepithelial neoplasia: Results of a short-term double-blind placebo controlled phase II clinical trial. Arch. Ital. Urol. Androl., 2017, 89(3), 197-202.
[http://dx.doi.org/10.4081/aiua.2017.3.197] [PMID: 28969404]
[35]
Lowe, G.M.; Gana, K.; Rahman, K. Dietary supplementation with green tea extract promotes enhanced human leukocyte activity. J. Complement. Integr. Med., 2015, 12(4), 277-282.
[http://dx.doi.org/10.1515/jcim-2014-0042] [PMID: 26259232]
[36]
Suzuki-Sugihara, N.; Kishimoto, Y.; Saita, E.; Taguchi, C.; Kobayashi, M.; Ichitani, M.; Ukawa, Y.; Sagesaka, Y.M.; Suzuki, E.; Kondo, K. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans. Nutr. Res., 2016, 36(1), 16-23.
[http://dx.doi.org/10.1016/j.nutres.2015.10.012] [PMID: 26773777]
[37]
Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Schalkwijk, C.; Kromhout, D.; Hollman, P.C. Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (Pre)hypertensive adults: A randomized double-blind, placebo-controlled, crossover trial. J. Nutr., 2015, 145(7), 1459-1463.
[http://dx.doi.org/10.3945/jn.115.211888] [PMID: 25972527]
[38]
Huang, J.B.; Zhang, Y.; Zhou, Y.B.; Wan, X.C.; Zhang, J.S. Effects of epigallocatechin gallate on lipid metabolism and its underlying molecular mechanism in broiler chickens. J. Anim. Physiol. Anim. Nutr. (Berl.), 2015, 99(4), 719-727.
[http://dx.doi.org/10.1111/jpn.12276] [PMID: 25521589]
[39]
Basu, A.; Sanchez, K.; Leyva, M.J.; Wu, M.; Betts, N.M.; Aston, C.E.; Lyons, T.J. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr., 2010, 29(1), 31-40.
[http://dx.doi.org/10.1080/07315724.2010.10719814] [PMID: 20595643]
[40]
Hursel, R.; Janssens, P.L.; Bouwman, F.G.; Mariman, E.C.; Westerterp-Plantenga, M.S. The role of catechol-O-methyl transferase Val(108/158)Met polymorphism (rs4680) in the effect of green tea on resting energy expenditure and fat oxidation: A pilot study. PLoS One, 2014, 9(9), e106220.
[http://dx.doi.org/10.1371/journal.pone.0106220] [PMID: 25238062]
[41]
Huang, S.M.; Chang, Y.H.; Chao, Y.C.; Lin, J.A.; Wu, C.H.; Lai, C.Y.; Chan, K.C.; Tseng, S.T.; Yen, G.C. EGCG-rich green tea extract stimulates sRAGE secretion to inhibit S100A12-RAGE axis through ADAM10-mediated ectodomain shedding of extracellular RAGE in type 2 diabetes. Mol. Nutr. Food Res., 2013, 57(12), 2264-2268.
[http://dx.doi.org/10.1002/mnfr.201300275] [PMID: 23901023]
[42]
Agarwal, A.; Prasad, R.; Jain, A. Effect of green tea extract (catechins) in reducing oxidative stress seen in patients of pulmonary tuberculosis on DOTS Cat I regimen. Phytomedicine, 2010, 17(1), 23-27.
[http://dx.doi.org/10.1016/j.phymed.2009.10.019] [PMID: 19910173]
[43]
Nguyen, M.M.; Ahmann, F.R.; Nagle, R.B.; Hsu, C.H.; Tangrea, J.A.; Parnes, H.L.; Sokoloff, M.H.; Gretzer, M.B.; Chow, H.H. Randomized, double-blind, placebo-controlled trial of polyphenon E in prostate cancer patients before prostatectomy: Evaluation of potential chemopreventive activities. Cancer Prev. Res. (Phila.), 2012, 5(2), 290-298.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0306] [PMID: 22044694]
[44]
Widmer, R.J.; Freund, M.A.; Flammer, A.J.; Sexton, J.; Lennon, R.; Romani, A.; Mulinacci, N.; Vinceri, F.F.; Lerman, L.O.; Lerman, A. Beneficial effects of polyphenol-rich olive oil in patients with early atherosclerosis. Eur. J. Nutr., 2013, 52(3), 1223-1231.
[http://dx.doi.org/10.1007/s00394-012-0433-2] [PMID: 22872323]
[45]
Rizvi, S.I.; Zaid, M.A.; Anis, R.; Mishra, N. Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clin. Exp. Pharmacol. Physiol., 2005, 32(1-2), 70-75.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04160.x] [PMID: 15730438]
[46]
Ishikawa, T.; Suzukawa, M.; Ito, T.; Yoshida, H.; Ayaori, M.; Nishiwaki, M.; Yonemura, A.; Hara, Y.; Nakamura, H. Effect of tea flavonoid supplementation on the susceptibility of low-density lipoprotein to oxidative modification. Am. J. Clin. Nutr., 1997, 66(2), 261-266.
[http://dx.doi.org/10.1093/ajcn/66.2.261] [PMID: 9250103]
[47]
(a) Hummasti, S.; Hotamisligil, G.S. Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ. Res., 2010, 107(5), 579-591.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.225698] [PMID: 20814028]
(b) Hotamisligil, G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell, 2010, 140(6), 900-917.
[http://dx.doi.org/10.1016/j.cell.2010.02.034] [PMID: 20303879]
(c) Hotamisligil, G.S.; Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol., 2008, 8(12), 923-934.
[http://dx.doi.org/10.1038/nri2449] [PMID: 19029988]
[48]
Cheng, A.W.; Tan, X.; Sun, J.Y.; Gu, C.M.; Liu, C.; Guo, X. Catechin attenuates TNF-α induced inflammatory response via AMPK-SIRT1 pathway in 3T3-L1 adipocytes. PLoS One, 2019, 14(5), e0217090.
[http://dx.doi.org/10.1371/journal.pone.0217090] [PMID: 31100089]
[49]
Reimann, H.J.; Lorenz, W.; Fischer, M.; Frölich, R.; Meyer, H.J.; Schmal, A. Histamine and acute haemorrhagic lesions in rat gastric mucosa: Prevention of stress ulcer formation by (+)-catechin, an inhibitor of specific histidine decarboxylase in vitro. Agents Actions, 1977, 7(1), 69-73.
[http://dx.doi.org/10.1007/BF01964883] [PMID: 871094]
[50]
Tu, S.; Xiao, F.; Min, X.; Chen, H.; Fan, X.; Cao, K. Catechin attenuates coronary heart disease in a rat model by inhibiting inflammation. Cardiovasc. Toxicol., 2018, 18(5), 393-399.
[http://dx.doi.org/10.1007/s12012-018-9449-z] [PMID: 29464499]
[51]
Negrão, R.; Costa, R.; Duarte, D.; Gomes, T.T.; Azevedo, I.; Soares, R. Different effects of catechin on angiogenesis and inflammation depending on VEGF levels. J. Nutr. Biochem., 2013, 24(2), 435-444.
[http://dx.doi.org/10.1016/j.jnutbio.2011.12.011] [PMID: 22704779]
[52]
Jhang, J.J.; Lu, C.C.; Ho, C.Y.; Cheng, Y.T.; Yen, G.C. Protective effects of catechin against monosodium urate-induced inflammation through the modulation of NLRP3 inflammasome activation. J. Agric. Food Chem., 2015, 63(33), 7343-7352.
[http://dx.doi.org/10.1021/acs.jafc.5b02605] [PMID: 26234731]
[53]
Khalatbary, A.R.; Ahmadvand, H. Anti-inflammatory effect of the epigallocatechin gallate following spinal cord trauma in rat. Iran. Biomed. J., 2011, 15(1-2), 31-37.
[PMID: 21725497]
[54]
Nakanishi, T.; Mukai, K.; Yumoto, H.; Hirao, K.; Hosokawa, Y.; Matsuo, T. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors. Eur. J. Oral Sci., 2010, 118(2), 145-150.
[http://dx.doi.org/10.1111/j.1600-0722.2010.00714.x] [PMID: 20487003]
[55]
Fechtner, S.; Singh, A.; Chourasia, M.; Ahmed, S. Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts. Toxicol. Appl. Pharmacol., 2017, 329, 112-120.
[http://dx.doi.org/10.1016/j.taap.2017.05.016] [PMID: 28532672]
[56]
Collins, A.R.; Lyon, C.J.; Xia, X.; Liu, J.Z.; Tangirala, R.K.; Yin, F.; Boyadjian, R.; Bikineyeva, A.; Praticò, D.; Harrison, D.G.; Hsueh, W.A. Age-accelerated atherosclerosis correlates with failure to upregulate antioxidant genes. Circ. Res., 2009, 104(6), e42-e54.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.188771] [PMID: 19265038]
[57]
Stokes, K.Y.; Calahan, L.; Hamric, C.M.; Russell, J.M.; Granger, D.N. CD40/CD40L contributes to hypercholesterolemia-induced microvascular inflammation. Am. J. Physiol. Heart Circ. Physiol., 2009, 296(3), H689-H697.
[http://dx.doi.org/10.1152/ajpheart.00962.2008] [PMID: 19112095]
[58]
Gendron, M.E.; Thorin, E. A change in the redox environment and thromboxane A2 production precede endothelial dysfunction in mice. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(4), H2508-H2515.
[http://dx.doi.org/10.1152/ajpheart.00352.2007] [PMID: 17644574]
[59]
Kah Hui, C.; Majid, N.I.; Mohd Yusof, H.; Mohd Zainol, K.; Mohamad, H.; Mohd Zin, Z. Catechin profile and hypolipidemic activity of Morinda citrifolia leaf water extract. Heliyon, 2020, 6(6), e04337.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04337] [PMID: 32637711]
[60]
Auclair, S.; Milenkovic, D.; Besson, C.; Chauvet, S.; Gueux, E.; Morand, C.; Mazur, A.; Scalbert, A. Catechin reduces atherosclerotic lesion development in apo E-deficient mice: A transcriptomic study. Atherosclerosis, 2009, 204(2), e21-e27.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.12.007] [PMID: 19152914]
[61]
Norata, G.D.; Marchesi, P.; Passamonti, S.; Pirillo, A.; Violi, F.; Catapano, A.L. Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice. Atherosclerosis, 2007, 191(2), 265-271.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.05.047] [PMID: 16806235]
[62]
Vittorio, O.; Brandl, M.; Cirillo, G.; Kimpton, K.; Hinde, E.; Gaus, K.; Yee, E.; Kumar, N.; Duong, H.; Fleming, C.; Haber, M.; Norris, M.; Boyer, C.; Kavallaris, M. Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth. Oncotarget, 2016, 7(30), 47479-47493.
[http://dx.doi.org/10.18632/oncotarget.10201] [PMID: 27374085]
[63]
Manikandan, R.; Beulaja, M.; Arulvasu, C.; Sellamuthu, S.; Dinesh, D.; Prabhu, D.; Babu, G.; Vaseeharan, B.; Prabhu, N.M. Synergistic anticancer activity of curcumin and catechin: An in vitro study using human cancer cell lines. Microsc. Res. Tech., 2012, 75(2), 112-116.
[http://dx.doi.org/10.1002/jemt.21032] [PMID: 21780253]
[64]
Matsubara, K.; Saito, A.; Tanaka, A.; Nakajima, N.; Akagi, R.; Mori, M.; Mizushina, Y. Catechin conjugated with fatty acid inhibits DNA polymerase and angiogenesis. DNA Cell Biol., 2006, 25(2), 95-103.
[http://dx.doi.org/10.1089/dna.2006.25.95] [PMID: 16460233]
[65]
Vittorio, O.; Voliani, V.; Faraci, P.; Karmakar, B.; Iemma, F.; Hampel, S.; Kavallaris, M.; Cirillo, G. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells. J. Drug Target., 2014, 22(5), 408-415.
[http://dx.doi.org/10.3109/1061186X.2013.878941] [PMID: 24432976]
[66]
Al-Hazzani, A.A.; Alshatwi, A.A. Catechin hydrate inhibits proliferation and mediates apoptosis of SiHa human cervical cancer cells. Food Chem. Toxicol., 2011, 49(12), 3281-3286.
[http://dx.doi.org/10.1016/j.fct.2011.09.023] [PMID: 21967781]
[67]
Alshatwi, A.A. Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. J. Exp. Clin. Cancer Res., 2010, 29(1), 167.
[http://dx.doi.org/10.1186/1756-9966-29-167] [PMID: 21167021]
[68]
Wang, X.; Song, K.S.; Guo, Q.X.; Tian, W.X. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem. Pharmacol., 2003, 66(10), 2039-2047.
[http://dx.doi.org/10.1016/S0006-2952(03)00585-9] [PMID: 14599562]
[69]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[70]
Li, S.; Hong, M.; Tan, H.Y.; Wang, N.; Feng, Y. Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxid. Med. Cell. Longev., 2016, 2016, 4234061.
[http://dx.doi.org/10.1155/2016/4234061] [PMID: 28070230]
[71]
Friedman, S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6), 1655-1669.
[http://dx.doi.org/10.1053/j.gastro.2008.03.003] [PMID: 18471545]
[72]
(a) Tacke, F. Targeting hepatic macrophages to treat liver diseases. J. Hepatol., 2017, 66(6), 1300-1312.
[http://dx.doi.org/10.1016/j.jhep.2017.02.026] [PMID: 28267621]
(b) Michelotti, G.A.; Machado, M.V.; Diehl, A.M. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(11), 656-665.
[http://dx.doi.org/10.1038/nrgastro.2013.183] [PMID: 24080776]
[73]
Uzun, F.G.; Kalender, Y. Chlorpyrifos induced hepatotoxic and hematologic changes in rats: the role of quercetin and catechin. Food Chem. Toxicol., 2013, 55, 549-556.
[http://dx.doi.org/10.1016/j.fct.2013.01.056] [PMID: 23402859]
[74]
Siegers, C.P.; Frühling, A.; Younes, M. Influence of dithiocarb, (+)-catechin and silybine on halothane hepatotoxicity in the hypoxic rat model. Acta Pharmacol. Toxicol. (Copenh.), 1983, 53(2), 125-129.
[http://dx.doi.org/10.1111/j.1600-0773.1983.tb01879.x] [PMID: 6312740]
[75]
Vasanth Raj, P.; Nitesh, K.; Sagar Gang, S.; Hitesh Jagani, V.; Raghu Chandrashekhar, H.; Venkata Rao, J.; Mallikarjuna Rao, C.; Udupa, N. Protective role of catechin on d-galactosamine induced hepatotoxicity through a p53 dependent pathway. Indian J. Clin. Biochem., 2010, 25(4), 349-356.
[http://dx.doi.org/10.1007/s12291-010-0073-3] [PMID: 21966103]
[76]
Toda, M.; Okubo, S.; Ohnishi, R.; Shimamura, T. [Antibacterial and bactericidal activities of Japanese green tea] Jpn. J. Bacteriol., 1989, 44(4), 669-672.
[http://dx.doi.org/10.3412/jsb.44.669] [PMID: 2677434]
[77]
Zhao, W.H.; Hu, Z.Q.; Okubo, S.; Hara, Y.; Shimamura, T. Mechanism of synergy between epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2001, 45(6), 1737-1742.
[http://dx.doi.org/10.1128/AAC.45.6.1737-1742.2001] [PMID: 11353619]
[78]
Mandel, S.A.; Avramovich-Tirosh, Y.; Reznichenko, L.; Zheng, H.; Weinreb, O.; Amit, T.; Youdim, M.B. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals, 2005, 14(1-2), 46-60.
[http://dx.doi.org/10.1159/000085385] [PMID: 15956814]
[79]
Yam, T.S.; Shah, S.; Hamilton-Miller, J.M. Microbiological activity of whole and fractionated crude extracts of tea (Camellia sinensis), and of tea components. FEMS Microbiol. Lett., 1997, 152(1), 169-174.
[http://dx.doi.org/10.1111/j.1574-6968.1997.tb10424.x] [PMID: 9228784]
[80]
Ikigai, H.; Nakae, T.; Hara, Y.; Shimamura, T. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta, 1993, 1147(1), 132-136.
[http://dx.doi.org/10.1016/0005-2736(93)90323-R] [PMID: 8466924]
[81]
Hamilton-Miller, J.M. Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob. Agents Chemother., 1995, 39(11), 2375-2377.
[http://dx.doi.org/10.1128/AAC.39.11.2375] [PMID: 8585711]
[82]
Nagao, T.; Meguro, S.; Hase, T.; Otsuka, K.; Komikado, M.; Tokimitsu, I.; Yamamoto, T.; Yamamoto, K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity (Silver Spring), 2009, 17(2), 310-317.
[http://dx.doi.org/10.1038/oby.2008.505] [PMID: 19008868]
[83]
Daisy, P.; Balasubramanian, K.; Rajalakshmi, M.; Eliza, J.; Selvaraj, J. Insulin mimetic impact of Catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic Wistar rats. Phytomedicine, 2010, 17(1), 28-36.
[http://dx.doi.org/10.1016/j.phymed.2009.10.018] [PMID: 19931438]
[84]
Park, J.H.; Jin, J.Y.; Baek, W.K.; Park, S.H.; Sung, H.Y.; Kim, Y.K.; Lee, J.; Song, D.K. Ambivalent role of gallated catechins in glucose tolerance in humans: A novel insight into non-absorbable gallated catechin-derived inhibitors of glucose absorption. J. Physiol. Pharmacol., 2009, 60(4), 101-109.
[PMID: 20065503]
[85]
Maruyama, K.; Iso, H.; Sasaki, S.; Fukino, Y. The association between concentrations of green tea and blood glucose levels. J. Clin. Biochem. Nutr., 2009, 44(1), 41-45.
[http://dx.doi.org/10.3164/jcbn.08-13] [PMID: 19177186]
[86]
Tang, L.Q.; Wei, W.; Wang, X.Y. Effects and mechanisms of catechin for adjuvant arthritis in rats. Adv. Ther., 2007, 24(3), 679-690.
[http://dx.doi.org/10.1007/BF02848793] [PMID: 17660179]
[87]
Gonçalves, G.A.; Soares, A.A.; Correa, R.C.G.; Barros, L.; Haminiuk, C.W.I.; Peralta, R.M.; Ferreira, I.C.F.R.; Bracht, A. Merlot grape pomace hydroalcoholic extract improves the oxidative and inflammatory states of rats with adjuvant-induced arthritis. J. Funct. Foods, 2017, 33, 408-418.
[http://dx.doi.org/10.1016/j.jff.2017.04.009]
[88]
Bastianetto, S.; Yao, Z.X.; Papadopoulos, V.; Quirion, R. Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur. J. Neurosci., 2006, 23(1), 55-64.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04532.x] [PMID: 16420415]
[89]
Mandel, S.A.; Amit, T.; Weinreb, O.; Reznichenko, L.; Youdim, M.B. Simultaneous manipulation of multiple brain targets by green tea catechins: A potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci. Ther., 2008, 14(4), 352-365.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00060.x] [PMID: 19040558]
[90]
Schimidt, H.L.; Carrazoni, G.S.; Garcia, A.; Izquierdo, I.; Mello-Carpes, P.B.; Carpes, F.P. Strength training or green tea prevent memory deficits in a β-amyloid peptide-mediated Alzheimer’s disease model. Exp. Gerontol., 2021, 143, 111186.
[http://dx.doi.org/10.1016/j.exger.2020.111186] [PMID: 33279659]
[91]
Unno, K.; Takabayashi, F.; Yoshida, H.; Choba, D.; Fukutomi, R.; Kikunaga, N.; Kishido, T.; Oku, N.; Hoshino, M. Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology, 2007, 8(2), 89-95.
[http://dx.doi.org/10.1007/s10522-006-9036-8] [PMID: 16957869]
[92]
Li, Q.; Zhao, H.F.; Zhang, Z.F.; Liu, Z.G.; Pei, X.R.; Wang, J.B.; Cai, M.Y.; Li, Y. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience, 2009, 159(4), 1208-1215.
[http://dx.doi.org/10.1016/j.neuroscience.2009.02.008] [PMID: 19409206]
[93]
Pervin, M.; Unno, K.; Nakagawa, A.; Takahashi, Y.; Iguchi, K.; Yamamoto, H.; Hoshino, M.; Hara, A.; Takagaki, A.; Nanjo, F.; Minami, A.; Imai, S.; Nakamura, Y. Blood brain barrier permeability of (-)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice. Biochem. Biophys. Rep., 2017, 9, 180-186.
[http://dx.doi.org/10.1016/j.bbrep.2016.12.012] [PMID: 28956003]

© 2024 Bentham Science Publishers | Privacy Policy