Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Bio-guided Studies of Lotus maritimus Aerial Parts and Investigation of their Antioxidant, Tyrosinase and Elastase Inhibitory Activities

Author(s): Marie Schmitt, Abdulmagid Alabdul Magid, Nicolas Etique, Jane Hubert, Laurent Duca, Jean-Marc Nuzillard and Laurence Voutquenne-Nazabadioko*

Volume 12, Issue 4, 2022

Published on: 27 August, 2021

Article ID: e270821195858 Pages: 9

DOI: 10.2174/2210315511666210827092430

Price: $65

Abstract

Background: Lotus maritimus L. (Fabaceae) is a perennial herb species with yellow flowers, growing in Europe, Asia, Middle East and Maghreb. Some flavones and flavonols have been identified in their leaves and flowers. Their leaf extract was used as a cellulolytic and antiaging cosmetic ingredient.

Objective: The aim of this work was to perform antioxidant, anti-tyrosinase and anti-elastase properties of L. maritimus aerial parts and their chemical profile.

Methods: A 13C NMR-based dereplication method combined with a bio-guided purification was used for metabolite identification. Chemical structures were determined by NMR and ESI-MS spectroscopic methods. The antioxidant properties of the fractions and purified compounds were measured using CUPRAC, DPPH and hydroxyl radical scavenging assays. Their inhibitory activities against the fungal tyrosinase and human neutrophil elastase enzymes were also evaluated.

Results: EtOAc and n-BF fractions were characterized as the most active parts. Twenty-two compounds were identified from these fractions by using a 13C NMR-based dereplication method. This process was completed by the purification of minor compounds in the n-BuOH fraction. Eight known compounds were isolated, including many mono-glycosylated flavonoids with variable substitutions on the B-ring, allowing structure-activity relationships.

Conclusion: Twenty-two compounds, including phenolic acids, flavonoids and glycoside derivatives, were firstly described in L. maritimus. Three quercetin and myricetin-type flavonoids exhibited good antioxidant activities and all flavonoids tested have moderate effects on elastase inhibition.

Keywords: Lotus maritimus, Fabaceae, flavonoid, dereplication, antioxidant, tyrosinase, elastase.

Graphical Abstract
[1]
Dorni, A.I.; Amalraj, A.; Gopi, S.; Varma, K.; Anjana, S.N. Medicinal and aromatic plants novel cosmeceuticals from plants – An industry guided review. J. Appl Res. Med. Arom. Plants, 2017, 7, 1-26.
[2]
Parvez, S.; Kang, M.; Chung, H.S.; Bae, H. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res., 2007, 21(9), 805-816.
[http://dx.doi.org/10.1002/ptr.2184] [PMID: 17605157]
[3]
Fierascu, R.C.; Ortan, A.; Fierascu, I.C.; Fierascu, I. In vitro and in vivo evaluation of antioxidant properties of wild-growing plants. A short review. Curr. Opin. Food Sci., 2018, 24, 1-8.
[http://dx.doi.org/10.1016/j.cofs.2018.08.006]
[4]
Kanlayavattanakul, M.; Lourith, N.; Kanlayavattanakul, M.; Lourith, N. Skin hyperpigmentation treatment using herbs: A review of clinical evidences. J. Cosmet. Laser Ther., 2018, 20(2), 123-131.
[http://dx.doi.org/10.1080/14764172.2017.1368666] [PMID: 28853960]
[5]
Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive compounds from natural resources against skin aging. Phytomedicine, 2011, 19(1), 64-73.
[http://dx.doi.org/10.1016/j.phymed.2011.10.003] [PMID: 22115797]
[6]
Sharafzadeh, S. Medicinal Plants as Anti-Ageing Materials: A Review. Glob. J. Med. Plants Res., 2013, 1(2), 234-236.
[7]
Xu, G.H.; Ryoo, I.J.; Kim, Y.H.; Choo, S.J.; Yoo, I.D. Free radical scavenging and antielastase activities of flavonoids from the fruits of Thuja orientalis. Arch. Pharm. Res., 2009, 32(2), 275-282.
[http://dx.doi.org/10.1007/s12272-009-1233-y] [PMID: 19280159]
[8]
Jay, M.; Hasan, A.; Voirin, B.; Favre-Bonvin, J.; Viricel, M.R. Flavonoids of Dorycnium suffructicosumTetragonolobus siliquosus and (Leguminosae). Phytochemistry, 1978, 17(7), 1196-1198.
[http://dx.doi.org/10.1016/S0031-9422(00)94317-6]
[9]
Ingham, J.L.; Dewick, P.M. 6-Demethylvignafuran as a phytoalexin of Tetragonolobus maritimus. Phytochemistry, 1978, 17(3), 535-538.
[http://dx.doi.org/10.1016/S0031-9422(00)89354-1]
[10]
Yerlikaya, S.; Baloglu, M.C.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Zengin, G. Investigation of chemical profile, biological properties of Lotus corniculatus L. extracts and their apoptotic-autophagic effects on breast cancer cells. J. Pharm. Biomed. Anal., 2019, 174, 286-299.
[http://dx.doi.org/10.1016/j.jpba.2019.05.068] [PMID: 31185340]
[11]
Osman, S.M.; Abd El-Khalik, S.M.; Saadeldeen, A.M.; Koheil, M.A.; Wink, M. Activity guided phytochemical study of Egyptian Lotus polyphyllos E.D. Clarke (Fabaceae). Int. J. Appl. Res. Nat. Prod., 2015, 8(4), 18-26.
[12]
Schmitt, M.; Alabdul Magid, A.; Hubert, J.; Etique, N.; Duca, L.; Voutquenne-Nazabadioko, L. Bio-guided isolation of new phenolic compounds from Hippocrepis emerus flowers and investigation of their antioxidant, tyrosinase and elastase inhibitory activities. Phytochem. Lett., 2020, 35, 28-36.
[http://dx.doi.org/10.1016/j.phytol.2019.10.014]
[13]
Schmitt, M.; Alabdul Magid, A.; Nuzillard, J.M.; Hubert, J.; Etique, N.; Duca, L.; Voutquenne-Nazabadioko, L. Investigation of antioxidant and elastase inhibitory activities of Geum urbanum aerial parts, chemical characterization of extracts guided by chemical and biological assays. Nat. Prod. Commun., 2020, 15(3), 1-9.
[http://dx.doi.org/10.1177/1934578X20915307]
[14]
Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.D.; Webb, A. Flora Europaea. Rosaceae to Umbelliferae; Cambridge University Press, 1968, Vol. 2, .
[15]
Huang, D.A. Flora Reipublicae Popularis Sinicae. Angiospermae Dicotyledoneae Leguminosae; Science Press, 1998, Vol. 42, . (2)
[16]
Lombard, A.; Bajon, R. Muséum national d'Histoire naturelle, Conservatoire botanique national du Bassin parisien. Lotus maritimus L, 1753. Available from: https://cbnbp.mnhn.fr/cbnbp/especeAction.do?action=fiche&cdNom=106685
[17]
Dupont, E.; Journet, M.; Oula, M.L.; Gomez, J.; Léveillé, C.; Loing, E.; Bilodeau, D. An integral topical gel for cellulite reduction: Results from a double-blind, randomized, placebo-controlled evaluation of efficacy. Clin. Cosmet. Investig. Dermatol., 2014, 7, 73-88.
[PMID: 24600240]
[18]
Hubert, J.; Nuzillard, J.M.; Purson, S.; Hamzaoui, M.; Borie, N.; Reynaud, R.; Renault, J.H. Identification of natural metabolites in mixture: A pattern recognition strategy based on (13)C NMR. Anal. Chem., 2014, 86(6), 2955-2962.
[http://dx.doi.org/10.1021/ac403223f] [PMID: 24555703]
[19]
Sientzoff, P.; Hubert, J.; Janin, C.; Voutquenne-Nazabadioko, L.; Renault, J.H.; Nuzillard, J.M.; Harakat, D.; Magid, A.A. Fast identification of radical scavengers from Securigera varia by combining 13C-NMR-based dereplication to bioactivity-guided fractionation. Molecules, 2015, 20(8), 14970-14984.
[http://dx.doi.org/10.3390/molecules200814970] [PMID: 26287151]
[20]
Deans, B.J.; Skierka, B.E.; Karagiannakis, B.W.; Vuong, D.; Lacey, E.; Smith, J.A.; Bissember, A.C. Siliquapyranone: A tannic acid tetrahydropyran-2-one isolated from the leaves of carob (Ceratonia siliqua) by pressurised hot water extraction. Aust. J. Chem., 2018, 71(9), 702-707.
[http://dx.doi.org/10.1071/CH18265]
[21]
Sciubba, F.; Capuani, G.; Di Cocco, M.E.; Avanzato, D.; Delfini, M. Nuclear magnetic resonance analysis of water soluble metabolites allows the geographic discrimination of pistachios (Pistacia vera). Food Res. Int., 2014, 62, 66-73.
[http://dx.doi.org/10.1016/j.foodres.2014.02.039]
[22]
Omar, T.; Noman, L.; Mohamed, B.; Altuntas, F.O.; Demirtas, I. Phytochemical constituents and antioxidant effect of Solanum rostratum species from Algeria. Asian J. Pharmac. Clinical Res., 2018, 11(6), 219-223.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i6.24951]
[23]
Martínez-Gil, A.M.; Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Pérez-Álvarez, E.P.; Moreno-Simunovic, Y. Characterization of phenolic composition in Carignan noir grapes (Vitis vinifera L.) from six wine-growing sites in Maule Valley, Chile. J. Sci. Food Agric., 2018, 98(1), 274-282.
[http://dx.doi.org/10.1002/jsfa.8468] [PMID: 28585244]
[24]
F Vale, L.H.; Mendes, M.M.; Fernandes, R.S.; Costa, T.R.; S Hage-Melim, L.I.; A Sousa, M.; Hamaguchi, A.; Homsi-Brandeburgo, M.I.; Franca, S.C.; Silva, C.H.T.P.; Pereira, P.S.; Soares, A.M.; Rodrigues, V.M. Protective effect of schizolobium parahyba flavonoids against snake venoms and isolated toxins. Curr. Top. Med. Chem., 2011, 11(20), 2566-2577.
[http://dx.doi.org/10.2174/156802611797633438] [PMID: 21682680]
[25]
Xiao, Z.P.; Wu, H.K.; Wu, T.; Shi, H.; Hang, B.; Asia, H.A. Kaempferol and quercetin flavonoids from Rosa rugosa. Chem. Nat. Compd., 2006, 42(6), 736-737.
[http://dx.doi.org/10.1007/s10600-006-0267-3]
[26]
Torres-Naranjo, M.; Suárez, A.; Gilardoni, G.; Cartuche, L.; Flores, P.; Morocho, V. Chemical constituents of Muehlenbeckia tamnifolia (Kunth) Meisn (polygonaceae) and its in vitro α-amilase and α-glucosidase inhibitory activities. Molecules, 2016, 21(11), 1461-1470.
[http://dx.doi.org/10.3390/molecules21111461] [PMID: 27827864]
[27]
Lee, S.Y.; Kim, K.H.; Lee, I.K.; Lee, K.H.; Choi, S.U.; Lee, K.R. A new flavonol glycoside from Hylomecon vernalis. Arch. Pharm. Res., 2012, 35(3), 415-421.
[http://dx.doi.org/10.1007/s12272-012-0303-8] [PMID: 22477187]
[28]
Purcell, J.M.; Morris, S.G.; Susi, H. Proton magnetic resonance spectra of unsaturated fatty acids. Anal. Chem., 1966, 38(4), 588-592.
[http://dx.doi.org/10.1021/ac60236a016]
[29]
Kitamura, Y.; Nishimi, S.; Miura, H.; Kinoshita, T. Phenyllactic acid in Duboisia leichhardtii root cultures by feeding of phenyl[1-14C]-alanine. Phytochemistry, 1993, 34(2), 425-427.
[http://dx.doi.org/10.1016/0031-9422(93)80022-K]
[30]
Scott, K.N. NMR parameters of biologically important aromatic acids. 2. Phenylacetic acid and derivatives. J. Magn. Reson., 1972, 6(1), 55-73.
[31]
Maruenda, H.; Cabrera, R.; Cañari-Chumpitaz, C.; Lopez, J.M.; Toubiana, D. NMR-based metabolic study of fruits of Physalis peruviana L. grown in eight different Peruvian ecosystems. Food Chem., 2018, 262, 94-101.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.032] [PMID: 29751927]
[32]
Wu, Y.B.; Zheng, L.J.; Wu, J.G.; Chen, T.Q.; Yi, J.; Wu, J.Z. Antioxidant activities of extract and fractions from receptaculum nelumbinis and related flavonol glycosides. Int. J. Mol. Sci., 2012, 13(6), 7163-7173.
[http://dx.doi.org/10.3390/ijms13067163] [PMID: 22837685]
[33]
Wald, B.; Wray, V.; Galensa, R.; Herrmann, K. Malonated flavonol glycosides and 3,5-dicaffeoylquinic acid from pears. Phytochemistry, 1989, 28(2), 663-664.
[http://dx.doi.org/10.1016/0031-9422(89)80083-4]
[34]
Umehara, K.; Hattori, I.; Miyase, T.; Ueno, A.; Hara, S.; Kageyama, C. Studies on the constituents of leaves of Citrus unshiu Marcov. Chem. Pharm. Bull. (Tokyo), 1998, 36(12), 5004-5008.
[http://dx.doi.org/10.1248/cpb.36.5004]
[35]
Johnson, S.R.; Soprano, S.E.; Wickham, L.M.; Fitzgerald, N.; Edwards, J.C. Nuclear magnetic resonance and headspace solid-phase microextraction gas chromatography as complementary methods for the analysis of beer samples. Beverages, 2017, 3(2), 21-30.
[http://dx.doi.org/10.3390/beverages3020021]
[36]
Fester, T.; Fetzer, I.; Härtig, C. A core set of metabolite sink/source ratios indicative for plant organ productivity in Lotus japonicus. Planta, 2013, 237(1), 145-160.
[http://dx.doi.org/10.1007/s00425-012-1759-y] [PMID: 22996195]
[37]
Sugiyama, A.; Saida, Y.; Yoshimizu, M.; Takanashi, K.; Sosso, D.; Frommer, W.B.; Yazaki, K. Molecular characterization of LjSWEET3, a sugar transporter in nodules of Lotus japonicus. Plant Cell Physiol., 2017, 58(2), 298-306.
[PMID: 28007966]
[38]
Suzuki, H.; Sasaki, R.; Ogata, Y.; Nakamura, Y.; Sakurai, N.; Kitajima, M.; Takayama, H.; Kanaya, S.; Aoki, K.; Shibata, D.; Saito, K. Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Phytochemistry, 2008, 69(1), 99-111.
[http://dx.doi.org/10.1016/j.phytochem.2007.06.017] [PMID: 17669449]
[39]
Kaducová, M.; Monje-Rueda, M.D.; García-Calderón, M.; Pérez-Delgado, C.M.; Eliášová, A.; Gajdošová, S.; Petruľová, V.; Betti, M.; Márquez, A.J.; Paľove-Balang, P. Induction of isoflavonoid biosynthesis in Lotus japonicus after UV-B irradiation. J. Plant Physiol., 2019, 236, 88-95.
[http://dx.doi.org/10.1016/j.jplph.2019.03.003] [PMID: 30939333]
[40]
Saenz Rodriguez, M.T.; Garcia Gimenez, M.D.; Fernandez Arche, M.A.; De la Puerta Vazquez, R. Lotus creticus L.: phytochemical study, acute toxicity, and depressor effect on the central nervous system. Plants Med. Phytotherapy, 1990, 24(4), 216-223.
[41]
Kovalyov, S.V. Investigation of lipophilic fractions from Lotus ucrainicus and Lotus arvensis herb. Visnik Farmatsii, 2010, 1, 27-31.
[42]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[43]
Csepregi, K.; Neugart, S.; Schreiner, M.; Hideg, É. Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules, 2016, 21(2), 208-223.
[http://dx.doi.org/10.3390/molecules21020208] [PMID: 26867192]
[44]
Sartor, L.; Pezzato, E.; Dell’Aica, I.; Caniato, R.; Biggin, S.; Garbisa, S. Inhibition of matrix-proteases by polyphenols: Chemical insights for anti-inflammatory and anti-invasion drug design. Biochem. Pharmacol., 2002, 64(2), 229-237.
[http://dx.doi.org/10.1016/S0006-2952(02)01069-9] [PMID: 12123743]
[45]
Xie, L.P.; Chen, Q.X.; Huang, H.; Wang, H.Z.; Zhang, R.Q. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry (Mosc.), 2003, 68(4), 487-491.
[http://dx.doi.org/10.1023/A:1023620501702] [PMID: 12765534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy