Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Comparison of Y-90 and Ho-166 Dosimetry Using Liver Phantom: A Monte Carlo Study7

Author(s): Ayşe Karadeniz Yıldırım and Handan Tanyıldızı Kökkülünk*

Volume 22, Issue 7, 2022

Published on: 24 August, 2021

Page: [1348 - 1353] Pages: 6

DOI: 10.2174/1871520621666210824111534

Price: $65

Abstract

Background: It is estimated that more than 1 million people are diagnosed with liver malignancy each year and one of the treatments is radioembolization with Y-90 and Ho-166.

Objective: The aim of this study is to calculate the absorbed doses caused by Y-90 and Ho-166 in tumor and liver parenchyma using a phantom via Monte Carlo method.

Methods: A liver model phantom including a tumor imitation of sphere (r =1.5cm) was defined in GATE. The total activity of 40 mCi Y-90 and Ho-166 was prescribed into tumor imitation as source and 2x2x2 mm3 voxel-sized Dose- Actors were identified at 30 locations. The simulation, performed to calculate the absorbed doses left by particles during 1 second for Y-90 and Ho-166, was run for a total of 10 days and 11 days, respectively. Total doses were calculated by taking the doses occurring in 1 second as a reference.

Results: The maximum absorbed doses were found to be 2.334E+03±1.576E+01 Gy for Y-90 and 7.006E+02±6.013E- 01 Gy for Ho-166 at the center of tumor imitation. The minimum absorbed doses were found to be 2.133E-03±1.883E- 01 Gy for Y-90 and 1.152E-02±1.036E-03 Gy for Ho-166 at the farthest location from source. The mean absorbed doses in tumor imitation were found to be 1.50E+03±1.36E+00 Gy and 4.58E+02±4.75E-01 Gy for Y-90 and Ho-166, respectively. And, the mean absorbed doses in normal parenchymal tissue were found to be2.07E+01±9.58E-02 Gy and 3.79E+00±2.63E-02 Gy for Y-90 and Ho-166, respectively.

Conclusion: Based on the results, Ho-166 is a good alternative to Y-90 according to dosimetric evaluation.

Keywords: Monte Carlo method, dosimetry, Y-90, Ho-166, phantom, modelling and simulation.

Graphical Abstract
[1]
Bult, W.; Vente, M.A.; Zonnenberg, B.A.; Van Het Schip, A.D.; Nijsen, J.F.M. Microsphere radioembolization of liver malignancies: current developments. Q. J. Nucl. Med. Mol. Imaging, 2009, 53(3), 325-335.
[PMID: 19521312]
[2]
Gulec, S.A.; Mesoloras, G.; Dezarn, W.A.; McNeillie, P.; Kennedy, A.S. Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: the tumor selectivity of the treatment as a function of tumor to liver flow ratio. J. Transl. Med., 2007, 5, 15.
[http://dx.doi.org/10.1186/1479-5876-5-15] [PMID: 17359531]
[3]
Salem, R.; Thurston, K.G. Radioembolization with yttrium-90 microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies: part 3: comprehensive literature review and future direction. J. Vasc. Interv. Radiol., 2006, 17(10), 1571-1593.
[http://dx.doi.org/10.1097/01.RVI.0000236744.34720.73] [PMID: 17056999]
[4]
Elgqvist, J.; Frost, S.; Pouget, J-P.; Albertsson, P. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. Front. Oncol., 2014, 3, 324.
[http://dx.doi.org/10.3389/fonc.2013.00324] [PMID: 24459634]
[5]
Chatal, J.F.; Hoefnagel, C.A. Radionuclide therapy. Lancet, 1999, 354(9182), 931-935.
[http://dx.doi.org/10.1016/S0140-6736(99)06002-X] [PMID: 10489968]
[6]
Lacoeuille, F.; Arlicot, N.; Faivre-Chauvet, A. Targeted alpha and beta radiotherapy: An overview of radiopharmaceutical and clinical aspects. Med. Nucl. (Paris), 2018, 42(1), 32-44.
[http://dx.doi.org/10.1016/j.mednuc.2017.12.002]
[7]
Makvandi, M.; Dupis, E.; Engle, J.W.; Nortier, F.M.; Fassbender, M.E.; Simon, S.; Birnbaum, E.R.; Atcher, R.W.; John, K.D.; Rixe, O.; Norenberg, J.P. Alpha-emitters and targeted alpha therapy in oncology: From basic science to clinical investigations. Target. Oncol., 2018, 13(2), 189-203.
[http://dx.doi.org/10.1007/s11523-018-0550-9] [PMID: 29423595]
[8]
Müller, C.; van der Meulen, N.P.; Benešová, M.; Schibli, R. Therapeutic radiometals beyond 177Lu and 90Y: Production and application of promising α-particle, β--particle, and auger electron emitters. J. Nucl. Med., 2017, 58(Suppl. 2), 91S-96S.
[http://dx.doi.org/10.2967/jnumed.116.186825] [PMID: 28864619]
[9]
Oyen, W.J.G.; Bodei, L.; Giammarile, F.; Maecke, H.R.; Tennvall, J.; Luster, M.; Brans, B. Targeted therapy in nuclear medicine--current status and future prospects. Ann. Oncol., 2007, 18(11), 1782-1792.
[http://dx.doi.org/10.1093/annonc/mdm111] [PMID: 17434893]
[10]
Srivastava, S.; Dadachova, E. Recent advances in radionuclide therapy. Semin. Nucl. Med., 2001, 31(4), 330-341.
[http://dx.doi.org/10.1053/snuc.2001.27043] [PMID: 11710775]
[11]
Volkert, W.A.; Hoffman, T.J. Therapeutic radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2269-2292.
[http://dx.doi.org/10.1021/cr9804386] [PMID: 11749482]
[12]
Walker, L.A. Radioactive Yttrium 90: A review of its properties, biological behavior, and clinical uses. Acta Radiol. Ther. Phys. Biol., 1964, 2(4), 302-314.
[http://dx.doi.org/10.1080/02841866409134063] [PMID: 14203057]
[13]
Nijsen, J.F.W.; Krijger, G.C.; van Het Schip, A.D. The bright future of radionuclides for cancer therapy. Anticancer. Agents Med. Chem., 2007, 7(3), 271-290.
[http://dx.doi.org/10.2174/187152007780618207] [PMID: 17504155]
[14]
Smits, M.L.J.; Nijsen, J.F.W.; van den Bosch, M.A.A.J.; Lam, M.G.E.H.; Vente, M.A.D.; Huijbregts, J.E.; van het Schip, A.D.; Elschot, M.; Bult, W.; de Jong, H.W.A.M.; Meulenhoff, P.C.W.; Zonnenberg, B.A. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. J. Exp. Clin. Cancer Res., 2010, 29, 70.
[http://dx.doi.org/10.1186/1756-9966-29-70] [PMID: 20550679]
[15]
Bastiaannet, R.; Kappadath, S.C.; Kunnen, B.; Braat, A.J.A.T.; Lam, M.G.E.H.; de Jong, H.W.A.M. The physics of radioembolization. EJNMMI Phys., 2018, 5(1), 22.
[http://dx.doi.org/10.1186/s40658-018-0221-z] [PMID: 30386924]
[16]
Gulec, S.A.; Mesoloras, G.; Stabin, M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: The MIRD equations for dose calculations. J. Nucl. Med., 2006, 47(7), 1209-1211.
[PMID: 16818957]
[17]
Hashikin, N.A.A.; Yeong, C.H.Y.; Guatelli, S.; Abdullah, B.J.J.; Ng, K.; Malaroda, A.; Rosenfeld, A.; Perkins, A. Organ doses from hepatic radioembolization with 90Y, 153Sm, 166Ho and 177Lu: a monte carlo simulation study using Geant4. Faculty of Engineering and Information Sciences - Papers: Part A, 2016.
[http://dx.doi.org/10.1088/1742-6596/694/1/012059]
[18]
Lee, S-D.; Lin, H-H.; Peng, N-J.; Chou, M-C. Voxel-Based Personalized Dosimetry in Y-90 Microsphere Radioembolization - Comparison between Monte Carlo Simulation Method and Conventional Partition Model. J. Nucl. Med., 2019, 60(Suppl. 1), 1277-1277.
[19]
Tanyıldizı Kökkülünk, H.; Demir, M.; Karadeniz Yıldırım, A.; Özkorucuklu, S.; Akkuş, B.; Yaşar, D. 90 Y Dosimetry with Monte Carlo Method: GATE Validation with STL Formatted Phantom. Acta Phys. Pol. A, 2020, 138(6), 801-808.
[http://dx.doi.org/10.12693/APhysPolA.138.801]
[20]
Gulec, S.A.; Fong, Y. Yttrium 90 microsphere selective internal radiation treatment of hepatic colorectal metastases. Arch. Surg., 2007, 142(7), 675-682.
[http://dx.doi.org/10.1001/archsurg.142.7.675] [PMID: 17638807]
[21]
A Virtualized Tier-3g Facility Installation for WLCG Network of CERN - INSPIRE Available at: https://inspirehep.net/literature/1806228(accessed 2021 -06 -18).
[22]
Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P. Geant4-a Simulation Toolkit. Nucl. Instrum. Methods Phys. Res. A, 2003, 506(3), 250-303.
[http://dx.doi.org/10.1016/S0168-9002(03)01368-8]
[23]
Giammarile, F.; Bodei, L.; Chiesa, C.; Flux, G.; Forrer, F.; Kraeber-Bodere, F.; Brans, B.; Lambert, B.; Konijnenberg, M.; Borson-Chazot, F.; Tennvall, J.; Luster, M. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(7), 1393-1406.
[http://dx.doi.org/10.1007/s00259-011-1812-2] [PMID: 21494856]
[24]
Srinivas, S.M.; Natarajan, N.; Kuroiwa, J.; Gallagher, S.; Nasr, E.; Shah, S.N.; DiFilippo, F.P.; Obuchowski, N.; Bazerbashi, B.; Yu, N.; McLennan, G. determination of radiation absorbed dose to primary liver tumors and normal liver tissue using post-radioembolization (90)Y PET. Front. Oncol., 2014, 4, 255.
[http://dx.doi.org/10.3389/fonc.2014.00255] [PMID: 25353006]
[25]
Pan, C.C.; Kavanagh, B.D.; Dawson, L.A.; Li, X.A.; Das, S.K.; Miften, M.; Ten Haken, R.K. Radiation-associated liver injury. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(3)(Suppl.), S94-S100.
[http://dx.doi.org/10.1016/j.ijrobp.2009.06.092] [PMID: 20171524]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy