Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Effect of Plant Metabolites on Coronaviruses: A Comprehensive Review Focusing on their IC50 Values and Molecular Docking Scores

Author(s): Parastou Farshi, Eda Ceren Kaya, Fataneh Hashempour-Baltork* and Kianoush Khosravi-Drani*

Volume 22, Issue 3, 2022

Published on: 31 August, 2021

Page: [457 - 483] Pages: 27

DOI: 10.2174/1389557521666210831152511

Price: $65

Abstract

Coronaviruses have caused worldwide outbreaks in different periods. SARS (severe acute respiratory syndrome) was the first emerged virus from this family, followed by MERS (Middle East respiratory syndrome) and SARS-CoV-2 (2019-nCoV or COVID 19), which is newly emerged. Many studies have been conducted on the application of chemical and natural drugs for treating these coronaviruses and they are mostly focused on inhibiting the proteases of viruses or blocking their protein receptors through binding to amino acid residues. Among many substances which are introduced to have an inhibitory effect against coronaviruses through the mentioned pathways, natural components are of specific interest. Secondary and primary metabolites from plants, are considered as potential drugs to have an inhibitory effect on coronaviruses. IC50 value (the concentration in which there is 50% loss in enzyme activity), molecular docking score and binding energy are parameters to understand the ability of metabolites to inhibit the specific virus. In this study we reviewed 154 papers on the effect of plant metabolites on different coronaviruses and data of their IC50 values, molecular docking scores and inhibition percentages are collected in tables. Secondary plant metabolites such as polyphenol, alkaloids, terpenoids, organosulfur compounds, saponins and saikosaponins, lectins, essential oil, and nicotianamine, and primary metabolites such as vitamins are included in this study.

Keywords: Coronaviruses, plants metabolites, polyphenols, antiviral-effect, alkaloids, terpenoids, saponins, lectins, essential oils, vitamins, organosulfur.

Graphical Abstract
[1]
Oberholtzer, K.; Sivitz, L.; Mack, A.; Lemon, S.; Mahmoud, A.; Knobler, S. Learning from SARS: preparing for the next disease outbreak: workshop summary; National Academies Press, 2004.
[2]
Pyrc, K.; Berkhout, B.; van der Hoek, L. The novel human coronaviruses NL63 and HKU1. J. Virol., 2007, 81(7), 3051-3057.
[PMID: 17079323]
[3]
Keum, Y-S.; Lee, J.M.; Yu, M-S.; Chin, Y-W.; Jeong, Y-J. Inhibition of SARS coronavirus helicase by Baicalein. Bull. Korean Chem. Soc., 2013, 34(11), 3187-3188.
[4]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[PMID: 14647384]
[5]
Hofmann, H.; Geier, M.; Marzi, A.; Krumbiegel, M.; Peipp, M.; Fey, G.H.; Gramberg, T.; Pöhlmann, S. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem. Biophys. Res. Commun., 2004, 319(4), 1216-1221.
[PMID: 15194496]
[6]
Prajapat, M.; Sarma, P.; Shekhar, N.; Avti, P.; Sinha, S.; Kaur, H.; Kumar, S.; Bhattacharyya, A.; Kumar, H.; Bansal, S.; Medhi, B. Drug targets for corona virus: A systematic review. Indian J. Pharmacol., 2020, 52(1), 56-65.
[PMID: 32201449]
[7]
Gralinski, L.E.; Menachery, V.D. Return of the coronavirus 2019- nCoV. Viruses. Google scholar,, 2020, 12(2), 135.
[PMID: 31991541]
[8]
Macchiagodena, M.; Pagliai, M.; Procacci, P. Inhibition of the main protease 3cl-pro of the coronavirus disease 19 via structure-based ligand design and molecular modeling. arXiv preprint ar- Xiv:2002.09937,, 2020.
[9]
Khan, M.T.H.; Ather, A.; Thompson, K.D.; Gambari, R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res., 2005, 67(2), 107-119.
[PMID: 16040137]
[10]
Min, N.; Leong, P.T.; Lee, R.C.H.; Khuan, J.S.E.; Chu, J.J.H. A flavonoid compound library screen revealed potent antiviral activity of plant-derived flavonoids on human enterovirus A71 replication. Antiviral Res., 2018, 150, 60-68.
[PMID: 29233744]
[11]
Hudson, J.B. Antiviral compounds from plants; CRC Press, 2018.
[12]
Chandel, V.; Raj, S.; Rathi, B.; Kumar, D. In silico identification of potent covid-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: A drug repurposing approach., 2020.
[13]
Song, J-M.; Lee, K-H.; Seong, B-L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res., 2005, 68(2), 66-74.
[PMID: 16137775]
[14]
Tapas, A.; Sakarkar, D.; Kakde, R. A review of flavonoids as nutraceuticals. Trop. J. Pharm. Res., 2008, 7, 1089-1099.
[15]
El-Missiry, M.A.; Fekri, A.; Kesar, L.A.; Othman, A.I. Polyphenols are potential nutritional adjuvants for targeting COVID-19. Phytother. Res., 2021, 35(6), 2879-2889.
[16]
Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-glucosidase and α-amylase by flavonoids. J. Nutr. Sci. Vitaminol. (Tokyo), 2006, 52(2), 149-153.
[PMID: 16802696]
[17]
Nguyen, T.T.H.; Woo, H-J.; Kang, H-K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[PMID: 22350287]
[18]
Adem, S.; Eyupoglu, V.; Sarfraz, I.; Rasul, A. Ali, M Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against corona; Preprints, 2020, p. 2020030333.
[http://dx.doi.org/10.20944/preprints202001.0358.v3]
[19]
Chen, Y.W.; Yiu, C.B.; Wong, K-Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 129.
[PMID: 32194944]
[20]
Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[PMID: 15885816]
[21]
Chen, H.; Du, Q Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints,, 2020.
[http://dx.doi.org/10.20944/preprints202001.0358.v3]
[22]
Cheng, L.; Zheng, W.; Li, M.; Huang, J.; Bao, S.; Xu, Q.; Ma, Z. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2., 2020.
[23]
De Clercq, E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev. Anti Infect. Ther., 2006, 4(2), 291-302.
[PMID: 16597209]
[24]
Clark, K.J.; Grant, P.G.; Sarr, A.B.; Belakere, J.R.; Swaggerty, C.L.; Phillips, T.D.; Woode, G.N. An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Vet. Microbiol., 1998, 63(2-4), 147-157.
[PMID: 9850995]
[25]
Huang, H.C.; Chu, S.H.; Chao, P-D.L. Vasorelaxants from Chinese herbs, emodin and scoparone, possess immunosuppressive properties. Eur. J. Pharmacol., 1991, 198(2-3), 211-213.
[PMID: 1830846]
[26]
Chen, Y-C.; Shen, S-C.; Lee, W-R.; Hsu, F-L.; Lin, H-Y.; Ko, C-H.; Tseng, S-W. Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem. Pharmacol., 2002, 64(12), 1713-1724.
[PMID: 12445860]
[27]
Sydiskis, R.J.; Owen, D.G.; Lohr, J.L.; Rosler, K.H.; Blomster, R.N. Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrob. Agents Chemother., 1991, 35(12), 2463-2466.
[PMID: 1810179]
[28]
Ho, T-Y.; Wu, S-L.; Chen, J-C.; Li, C-C.; Hsiang, C-Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[PMID: 16730806]
[29]
Wang, L.; Ma, Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacol. Ther., 2018, 190, 105-127.
[PMID: 29742480]
[30]
Wang, W.; Ma, X.; Han, J.; Zhou, M.; Ren, H.; Pan, Q.; Zheng, C.; Zheng, Q. Correction: neuroprotective effect of Scutellarin on ischemic cerebral injury by down-regulating the expression of angiotensin-converting enzyme and AT1 receptor. PLoS One, 2016, 11(1)e0147780
[PMID: 26800358]
[31]
Matsumoto, M.; Mukai, T.; Furukawa, S.; Ohori, H. Inhibitory effects of epigallocatechin gallate on the propagation of bovine coronavirus in Madin-Darby bovine kidney cells. Anim. Sci. J., 2005, 76(5), 507-512.
[32]
Mohammadi, N.; Shaghaghi, N Inhibitory effect of eight secondary metabolites from conventional medicinal plants on covid-19 virus protease by molecular docking analysis.Preprint,, 2020.
[http://dx.doi.org/10.26434/chemrxiv,11987475]
[33]
Park, J-Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-515.
[PMID: 28112000]
[34]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[PMID: 15452254]
[35]
Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O.W.; Zhu, W.; Puah, C.M.; Shen, X.; Jiang, H. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features. Bioorg. Med. Chem., 2006, 14(24), 8295-8306.
[PMID: 17046271]
[36]
Chen, C.; Zuckerman, D.M.; Brantley, S.; Sharpe, M.; Childress, K.; Hoiczyk, E.; Pendleton, A.R. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet. Res., 2014, 10(1), 24.
[PMID: 24433341]
[37]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J-Y.; Kim, D.; Nguyen, T.T.; Park, S-J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[PMID: 20934345]
[38]
Chen, C-N.; Lin, C.P.; Huang, K-K.; Chen, W-C.; Hsieh, H-P.; Liang, P-H.; Hsu, J.T-A. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3′-digallate (TF3); Evid.-Based Complementary Altern. Med, 2005, p. 2.
[39]
Gupta, S.; Singh, V.; Varadwaj, P.K.; Chakravartty, N.; Katta, A.V.S.K.M.; Lekkala, S.P.; Thomas, G.; Narasimhan, S.; Reddy, A.R.; Reddy Lachagari, V.B. Secondary metabolites from spice and herbs as potential multitarget inhibitors of SARS-CoV-2 proteins. J. Biomol. Struct. Dyn., 2020, 1-20.
[PMID: 33107812]
[40]
Park, C-S.; Ahn, Y.; Lee, D.; Moon, S.W.; Kim, K.H.; Yamabe, N.; Hwang, G.S.; Jang, H.J.; Lee, H.; Kang, K.S.; Lee, J.W. Synthesis of apoptotic chalcone analogues in HepG2 human hepatocellular carcinoma cells. Bioorg. Med. Chem. Lett., 2015, 25(24), 5705-5707.
[PMID: 26564263]
[41]
Kaul, T.N.; Middleton, E., Jr; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol., 1985, 15(1), 71-79.
[PMID: 2981979]
[42]
Schwarz, S.; Sauter, D.; Wang, K.; Zhang, R.; Sun, B.; Karioti, A.; Bilia, A.R.; Efferth, T.; Schwarz, W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta medica, 2014, 80(02-03), 177.,
[43]
Roviello, V.; Roviello, G.N. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environ. Chem. Lett., 2020, 1-12.
[PMID: 32837486]
[44]
Yu, M-S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y-W.; Jee, J-G.; Keum, Y-S.; Jeong, Y-J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[PMID: 22578462]
[45]
Li, Y-Q.; Li, Z-L.; Zhao, W-J.; Wen, R-X.; Meng, Q-W.; Zeng, Y. Synthesis of stilbene derivatives with inhibition of SARS coronavirus replication. Eur. J. Med. Chem., 2006, 41(9), 1084-1089.
[PMID: 16875760]
[46]
Utomo, R.Y.; Meiyanto, E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection., 2020.
[47]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Prepr., 2020, 20944, 1-14.
[http://dx.doi.org/10]
[48]
Xu, Z.; Peng, C.; Shi, Y.; Zhu, Z.; Mu, K.; Wang, X.; Zhu, W. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv, 2020.
[49]
Li, Y.; Zhang, J.; Wang, N.; Li, H.; Shi, Y.; Guo, G.; Liu, K.; Zeng, H. Zou, Q Therapeutic drugs targeting 2019-nCoV main protease by high-throughput screening. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.01.28.922922]
[50]
Qamar, T.U. M.; Alqahtani, S.; Alamri, M.; Chen, L.-L Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020.
[51]
Banik, A.; Sajib, E.; Deb, A.; Ahmed, S.R.; Islam, M-T.; Roy, S.; Sinha, S.; Marma, H.; Azim, K.F.; Roy, S Identification of potential phytochemical inhibitors as promising therapeutics against SARS-CoV-2 and molecular dynamics simulation. Preprint. 13182965, 2020, v1 Accessed by November 14 2020,
[http://dx.doi.org/10.26434/chemrxiv]
[52]
Pandey, P.; Rane, J.S.; Chatterjee, A.; Kumar, A.; Khan, R.; Prakash, A.; Ray, S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J. Biomol. Struct. Dyn., 2020, 1-11.
[PMID: 32698689]
[53]
Ranjan, A.; Chauhan, A.; Gurnani, M.; Jindal, T Potential phytochemicals as efficient protease inhibitors of 2019-nCoV. Preprints, 2020. Accessed by April 15 2020,
[http://dx.doi.org/10.20944/preprints202004.0240.v1]
[54]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151.
[PMID: 31724441]
[55]
Larios, A.; García, H.S.; Oliart, R.M.; Valerio-Alfaro, G. Synthesis of flavor and fragrance esters using Candida antarctica lipase. Appl. Microbiol. Biotechnol., 2004, 65(4), 373-376.
[PMID: 15248036]
[56]
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Hussien, T.A.; Badr, E.A.A.; Mohamed, T.A.; El-Seedi, H.R.; Pare, P.W.; Efferth, T.; Hegazy, M.F. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Comput. Biol. Med., 2020, 126104046
[PMID: 33065388]
[57]
Kumar, D.; Bhagat, S. Natural compound against COVID-19 in silico screening by attacking Mpro and ACE2 using molecular docking. IJASBT, 2020, 7(6), 168-180.
[58]
Sukardiman; Ervina, M.; Fadhil Pratama, M.R.; Poerwono, H.; Siswodihardjo, S. The coronavirus disease 2019 main protease inhibitor from Andrographis paniculata (Burm. f). Ness. J. Adv. Pharm. Technol. Res., 2020, 11(4), 157-162.
[PMID: 33425697]
[59]
Chandrashekharaiah, P.; Kodgire, S.; Paul, V.; Desai, D.; Kushwaha, S.; Sanyal, D.; Dasgupta, S. Therapeutic potential of Olive’s bioactive compounds in COVID-19 disease management: A review. AIJR preprints, 2020. Available from:, https://preprints.aijr.org/index.php/ap/preprint/view/269
[60]
Abd El-Mordy, F.M.; El-Hamouly, M.M.; Ibrahim, M.T.; Abd El-Rheem, G.; Aly, O.M. Abd El-kader, A.M.; Youssif, K.A.; Abdelmohsen, U.R. Inhibition of SARS-CoV-2 main protease by phenolic compounds from Manilkara hexandra (Roxb.) Dubard assisted by metabolite profiling and in silico virtual screening. RSC Advances, 2020, 10(53), 32148-32155.
[61]
Bandyopadhyay, S.; Abiodun, O.A.; Ogboo, B.C.; Kola-Mustapha, A.T.; Attah, E.I.; Edemhanria, L.; Kumari, A.; Jaganathan, R.; Adelakun, N.S. Polypharmacology of some medicinal plant metabolites against SARS-CoV-2 and host targets: Molecular dynamics evaluation of NSP9 RNA binding protein., 2020.
[62]
Rathinavel, T.; Meganathan, B.; Kumarasamy, S.; Ammashi, S.; Thangaswamy, S.; Ragunathan, Y.; Palanisamy, S. Potential covid-19 drug from natural phenolic compounds through in silico virtual screening approach. Biointerface Re.s Appl. Chem., , 10161-10173.,
[63]
Majumder, R.; Mandal, M. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach. J. Biomol. Struct. Dyn., 2020, 1-16.
[PMID: 32897138]
[64]
da Silva, F.M.A.; da Silva, K.P.A.; de Oliveira, L.P.M.; Costa, E.V.; Koolen, H.H.; Pinheiro, M.L.B.; de Souza, A.Q.L.; de Souza, A.D.L. Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem. Inst. Oswaldo Cruz, 2020, 115e200207
[PMID: 33027419]
[65]
Fitriani, I.N.; Utami, W.; Zikri, A.T.; Santoso, P. In silico approach of potential phytochemical inhibitor from Moringa oleifera, Cocos nucifera, Allium cepa, Psidium guajava, and Eucalyptus globulus for the treatment of covid-19 by molecular docking. Available from:, researchsquare.com/article/rs-42747/v1.html
[66]
Omotuyi, I.O.; Nash, O.; Ajiboye, B.O.; Olumekun, V.O.; Oyinloye, B.E.; Osuntokun, O.T.; Olonisakin, A.; Ajayi, A.O.; Olusanya, O.; Akomolafe, F.S. Aframomum melegueta secondary metabolites exhibit polypharmacology against SARS-CoV-2 drug targets: in vitro validation of furin inhibition; Phytoth. Res, 2020.
[67]
Basu, A.; Sarkar, A.; Maulik, U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci. Rep., 2020, 10(1), 17699.
[PMID: 33077836]
[68]
Maurya, V.K.; Kumar, S.; Bhatt, M.L.B.; Saxena, S.K. Antiviral activity of traditional medicinal plants from Ayurveda against SARS-CoV-2 infection. J. Biomol. Struct. Dyn., 2020, 1-17.
[PMID: 33073699]
[69]
Mosquera-Yuqui, F.; Lopez-Guerra, N.; Moncayo-Palacio, E.A. Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2020, 1-14.
[PMID: 33084512]
[70]
Xu, J.; Gao, L.; Liang, H.; Chen, S.D. In silico screening of potential anti-COVID-19 bioactive natural constituents from food sources by molecular docking. Nutrition, 2021, 82111049
[PMID: 33290972]
[71]
Ozçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol., 2011, 49(4), 396-402.
[PMID: 21391841]
[72]
Peng, J.; Lin, T.; Wang, W.; Xin, Z.; Zhu, T.; Gu, Q.; Li, D. Antiviral alkaloids produced by the mangrove-derived fungus Cladosporium sp. PJX-41. J. Nat. Prod., 2013, 76(6), 1133-1140.
[PMID: 23758051]
[73]
Moradi, M-T.; Karimi, A.; Rafieian-Kopaei, M.; Fotouhi, F. In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microb. Pathog., 2017, 110, 42-49.
[PMID: 28629724]
[74]
Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.H.; Kwon, S. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules, 2019, 9(11), 696.
[PMID: 31690059]
[75]
Bleasel, M.D.; Peterson, G.M. Emetine, ipecac, ipecac alkaloids and analogues as potential antiviral agents for coronaviruses. Pharmaceuticals (Basel), 2020, 13(3), 51.
[PMID: 32245264]
[76]
Cheng, J.; Tang, Y.; Bao, B.; Zhang, P. Exploring the active compounds of traditional Mongolian medicine Agsirga in intervention of novel coronavirus (2019-nCoV) based on HPLC-Q-exactive- MS/MS and molecular docking method., 2020.
[77]
Tsai, Y-C.; Lee, C-L.; Yen, H-R.; Chang, Y-S.; Lin, Y-P.; Huang, S-H.; Lin, C-W. Antiviral action of Tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules, 2020, 10(3), 366.
[PMID: 32120929]
[78]
Gyebi, G.A.; Ogunro, O.B.; Adegunloye, A.P.; Ogunyemi, O.M.; Afolabi, S.O. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): An in silico screening of alkaloids and terpenoids from African medicinal plants. J. Biomol. Struct. Dyn., 2020, 1-19.
[79]
Al-Sehemi, A.G.; Olotu, F.A.; Dev, S.; Pannipara, M.; Soliman, M.E.; Carradori, S.; Mathew, B. Natural products database screening for the discovery of naturally occurring SARS-Cov-2 spike glycoprotein blockers. ChemistrySelect, 2020, 5(42), 13309-13317.
[PMID: 33363254]
[80]
Parvez, M.S.A.; Azim, K.F.; Imran, A.S.; Raihan, T.; Begum, A.; Shammi, T.S.; Howlader, S.; Bhuiyan, F.R.; Hasan, M. Virtual screening of plant metabolites against main protease, RNAdependent RNA polymerase and spike protein of SARS-CoV-2: Therapeutics option of COVID-19. arXiv/preprint ar- Xiv:2005.11254/v2.html,, 2020.
[81]
Yepes-Pérez, A.F.; Herrera-Calderon, O.; Sánchez-Aparicio, J-E.; Tiessler-Sala, L.; Maréchal, J-D.; Cardona-G, W. Investigating potential inhibitory effect of uncaria tomentosa (Cat’s Claw) against the main protease 3CLpro of SARS-CoV-2 by molecular modeling; Evid.-Based Complementary Altern. Med, 2020.
[82]
Abdelrheem, D.A.; Ahmed, S.A.; Abd El-Mageed, H.R.; Mohamed, H.S.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: insights from molecular docking analysis and molecular dynamic simulation. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2020, 55(11), 1373-1386.
[PMID: 32998618]
[83]
Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M. Terpenoids.Pharmacognosy; Elsevier, 2017, pp. 233-266.
[84]
Wen, C-C.; Kuo, Y-H.; Jan, J-T.; Liang, P-H.; Wang, S-Y.; Liu, H-G.; Lee, C-K.; Chang, S-T.; Kuo, C-J.; Lee, S-S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[PMID: 17663539]
[85]
Chang, F.-R.; Yen, C.-T.; Ei-Shazly, M.; Lin, W.-H.; Yen, M.-H.; Lin, K.-H.; Wu, Y.-C. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat. Prod. Commun., 2012, 7(11), 1934578X1200701103.,
[86]
Ubani, A.; Agwom, F.; Morenikeji, O.R.; Shehu, N.Y.; Luka, P.; Umera, E.A.; Umar, U.; Omale, S.; Nnadi, E.; Aguiyi, J.C. Molecular docking analysis of some phytochemicals on two SARS-CoV-2 targets. bioRxiv, 2020.
[87]
Puttaswamy, H.; Gowtham, H.G.; Ojha, M.D.; Yadav, A.; Choudhir, G.; Raguraman, V.; Kongkham, B.; Selvaraju, K.; Shareef, S.; Gehlot, P.; Ahamed, F.; Chauhan, L. In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Sci. Rep., 2020, 10(1), 20584.
[PMID: 33239694]
[88]
Lin, S-C.; Ho, C-T.; Chuo, W-H.; Li, S.; Wang, T.T.; Lin, C-C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[PMID: 28193191]
[89]
Azim, K.F.; Ahmed, S.R.; Banik, A.; Khan, M.M.R.; Deb, A.; Somana, S.R. Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach; IMU, 2020, p. 100367.
[90]
EF, F.; CFN, B.; PA, N.; DM, E.; FP, F.; GM, N.; DJ, S.; MCM, S.; JK, B.; AN, B. Searching nature-based solutions to emerging diseases: a preliminary review of Cameroonian medicinal plants with potentials for the management of COVID-19 pandemic.. 2020.
[91]
Abdelli, I.; Hassani, F.; Bekkel Brikci, S.; Ghalem, S. In silico study the inhibition of Angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from western Algeria. J. Biomol. Struct. Dyn., 2020, 1-17.
[92]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[PMID: 12814717]
[93]
Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina, L.; Tolstikov, G.A.; Doerr, H.W.; Cinatl, J. Jr Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem., 2005, 48(4), 1256-1259.
[PMID: 15715493]
[94]
Thuy, B.T.P.; My, T.T.A.; Hai, N.T.T.; Hieu, L.T.; Hoa, T.T.; Thi Phuong Loan, H.; Triet, N.T.; Anh, T.T.V.; Quy, P.T.; Tat, P.V.; Hue, N.V.; Quang, D.T.; Trung, N.T.; Tung, V.T.; Huynh, L.K.; Nhung, N.T.A. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega, 2020, 5(14), 8312-8320.
[PMID: 32363255]
[95]
Vasconcelos, I.M.; Oliveira, J.T.A. Antinutritional properties of plant lectins. Toxicon, 2004, 44(4), 385-403.
[PMID: 15302522]
[96]
Singh, R.; Tiwary, A.; Kennedy, J. Lectins: Sources, activities, and applications. Crit. Rev. Biotechnol., 1999, 19(2), 145-178.
[97]
Lagarda-Diaz, I.; Guzman-Partida, A.M.; Vazquez-Moreno, L. Legume lectins: proteins with diverse applications. Int. J. Mol. Sci., 2017, 18(6), 1242.
[PMID: 28604616]
[98]
Damme, E.J.V.; Peumans, W.J.; Barre, A.; Rougé, P. Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci., 1998, 17(6), 575-692.
[99]
Hann, I. Modern trends in human leukemia VII. J. Clin. Pathol., 1989, 42(2), 221.
[100]
Dudley, J.P.; Golovkina, T.V.; Ross, S.R. Lessons learned from mouse mammary tumor virus in animal models. ILAR J., 2016, 57(1), 12-23.
[PMID: 27034391]
[101]
Balzarini, J. Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses? Antivir. Chem. Chemother., 2007, 18(1), 1-11.
[PMID: 17354647]
[102]
Ritchie, G.; Harvey, D.J.; Feldmann, F.; Stroeher, U.; Feldmann, H.; Royle, L.; Dwek, R.A.; Rudd, P.M. Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein. Virology, 2010, 399(2), 257-269.
[PMID: 20129637]
[103]
Keyaerts, E.; Vijgen, L.; Pannecouque, C.; Van Damme, E.; Peumans, W.; Egberink, H.; Balzarini, J.; Van Ranst, M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res., 2007, 75(3), 179-187.
[PMID: 17428553]
[104]
Mazalovska, M.; Kouokam, J.C. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections.BioMedRes. Int., 2018,, 2018.
[105]
van der Meer, F.J.; de Haan, C.A.; Schuurman, N.M.; Haijema, B.J.; Peumans, W.J.; Van Damme, E.J.; Delputte, P.L.; Balzarini, J.; Egberink, H.F. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. Antiviral Res., 2007, 76(1), 21-29.
[PMID: 17560666]
[106]
Barnard, D.L.; Kumaki, Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol., 2011, 6(5), 615-631.
[PMID: 21765859]
[107]
O’Keefe, B.R.; Giomarelli, B.; Barnard, D.L.; Shenoy, S.R.; Chan, P.K.; McMahon, J.B.; Palmer, K.E.; Barnett, B.W.; Meyerholz, D.K.; Wohlford-Lenane, C.L.; McCray, P.B. Jr Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J. Virol., 2010, 84(5), 2511-2521.
[PMID: 20032190]
[108]
Carr, R.M.; Oranu, A.; Khungar, V. Nonalcoholic fatty liver disease: Pathophysiology and management. Gastroenterology Clinics, 2016, 45(4), 639-652.
[PMID: 27837778]
[109]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[PMID: 23075143]
[110]
Ip, W.K.; Chan, K.H.; Law, H.K.; Tso, G.H.; Kong, E.K.; Wong, W.H.; To, Y.F.; Yung, R.W.; Chow, E.Y.; Au, K.L.; Chan, E.Y.; Lim, W.; Jensenius, J.C.; Turner, M.W.; Peiris, J.S.; Lau, Y.L. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J. Infect. Dis., 2005, 191(10), 1697-1704.
[PMID: 15838797]
[111]
Mickymaray, S. Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics (Basel), 2019, 8(4), 257.
[PMID: 31835403]
[112]
Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—present status and future perspectives. Medicines (Basel), 2017, 4(3), 58.
[PMID: 28930272]
[113]
D’agostino, M.; Tesse, N.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. Essential oils and their natural active compounds presenting antifungal properties. Molecules, 2019, 24(20), 3713.
[PMID: 31619024]
[114]
Goodger, J.Q.; Senaratne, S.L.; Nicolle, D.; Woodrow, I.E. Correction: Foliar Essential Oil Glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae) Are a Rich Source of Flavonoids and Related Non-Volatile Constituents. PLoS One, 2016, 11(5)e0155568
[PMID: 27159057]
[115]
Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol., 2006, 106(3), 290-302.
[PMID: 16698208]
[116]
Schnitzler, P.; Schuhmacher, A.; Astani, A.; Reichling, J. Melissa officinalis oil affects infectivity of enveloped herpesviruses. Phytomedicine, 2008, 15(9), 734-740.
[PMID: 18693101]
[117]
Ulasli, M.; Gurses, S.A.; Bayraktar, R.; Yumrutas, O.; Oztuzcu, S.; Igci, M.; Igci, Y.Z.; Cakmak, E.A.; Arslan, A. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol. Biol. Rep., 2014, 41(3), 1703-1711.
[PMID: 24413991]
[118]
Sharma, A.D. Eucalyptol (1, 8 cineole) from eucalyptus essential Oil a potential inhibitor of COVID 19 corona virus infection by molecular docking studies., 2020.
[119]
Jackwood, M.W.; Rosenbloom, R.; Petteruti, M.; Hilt, D.A.; McCall, A.W.; Williams, S.M. Avian coronavirus infectious bronchitis virus susceptibility to botanical oleoresins and essential oils in vitro and in vivo. Virus Res., 2010, 149(1), 86-94.
[PMID: 20096315]
[120]
Mohajer Shojai, T.; Ghalyanchi Langeroudi, A.; Karimi, V.; Barin, A.; Sadri, N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J. Phytomed., 2016, 6(4), 458-267.
[PMID: 27516987]
[121]
Zhang, P.; Liu, X.; Liu, H.; Wang, W.; Liu, X.; Li, X.; Wu, X. Astragalus polysaccharides inhibit avian infectious bronchitis virus infection by regulating viral replication. Microb. Pathog., 2018, 114, 124-128.
[PMID: 29170045]
[122]
Yin, J.; Li, G.; Li, J.; Yang, Q.; Ren, X. In vitro and in vivo effects of Houttuynia cordata on infectious bronchitis virus. Avian Pathol., 2011, 40(5), 491-498.
[PMID: 21848486]
[123]
Chiow, K.H.; Phoon, M.C.; Putti, T.; Tan, B.K.; Chow, V.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop. Med., 2016, 9(1), 1-7.
[PMID: 26851778]
[124]
Lau, K-M.; Lee, K-M.; Koon, C-M.; Cheung, C.S-F.; Lau, C-P.; Ho, H-M.; Lee, M.Y-H.; Au, S.W-N.; Cheng, C.H-K.; Lau, C.B.; Tsui, S.K.; Wan, D.C.; Waye, M.M.; Wong, K.B.; Wong, C.K.; Lam, C.W.; Leung, P.C.; Fung, K.P. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol., 2008, 118(1), 79-85.
[PMID: 18479853]
[125]
Lelešius, R.; Karpovaitė, A.; Mickienė, R.; Drevinskas, T.; Tiso, N.; Ragažinskienė, O.; Kubilienė, L.; Maruška, A.; Šalomskas, A. In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC Vet. Res., 2019, 15(1), 178.
[PMID: 31142304]
[126]
Sharma, A.D.; Kaur, I. Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection. Res. Revi. Biotech. Biosci., 2020, 7(1), 59-66.
[127]
Kim, H-Y.; Eo, E-Y.; Park, H.; Kim, Y-C.; Park, S.; Shin, H-J.; Kim, K. Medicinal herbal extracts of Sophorae radix, Acanthopanacis cortex, Sanguisorbae radix and Torilis fructus inhibit coronavirus replication in vitro. Antivir. Ther., 2010, 15(5), 697-709.
[PMID: 20710051]
[128]
Kulkarni, S.A.; Nagarajan, S.K.; Ramesh, V.; Palaniyandi, V.; Selvam, S.P.; Madhavan, T. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. J. Mol. Struct., 2020, 1221128823
[PMID: 32834111]
[129]
Silva, J.K.R.D.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential oils as antiviral agents. Potential of essential oils to treat SARS-CoV-2 infection: An In-silico investigation. Int. J. Mol. Sci., 2020, 21(10), 3426.
[PMID: 32408699]
[130]
Kumar, A.; Choudhir, G.; Shukla, S.K.; Sharma, M.; Tyagi, P.; Bhushan, A.; Rathore, M. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J. Biomol. Struct. Dyn., 2020, 1-21.
[131]
Senthil Kumar, K.J.; Gokila Vani, M.; Wang, C-S.; Chen, C-C.; Chen, Y-C.; Lu, L-P.; Huang, C-H.; Lai, C-S.; Wang, S-Y. Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants, 2020, 9(6), 770.
[PMID: 32575476]
[132]
Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients, 2020, 12(4), 1181.
[PMID: 32340216]
[133]
Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents, 2020, 34(2), 327-331.
[PMID: 32171193]
[134]
Gasmi, A.; Noor, S.; Tippairote, T.; Dadar, M.; Menzel, A.; Bjørklund, G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. J. Clin. Immunol., 2020, 215108409
[PMID: 32276137]
[135]
Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[PMID: 32252338]
[136]
Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8(5), 475-481.
[PMID: 32105632]
[137]
Sharifi, A.; Vahedi, H.; Nedjat, S.; Rafiei, H.; Hosseinzadeh-Attar, M.J. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo-controlled trial. APMIS, 2019, 127(10), 681-687.
[PMID: 31274211]
[138]
Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune System–Working in harmony to reduce the risk of infection. Nutrients, 2020, 12(1), 236.
[PMID: 31963293]
[139]
Cantorna, M.T. Mechanisms underlying the effect of vitamin D on the immune system. Proc. Nutr. Soc., 2010, 69(3), 286-289.
[PMID: 20515520]
[140]
Jeffery, L.E.; Burke, F.; Mura, M.; Zheng, Y.; Qureshi, O.S.; Hewison, M.; Walker, L.S.; Lammas, D.A.; Raza, K.; Sansom, D.M. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol., 2009, 183(9), 5458-5467.
[PMID: 19843932]
[141]
Elliott, M.E.; Binkley, N.C.; Carnes, M.; Zimmerman, D.R.; Petersen, K.; Knapp, K.; Behlke, J.M.; Ahmann, N.; Kieser, M.A. Fracture risks for women in long-term care: high prevalence of calcaneal osteoporosis and hypovitaminosis D. Pharmacotherapy, 2003, 23(6), 702-710.
[PMID: 12820811]
[142]
McGill, J.L.; Kelly, S.M.; Guerra-Maupome, M.; Winkley, E.; Henningson, J.; Narasimhan, B.; Sacco, R.E. Vitamin A deficiency impairs the immune response to intranasal vaccination and RSV infection in neonatal calves. Sci. Rep., 2019, 9(1), 15157.
[PMID: 31641172]
[143]
Jee, J.; Hoet, A.E.; Azevedo, M.P.; Vlasova, A.N.; Loerch, S.C.; Pickworth, C.L.; Hanson, J.; Saif, L.J. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. Am. J. Vet. Res., 2013, 74(10), 1353-1362.
[PMID: 24066921]
[144]
Villamor, E.; Mbise, R.; Spiegelman, D.; Hertzmark, E.; Fataki, M.; Peterson, K.E.; Ndossi, G.; Fawzi, W.W. Vitamin A supplements ameliorate the adverse effect of HIV-1, malaria, and diarrheal infections on child growth. Pediatrics, 2002, 109(1)E6
[PMID: 11773574]
[145]
Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol., 2020, 92(5), 479-490.
[PMID: 32052466]
[146]
Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr., 2003, 77(6), 1352-1360.
[PMID: 12791609]
[147]
Keil, S.D.; Bowen, R.; Marschner, S. Inactivation of Middle East respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment. Transfusion, 2016, 56(12), 2948-2952.
[PMID: 27805261]
[148]
Jones, H.D.; Yoo, J.; Crother, T.R.; Kyme, P.; Ben-Shlomo, A.; Khalafi, R.; Tseng, C.W.; Parks, W.C.; Arditi, M.; Liu, G.Y.; Shimada, K. Correction: Nicotinamide exacerbates hypoxemia in ventilator-induced lung injury independent of neutrophil infiltration. PLoS One, 2015, 10(5)e0128735
[PMID: 25996479]
[149]
Hemilä, H. Vitamin C and infections. Nutrients, 2017, 9(4), 339.
[PMID: 28353648]
[150]
Hemilä, H.; Vitamin, C. Vitamin C and SARS coronavirus. J. Antimicrob. Chemother., 2003, 52(6), 1049-1050.
[PMID: 14613951]
[151]
Galmés, S.; Serra, F.; Palou, A. Vitamin E metabolic effects and genetic variants: a challenge for precision nutrition in obesity and associated disturbances. Nutrients, 2018, 10(12), 1919.
[PMID: 30518135]
[152]
Beck, M.A. Increased virulence of coxsackievirus B3 in mice due to vitamin E or selenium deficiency. J. Nutr., 1997, 127(5)(Suppl.), 966S-970S.
[PMID: 9164275]
[153]
Takahashi, S.; Yoshiya, T.; Yoshizawa-Kumagaye, K.; Sugiyama, T. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomed. Res., 2015, 36(3), 219-224.
[PMID: 26106051]
[154]
Loizzo, M.R.; Saab, A.M.; Tundis, R.; Statti, G.A.; Menichini, F.; Lampronti, I.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem. Biodivers., 2008, 5(3), 461-470.
[PMID: 18357554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy