Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles Using Uraria picta Leaves Extract

Author(s): Satyendra Mishra* and Sanjay Kumavat

Volume 14, Issue 3, 2022

Published on: 13 December, 2021

Page: [212 - 225] Pages: 14

DOI: 10.2174/1876402913666210902161849

Price: $65

Abstract

Background: The rapid synthesis and antimicrobial activity of silver nanoparticles (AgNPs) synthesized using Uraria picta extract were investigated in this paper, and AgNPs were examined for antimicrobial activity against a variety of pathogenic organisms, including bacteria and fungi.

Objective: The main objective was to synthesize AgNPs from Uraria picta leaves extract by the technique of green synthesis for antimicrobial evaluation against bacteria and fungi using MIC studies.

Methods: The AgNPs were formed by treating an aqueous extract of Uraria picta leaves with silver nitrate (1 mM) solution, and then nanoparticles were synthesized for various studies.

Results: The Uraria picta leaves extract can be used for the green synthesis of AgNPs effectively. The absorption band at 425 nm in the UV-Vis spectrum confirmed the synthesis of AgNPs. According to MIC tests, silver nanoparticles exhibited antimicrobial and antifungal properties. This work will provide a better understanding of the development of new antimicrobial and antifungal activities.

Conclusion: We utilized Uraria picta aqueous leaves extract to develop a fast, cost-effective, ecofriendly, and simple method for the synthesis of AgNPs, and the nanoparticles synthesized by this plant for the first time demonstrated antimicrobial activity. AgNPs were observed to be spherical and oval in shape, with average particle sizes ranging from 12.54 to 25.58 nm. The antimicrobial activity of AgNPs was confirmed against typhi, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus by a significant zone of inhibition.

Keywords: Green synthesis, Uraria picta leaves extract, silver nanoparticles (AgNPs), antimicrobial activity, antifungal activity, Atomic Force Microscopy (AFM), Minimum Inhibitory Concentration (MIC).

Graphical Abstract
[1]
Shaikh, R.; Syed, I.Z.; Bhende, P. Green synthesis of silver nanoparticles using root extracts of Cassia toral L. and its antimicrobial activities. Asian J. Green Chem., 2019, 3(1), 70-81.
[2]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[3]
Dogru, E.; Demirbas, A.; Altinsoy, B.; Duman, F.; Ocsoy, I. Formation of Matricaria chamomilla extract-incorporated Ag nanoparticles and size-dependent enhanced antimicrobial property. J. Photochem. Photobiol. B, 2017, 174, 78-83.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.07.024] [PMID: 28756155]
[4]
ŞekerKaratoprak. G.; Aydin, G.;Altinsoy, B.; Altinkaynak, C.; Koşar, M.; Ocsoy, I. The Effect of Pelargonium endlicherianumFenzl. root extracts on formation of nanoparticles and their antimicrobial activities. Enzyme Microb. Technol., 2017, 97, 21-26.
[http://dx.doi.org/10.1016/j.enzmictec.2016.10.019] [PMID: 28010769]
[5]
Singh, H.; Du, J.; Singh, P.; Yi, T.H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1163-1170.
[http://dx.doi.org/10.1080/21691401.2017.1362417] [PMID: 28784039]
[6]
Dada, A.O.; Adekola, F.A.; Dada, F.E.; Adelani-Akande, A.T.; Bello, M.O.; Okonkwo, C.R.; Inyinbor, A.A.; Oluyori, A.P.; Olayanju, A.; Ajanaku, K.O.; Adetunji, C.O. Silver nanoparticle synthesis by Acalyphaw ilkesiana extract: phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon, 2019, 5(10), e02517.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02517] [PMID: 31667378]
[7]
Bapat, R.A.; Chaubal, T.V.; Joshi, C.P.; Bapat, P.R.; Choudhury, H.; Pandey, M.; Gorain, B.; Kesharwani, P. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng. C, 2018, 91, 881-898.
[http://dx.doi.org/10.1016/j.msec.2018.05.069] [PMID: 30033323]
[8]
Saravanan, M.; Arokiyaraj, S.; Lakshmi, T.; Pugazhendhi, A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb. Pathog., 2018, 117, 68-72.
[http://dx.doi.org/10.1016/j.micpath.2018.02.008] [PMID: 29427709]
[9]
Ahmad, S.A.; Das, S.S.; Khatoon, A.; Ansari, M.T.; Afzal, M.; Hasnain, M.S.; Nayak, A.K. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol., 2020, 3, 756-769.
[http://dx.doi.org/10.1016/j.mset.2020.09.002]
[10]
Chaudhari, P.; Chaudhari, V.; Mishra, S. Low Temperature Synthesis of Mixed Phase Titania Nanoparticles with High Yield, its Mechanism and Enhanced Photoactivity. Mater. Res., 2016, 19(2), 446-450.
[http://dx.doi.org/10.1590/1980-5373-MR-2015-0692]
[11]
Nemade, K.R.; Waghuley, S.A. Synthesis of MgO nanoparticles by solvent mixed spray pyrolysis technique for optical investigation. Int. J. Met., 2014, 2014, 1-4.
[12]
Shimpi, N.G.; Jain, S.; Karmakar, N.; Shah, A.; Kothari, D.C.; Mishra, S. Synthesis of ZnOnanopencils using wet chemical method and its investigation as LPG sensor. Appl. Surf. Sci., 2016, 390, 17-24.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.050]
[13]
Mishra, S.; Shimpi, N.G.; Sen, T. The effect of PEG encapsulated silver nanoparticles on the thermal and electrical property of sonochemically synthesized polyaniline/silver nanocomposite. J. Polym. Res., 2013, 20(1), 1-10.
[http://dx.doi.org/10.1007/s10965-012-0049-5]
[14]
Patil, G.A.; Bari, M.L.; Bhanvase, B.A.; Ganvir, V.; Mishra, S.; Sonawane, S.H. Continuous synthesis of functional silver nanoparticles using micro reactor: Effect of surfactant and process parameters. Chem. Eng. Process., 2012, 62, 69-77.
[http://dx.doi.org/10.1016/j.cep.2012.09.007]
[15]
Shimpi, N.G.; Shirole, S.; Mishra, S. Biogenesis synthesis and characterization of silver nanoparticles (AgNPs) using the aqueous extract of Alstonia scholaris: A greener approach. Micro Nanosyst., 2015, 7, 49-54.
[http://dx.doi.org/10.2174/1876402907666150609224649]
[16]
Sur, U.K.; Ankamwar, B.; Karmakar, S.; Halder, A.; Das, P. Green synthesis of Silver nanoparticles using the plant extract of Shikakai and Reetha. Mater. Today Proc., 2018, 5(1), 2321-2329.
[http://dx.doi.org/10.1016/j.matpr.2017.09.236]
[17]
Annavaram, V.; Posa, V.R.; Uppara, V.G.; Jorepalli, S.; Somala, A.R. Facile green synthesis of silver nanoparticles using Limonia acidissima leaf extract and its antibacterial activity. BioNanoSci., 2015, 5(2), 97-103.
[http://dx.doi.org/10.1007/s12668-015-0168-7]
[18]
Khandel, P.; Shahi, S.K.; Soni, D.K.; Yadaw, R.K.; Kanwar, L. Alpinia calcarata: Potential source for the fabrication of bioactive silver nanoparticles. Nano Converg., 2018, 5(1), 37.
[http://dx.doi.org/10.1186/s40580-018-0167-9] [PMID: 30519797]
[19]
Mohan, B.; Saxena, H.O.; Kakkar, A.; Mishra, M.K. Determination of antioxidant activity, total phenolic and flavonoid contents in leaves, stem and roots of Uraria pictaDesv. Environ. Conserv. J., 2019, 20(3), 1-8.
[http://dx.doi.org/10.36953/ECJ.2019.20301]
[20]
Ahire, M.L.; Ghane, S.G.; Lokhande, V.H.; Suprasanna, P.; Nikam, T.D. Micropropagation of Uraria picta through adventitious bud regeneration and antimicrobial activity of callus. In vitro Cell. Dev. Biol. Plant, 2011, 47(4), 488-495.
[http://dx.doi.org/10.1007/s11627-011-9362-7]
[21]
Daniel, S.C.K.; Nehru, K.; Sivakumar, M. Rapid biosynthesis of silver nanoparticles using Eichornia crassipes and its Antibacterial Activity. Curr. Nanosci., 2012, 8(1), 125-129.
[http://dx.doi.org/10.2174/1573413711208010125]
[22]
Usmani, A.; Mishra, A.; Jafri, A.; Arshad, Md.; Siddiqui, M.A. Green synthesis of silver nanocomposites of Nigella sativa seeds extract for hepatocellular carcinoma. Curr. Nanomater., 2019, 4(3), 191-200.
[http://dx.doi.org/10.2174/2468187309666190906130115]
[23]
Alyousef, A.A.; Arshad, M.; AlAkeel, R.; Alqasim, A. Biogenic silver nanoparticles by Myrtus communis plant extract: Biosynthesis, characterization and antibacterial activity. Biotechnol. Biotechnol. Equip., 2019, 33(1), 931-936.
[http://dx.doi.org/10.1080/13102818.2019.1629840]
[24]
Vijay Kumar, P.P.N.; Pammi, S.V.N. PratapKollu, P.; Satyanarayana, K.V.V.; Shameem, U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Ind. Crops Prod., 2014, 52, 562-566.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.050]
[25]
Ahmed, S. Saifullah, Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat Res. Appl. Sci., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[26]
Golabiazar, R.; Othman, K.I.; Khalid, K.M.; Maruf, D.H.; Aulla, S.M.; Yusif, P.A. Green synthesis, characterization, and investigation antibacterial activity of silver nanoparticles using Pistacia atlantica leaf extract. BioNanoSci., 2019, 9, 323-333.
[http://dx.doi.org/10.1007/s12668-019-0606-z]
[27]
Chandrasekaran, R.; Gnanasekar, S.; Seetharaman, P.; Keppanan, R.; Arockiaswamy, W.; Sivaperumal, S. Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J. Mol. Liq., 2016, 219, 232-238.
[http://dx.doi.org/10.1016/j.molliq.2016.03.038]
[28]
Subba Rao, Y.; Kotakadi, V.S.; Prasad, T.N.V.K.S.; Reddy, A.V. SaiGopal, D.V.R. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 103, 156-159.
[http://dx.doi.org/10.1016/j.saa.2012.11.028] [PMID: 23257344]
[29]
Kumar, R.; Roopan, S.M.; Prabhakarn, A.; Khanna, V.G.; Chakroborty, S. Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 90, 173-176.
[http://dx.doi.org/10.1016/j.saa.2012.01.029] [PMID: 22336049]
[30]
Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostructure Chem., 2019, 9, 1-9.
[http://dx.doi.org/10.1007/s40097-018-0291-4]
[31]
Biswas, K.; Mohanta, Y.K.; Kumar, V.B.; Hashem, A. FathiAbd Allah, E.; Mohanta, D.; Mohanta, T.K. Nutritional assessment study and role of green silver nanoparticles in shelf-life of coconut endosperm to develop as functional food. Saudi J. Biol. Sci., 2020, 27(5), 1280-1288.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.011] [PMID: 32346336]
[32]
Das, J.; Paul Das, M.; Velusamy, P. Sesbaniagrandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 104, 265-270.
[http://dx.doi.org/10.1016/j.saa.2012.11.075] [PMID: 23270884]
[33]
Jeeva, K.; Thiyagarajan, M.; Elangovan, V.; Geetha, N.; Venkatachalam, P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind. Crops Prod., 2014, 52, 714-720.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.037]
[34]
Rezazadeh, N.H.; Buazar, F.; Matroodi, S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles. Sci. Rep., 2020, 10(1), 19615.
[http://dx.doi.org/10.1038/s41598-020-76726-7] [PMID: 33184403]
[35]
Salayová, A.; Bedlovičová, Z.; Daneu, N.; Baláž, M. LukáčováBujňáková, Z.; Balážová, Ľ.; Tkáčiková, Ľ. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials (Basel), 2021, 11(4), 1005.
[http://dx.doi.org/10.3390/nano11041005] [PMID: 33919801]
[36]
Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci., 2016, 6, 399-408.
[http://dx.doi.org/10.1007/s13204-015-0449-z]
[37]
Selvarani, S.; Moorthi, P.V.; Saranya, P.; Abirami, M. Anti-cancer activity of silver nanoparticle synthesized from stem extract of Ocimum kilimandscharicum against Hep-G2, liver cancer cell line. J Nanotechnol. Nanosci., 2015, 1, 9-12.
[38]
Soni, N.; Prakash, S. Combinatorial efficacy of silver nanoparticles against mosquito larvae. SM J. Nanotechnol. Nanomed., 2016, 1(1), 1001.
[39]
Hazaa, M.; Alm-Eldin, M.; Ibrahim, A.E. Biosynthesis of Silver Nanoparticles using Borago officinslis leaf extract, characterization and larvicidal activity against cotton leaf worm, Spodopteralittoralis (Bosid). Int. J. Trop. Insect Sci., 2021, 41(1), 145-156.
[http://dx.doi.org/10.1007/s42690-020-00187-8]
[40]
Vijayan, R.; Joseph, S.; Mathew, B. Green synthesis, characterization and applications of noble metal nanoparticles using Myxopyrum serratulum A.W. Hill Leaf Extract. BioNanoSci., 2018, 8(1), 105-117.
[http://dx.doi.org/10.1007/s12668-017-0433-z]
[41]
Khalil, M.M.H.; Ismail, E.H.; El-Baghdady, K.Z.; Mohamed, D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem., 2014, 7, 1131-1139.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.007]
[42]
Ahmad, N.; Sharma, S. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green Sustain. Chem., 2012, 2(4), 141-147.
[http://dx.doi.org/10.4236/gsc.2012.24020]
[43]
Jha, M.; Shimpi, N.G. Green synthesis of zero valent colloidal nanosilver targeting A549 lung cancer cell: In vitro cytotoxicity. J. Genet. Eng. Biotechnol., 2018, 16(1), 115-124.
[http://dx.doi.org/10.1016/j.jgeb.2017.12.001] [PMID: 30647713]
[44]
Singh, C.; Kumar, J.; Kumar, P.; Chauhan, B.S.; Tiwari, K.N.; Mishra, S.K.; Srikrishna, S.; Saini, R.; Nath, G.; Singh, J. Green synthesis of silver nanoparticles using aqueous leaf extract of Premna integrifolia (L.) rich in polyphenols and evaluation of their antioxidant, antibacterial and cytotoxic activity. Biotechnol. Biotechnol. Equip., 2019, 33(1), 359-371.
[http://dx.doi.org/10.1080/13102818.2019.1577699]
[45]
Saxena, H.O.; Soni, A.; Mohammad, N.; Choubey, S.K. Phytochemical screening and elemental analysis in different plant parts of Uraria pictaDesv.: A Dashmul species. J. Chem. Pharm. Res., 2014, 6(5), 756-760.
[46]
Arora, E.; Sharma, V.; Khurana, A.; Manchanda, A.; Sahani, D.; Abraham, S.; Jomy, S. Phytochemical analysis and evaluation of antioxidant potential of ethanol extract of Allium cepa and ultrahigh homoeopathic dilutions available in the market: A comparative study. Indian J. Res. Homoeopath., 2017, 11(2), 88.
[http://dx.doi.org/10.4103/ijrh.ijrh_13_17]
[47]
Some, S.; Bulut, O.; Biswas, K.; Kumar, A.; Roy, A.; Sen, I.K.; Mandal, A.; Franco, O.L.; İnce, İ.A.; Neog, K.; Das, S.; Pradhan, S.; Dutta, S.; Bhattacharjya, D.; Saha, S.; Das Mohapatra, P.K.; Bhuimali, A.; Unni, B.G.; Kati, A.; Mandal, A.K.; Yilmaz, M.D.; Ocsoy, I. Effect of feed supplementation with biosynthesized silver nanoparticles using leaf extract of Morusindica L. V1 on Bombyxmori L. (Lepidoptera: Bombycidae). Sci. Rep., 2019, 9(1), 14839.
[http://dx.doi.org/10.1038/s41598-019-50906-6] [PMID: 31619703]
[48]
Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater., 2008, 4(3), 707-716.
[http://dx.doi.org/10.1016/j.actbio.2007.11.006] [PMID: 18248860]
[49]
Kumavat, S.R.; Mishra, S. Green synthesis of silver nanoparticles using Borago officinalis leaves extract and screening its antimicrobial and antifungal activity. Int. Nano Lett., 2021.
[http://dx.doi.org/10.1007/s40089-021-00345-x]
[50]
W, R.; R, L.; S, K.; D, M.; B, K. Phytosynthesis of Silver Nanoparticle Using Gliricidia sepium (Jacq.). Curr. Nanosci., 2009, 5(1), 117-122.
[http://dx.doi.org/10.2174/157341309787314674]
[51]
Gaddam, S.A.; Kotakadi, V.S. SaiGopal, D.V.R.; Rao, Y.S.; Reddy, A.V. Efficient and robust biofabrication of silver nanoparticles by cassia alata leaf extract and their antimicrobial activity. J. Nanostructure Chem., 2014, 4(1), 82-88.
[http://dx.doi.org/10.1007/s40097-014-0082-5]
[52]
Stabryla, L.M.; Johnston, K.A.; Millstone, J.E.; Gilbertson, L.M. Emerging investigator series: It’s not all about the ion: Support for particle-specific contributions to silver nanoparticle antimicrobial activity. Environ. Sci. Nano, 2018, 5(9), 2047-2068.
[http://dx.doi.org/10.1039/C8EN00429C]
[53]
Gopinath, V. Mubarak, Ali, D.; Priyadarshini, S.; Priyadharsshini, N.M.; Thajuddin, N.; Velusamy, P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerf., 2012, 96, 69-74.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.023]
[54]
Rautela, A.; Rani, J.; Debnath, D.M. Green synthesis of silver nanoparticles from Tectonagrandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol., 2019, 10(5), 1-10.
[http://dx.doi.org/10.1186/s40543-018-0163-z]
[55]
JavanBakhtDalir. S.; Djahaniani, H.; Nabati, F.; Hekmati, M. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon, 2020, 6(3), e03624.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03624] [PMID: 32215333]
[56]
Jebril, S.; Jenana, R.K.B.; Dridi, C. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Mater. Chem. Phys., 2020, 248, 122898-122898.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122898]
[57]
Schmidt, E.; Jirovetz, L.; Wlcek, K.; Buchbauer, G.; Gochev, V.; Girova, T.; Stoyanova, A.; Geissler, M. Antifungal activity of eugenol and various eugenol-containing essential oils against 38 clinical isolates of Candida albicans. J. Essent. Oil-Bear. Plants, 2007, 10, 421-429.
[http://dx.doi.org/10.1080/0972060X.2007.10643575]
[58]
Touba, E.P.; Zakaria, M.; Tahereh, E. Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro. Microb. Pathog., 2012, 52(2), 125-129.
[http://dx.doi.org/10.1016/j.micpath.2011.11.001] [PMID: 22138549]
[59]
Singh, G.; Maurya, S.; Catalan, C.; de Lampasona, M. P. Studies on essential oils, Part 42: Chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Frag. J., 2005, 20, 1-6..
[60]
Behravan, M. HosseinPanahi, A.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol., 2019, 124, 148-154.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.101] [PMID: 30447360]
[61]
Kumar, C.G.; Mamidyala, S.K. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces, 2011, 84(2), 462-466.
[http://dx.doi.org/10.1016/j.colsurfb.2011.01.042] [PMID: 21353501]
[62]
Kora, A.J.; Sashidhar, R.B. Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: Antibacterial activity, cytotoxicity and its mode of action. Arab. J. Chem., 2018, 11(3), 313-323.
[http://dx.doi.org/10.1016/j.arabjc.2014.10.036]
[63]
Sarkar, S.; Jana, A.D.; Samanta, S.K.; Mostafa, G. Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron, 2007, 26, 4419-4426.
[http://dx.doi.org/10.1016/j.poly.2007.05.056]
[64]
Mohanty, a.; Das, C.; Dash, S.; Sahoo, D.C. Physico-chemical and antimicrobial study of polyherbal formulation. Int. J. Comprehensive Pharm., 2010, 1(4), 1-3.
[65]
Angienda, P.O.; Onyango, D.M.; Hill, D.J. Potential application of plant essential oils at sub-lethal concentrations under extrinsic conditions that enhance their antimicrobial effectiveness against pathogenic bacteria. Afr. J. Microbiol. Res., 2010, 4, 1678-1684.
[66]
Santos, J.C.; Carvalho, C.D.; Barros, T.F.; Guimaraes, A.G. In vitro antimicrobial activity of essential oils from oregano, garlic, clove and lemon against pathogenic bacteria isolated from Anomalocardia brasiliana. Semin. Cienc. Agrar., 2011, 32, 1557-1564.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy