Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Clinical Efficacy of Cerebrolysin and Cerebrolysin plus Nootropics in the Treatment of Patients with Acute Ischemic Stroke in Vietnam

Author(s): Luc Tran, X. Anton Alvarez*, Hoang-Anh Le, Dat-Anh Nguyen, Thinh Le, Ngoc Nguyen, Thang Nguyen, Tai Nguyen, Tan Vo, Tuan Tran, Chinh Duong, Huyen Nguyen, Sam Nguyen, Hien Nguyen, Thanh Le, Minh Nguyen and Thang Nguyen

Volume 21, Issue 7, 2022

Published on: 20 August, 2021

Page: [621 - 630] Pages: 10

DOI: 10.2174/1871527320666210820091655

Price: $65

Abstract

Aims: To investigate the efficacy and safety of Cerebrolysin and Cerebrolysin plus nootropics in the routine treatment of patients with acute ischemic stroke (AIS).

Background: Acute ischemic stroke (AIS) is a leading cause of disability with unmet treatment needs lacking effective drug therapy. Multimodal drugs modulating stroke pathophysiology as Cerebrolysin constitute a good therapeutic option.

Objective: In this study, we assessed the effects of Cerebrolysin and Cerebrolysin plus nootropics, in comparison with other nootropic drugs alone, on functional, neurological and cognitive recovery of patients with AIS in Vietnam.

Methods: This non-interventional, controlled, open-label, prospective and multicenter study included 398 AIS patients (234 males) treated with Cerebrolysin (n=190; 20 i.v. infusions of 10 ml), other nootropics (comparator group; n=86), or a combination of both (n=122). The study primary endpoint was the modified Ranking Scale (mRS) score on day 90. Secondary endpoints included study-period change in NIHSS score; percentage of well-recovered (mRS 0-2) patients, the proportion of good NIHSS response (≥6 points) cases, and MoCA scores at day 90; and safety indicators.

Results: Compared with other nootropics, both Cerebrolysin and combined therapy induced significant improvements (p<0.001) in: Functional recovery (mRS scores); percentage of well-recovered patients (Cerebrolysin: 81.6%; combination: 93.4%; comparator: 43.0%); neurological recovery (study- period NIHSS change); proportion of good NIHSS responders (Cerebrolysin: 77.5%; combination: 92.5%; comparator: 47.6%); and MoCA scores (Cerebrolysin: 23.3±4.8; combination: 23.7±4.1; comparator: 15.9±7.7). Compared to Cerebrolysin, combined therapy improved (p<0.01) mRS outcomes and NIHSS change, but not MoCA scores, in moderate-severe stroke (NIHSS>11) cases only. No drug-related adverse events were reported.

Conclusion: Cerebrolysin alone or combined with other nootropics was effective and safe in routine AIS treatment, during both acute and recovery phases, which supports its use in daily clinical practice.

Others: According to the results of this multicenter study, the importance of reducing differences in the treatment regimens of AIS in Vietnam should be further emphasized.

Keywords: Acute ischemic stroke, Cerebrolysin, combined therapy, multicenter, nootropics, non-interventional.

Graphical Abstract
[1]
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(5): 459-80.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[2]
Saver JL, Smith EE, Fonarow GC, et al. The “golden hour” and acute brain ischemia: presenting features and lytic therapy in >30,000 patients arriving within 60 minutes of stroke onset. Stroke 2010; 41(7): 1431-9.
[http://dx.doi.org/10.1161/STROKEAHA.110.583815] [PMID: 20522809]
[3]
Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischemic stroke, update August 2014. Stroke 2014; 45: e222-5.
[http://dx.doi.org/10.1161/STROKEAHA.114.007024]
[4]
Berkhemer OA, Fransen PS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372(1): 11-20.
[http://dx.doi.org/10.1056/NEJMoa1411587] [PMID: 25517348]
[5]
Campbell BC, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015; 372(11): 1009-18.
[http://dx.doi.org/10.1056/NEJMoa1414792] [PMID: 25671797]
[6]
Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015; 372(11): 1019-30.
[http://dx.doi.org/10.1056/NEJMoa1414905] [PMID: 25671798]
[7]
Pierot L, Soize S, Benaissa A, Wakhloo AK. Techniques for endovascular treatment of acute ischemic stroke: from intra-arterial fibrinolytics to stent-retrievers. Stroke 2015; 46(3): 909-14.
[http://dx.doi.org/10.1161/STROKEAHA.114.007935] [PMID: 25657185]
[8]
Zahuranec DB, Majersik JJ. Percentage of acute stroke patients eligible for endovascular treatment. Neurology 2012; 79(13)(Suppl. 1): S22-5.
[http://dx.doi.org/10.1212/WNL.0b013e31826957cf] [PMID: 23008402]
[9]
Lang W, Stadler CH, Poljakovic Z, Fleet D. A prospective, randomized, placebo-controlled, double-blind trial about safety and efficacy of combined treatment with alteplase (rt-PA) and Cerebrolysin in acute ischaemic hemispheric stroke. Int J Stroke 2013; 8(2): 95-104.
[http://dx.doi.org/10.1111/j.1747-4949.2012.00901.x] [PMID: 23009193]
[10]
Venkat P, Shen Y, Chopp M, Chen J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology 2018; 134(Pt B): 310-22.
[http://dx.doi.org/10.1016/j.neuropharm.2017.08.036]
[11]
Mehta A, Mahale R, Buddaraju K, Javali M, Acharya P, Srinivasa R. Efficacy of neuroprotective drugs in acute ischemic stroke: is it helpful? J Neurosci Rural Pract 2019; 10(4): 576-81.
[http://dx.doi.org/10.1055/s-0039-1700790] [PMID: 31831974]
[12]
Muresanu DF, Doppler E, Novak P. Neurotrophic factor treatment of neurological disorders: the benefits of a pleiotropic treatment approach. Commentary. CNS Neurol Disord Drug Targets 2011; 10(4): 415-6. [Commentary].
[http://dx.doi.org/10.2174/187152711795564010] [PMID: 21495957]
[13]
Brainin M. Cerebrolysin: a multi-target drug for recovery after stroke. Expert Rev Neurother 2018; 18(8): 681-7.
[http://dx.doi.org/10.1080/14737175.2018.1500459] [PMID: 30004268]
[14]
Gavrilova SI, Alvarez A. Cerebrolysin in the therapy of mild cognitive impairment and dementia due to Alzheimer’s disease: 30 years of clinical use. Med Res Rev 2020; 41: 2775-803.
[15]
Wronski R, Tompa P, Hutter-Paier B, Crailsheim K, Friedrich P, Windisch M. Inhibitory effect of a brain derived peptide preparation on the Ca++-dependent protease, calpain. J Neural Transm (Vienna) 2000; 107(2): 145-57.
[http://dx.doi.org/10.1007/s007020050013] [PMID: 10847556]
[16]
Patocková J, Krsiak M, Marhol P, Tůmová E. Cerebrolysin inhibits lipid peroxidation induced by insulin hypoglycemia in the brain and heart of mice. Physiol Res 2003; 52(4): 455-60.
[PMID: 12899658]
[17]
Alvarez XA, Sampedro C, Cacabelos R, et al. Reduced TNF-α and increased IGF-I levels in the serum of Alzheimer’s disease patients treated with the neurotrophic agent cerebrolysin. Int J Neuropsychopharmacol 2009; 12(7): 867-72.
[http://dx.doi.org/10.1017/S1461145709990101] [PMID: 19531281]
[18]
Zhang C, Chopp M, Cui Y, et al. Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke. J Neurosci Res 2010; 88(15): 3275-81.
[http://dx.doi.org/10.1002/jnr.22495] [PMID: 20857512]
[19]
Xing S, Zhang J, Dang C, et al. Cerebrolysin reduces amyloid-β deposits, apoptosis and autophagy in the thalamus and improves functional recovery after cortical infarction. J Neurol Sci 2014; 337(1-2): 104-11.
[http://dx.doi.org/10.1016/j.jns.2013.11.028] [PMID: 24315581]
[20]
Alvarez XA, Alvarez I, Iglesias O, et al. Synergistic increase of serum BDNF in alzheimer patients treated with cerebrolysin and donepezil: association with cognitive improvement in ApoE4 cases. Int J Neuropsychopharmacol 2016; 19(6): pyw024.
[http://dx.doi.org/10.1093/ijnp/pyw024] [PMID: 27207906]
[21]
Liu Z, Hu M, Lu P, et al. Cerebrolysin alleviates cognitive deficits induced by chronic cerebral hypoperfusion by increasing the levels of plasticity-related proteins and decreasing the levels of apoptosis-related proteins in the rat hippocampus. Neurosci Lett 2017; 651: 72-8.
[http://dx.doi.org/10.1016/j.neulet.2017.04.022] [PMID: 28458021]
[22]
Guan X, Wang Y, Kai G, et al. Cerebrolysin ameliorates focal cerebral ischemia injury through neuroinflammatory inhibition via CREB/PGC-1α pathway. Front Pharmacol 2019; 10: 1245.
[http://dx.doi.org/10.3389/fphar.2019.01245] [PMID: 31695614]
[23]
Zhang L, Chopp M, Wang C, et al. Prospective, double blinded, comparative assessment of the pharmacological activity of Cerebrolysin and distinct peptide preparations for the treatment of embolic stroke. J Neurol Sci 2019; 398: 22-6.
[http://dx.doi.org/10.1016/j.jns.2019.01.017] [PMID: 30665068]
[24]
Alvarez XA, Alvarez I, Martinez A, et al. Serum VEGF predicts clinical improvement induced by Cerebrolysin plus donepezil in patients with advanced Alzheimer’s disease. Int J Neuropsychopharmacol 2020; 23(9): 581-6.
[http://dx.doi.org/10.1093/ijnp/pyaa046] [PMID: 32640027]
[25]
Heiss WD, Brainin M, Bornstein NM, Tuomilehto J, Hong Z. Cerebrolysin in patients with acute ischemic stroke in Asia: results of a double-blind, placebo-controlled randomized trial. Stroke 2012; 43(3): 630-6.
[http://dx.doi.org/10.1161/STROKEAHA.111.628537] [PMID: 22282884]
[26]
Muresanu DF, Heiss WD, Hoemberg V, et al. Cerebrolysin and recovery after stroke (CARS)a randomized, placebo-controlled, double-blind. Multicenter Trial Stroke 2016; 47(1): 151-9.
[PMID: 26564102]
[27]
Bornstein NM, Guekht A, Vester J, et al. Safety and efficacy of Cerebrolysin in early post-stroke recovery: a meta-analysis of nine randomized clinical trials. Neurol Sci 2018; 39(4): 629-40.
[http://dx.doi.org/10.1007/s10072-017-3214-0] [PMID: 29248999]
[28]
Wang Z, Shi L, Xu S, Zhang J. Cerebrolysin for functional recovery in patients with acute ischemic stroke: a meta-analysis of randomized controlled trials. Drug Des Devel Ther 2017; 11: 1273-82.
[http://dx.doi.org/10.2147/DDDT.S124273] [PMID: 28458521]
[29]
Ziganshina LE, Abakumova T, Vernay L. Cerebrolysin for acute ischaemic stroke. Cochrane Database Syst Rev 2017; 4(4): CD007026.
[PMID: 28430363]
[30]
Jauch EC, Saver JL, Adams HP Jr, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013; 44(3): 870-947.
[http://dx.doi.org/10.1161/STR.0b013e318284056a] [PMID: 23370205]
[31]
van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988; 19(5): 604-7.
[http://dx.doi.org/10.1161/01.STR.19.5.604] [PMID: 3363593]
[32]
Brott T, Adams HP Jr, Olinger CP, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke 1989; 20(7): 864-70.
[http://dx.doi.org/10.1161/01.STR.20.7.864] [PMID: 2749846]
[33]
Chalos V, van der Ende NAM, Lingsma HF, et al. National institutes of health stroke scale: an alternative primary outcome measure for trials of acute treatment for ischemic stroke. Stroke 2020; 51(1): 282-90.
[http://dx.doi.org/10.1161/STROKEAHA.119.026791] [PMID: 31795895]
[34]
Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53(4): 695-9.
[http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x] [PMID: 15817019]
[35]
Ghosh S, Das SK, Nath T, Ghosh KC, Bhattacharyya R, Mondal GP. The effect of citicoline on stroke: A comparative study from the Eastern part of India. Neurol India 2015; 63(5): 697-701.
[http://dx.doi.org/10.4103/0028-3886.166538] [PMID: 26448227]
[36]
Dávalos A, Alvarez-Sabín J, Castillo J, et al. Citicoline in the treatment of acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet 2012; 380(9839): 349-57.
[http://dx.doi.org/10.1016/S0140-6736(12)60813-7] [PMID: 22691567]
[37]
Ricci S, Celani MG, Cantisani TA, Righetti E. Piracetam for acute ischaemic stroke. Cochrane Database Syst Rev 2012; 2012(9): CD000419.
[PMID: 22972044]
[38]
Secades JJ, Alvarez-Sabín J, Castillo J, et al. Citicoline for acute ischemic stroke: a systematic review and formal meta-analysis of randomized, double-blind, and placebo-controlled trials. J Stroke Cerebrovasc Dis 2016; 25(8): 1984-96.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.04.010] [PMID: 27234918]
[39]
Zhang J, Wei R, Chen Z, Luo B. Piracetam for aphasia in post-stroke patients: a systematic review and meta-analysis of randomized controlled trials. CNS Drugs 2016; 30(7): 575-87.
[http://dx.doi.org/10.1007/s40263-016-0348-1] [PMID: 27236454]
[40]
Chen SY, Liu JW, Wang YH, et al. The Conditions under which piracetam is used and the factors that can improve national institute of health stroke scale score in ischemic stroke patients and the importance of previously unnoticed factors from a hospital-based observational study in Taiwan. J Clin Med 2019; 8(1): 122.
[http://dx.doi.org/10.3390/jcm8010122] [PMID: 30669522]
[41]
Martí-Carvajal AJ, Valli C, Martí-Amarista CE, Solà I, Martí-Fàbregas J, Bonfill Cosp X. Citicoline for treating people with acute ischemic stroke. Cochrane Database Syst Rev 2020; 8: CD013066.
[PMID: 32860632]
[42]
Ladurner G, Kalvach P, Moessler H. Neuroprotective treatment with cerebrolysin in patients with acute stroke: a randomised controlled trial. J Neural Transm (Vienna) 2005; 112(3): 415-28.
[http://dx.doi.org/10.1007/s00702-004-0248-2] [PMID: 15583955]
[43]
Potocnik J, Ovcar Stante K, Rakusa M. The validity of the Montreal cognitive assessment (MoCA) for the screening of vascular cognitive impairment after ischemic stroke. Acta Neurol Belg 2020; 120(3): 681-5.
[http://dx.doi.org/10.1007/s13760-020-01330-5] [PMID: 32193731]
[44]
Pendlebury ST, Mariz J, Bull L, Mehta Z, Rothwell PM. MoCA, ACE-R, and MMSE versus the national institute of neurological disorders and stroke-canadian stroke network vascular cognitive impairment harmonization standards neuropsychological battery after TIA and stroke. Stroke 2012; 43(2): 464-9.
[http://dx.doi.org/10.1161/STROKEAHA.111.633586] [PMID: 22156700]
[45]
Shi D, Chen X, Li Z. Diagnostic test accuracy of the Montreal Cognitive Assessment in the detection of post-stroke cognitive impairment under different stages and cutoffs: a systematic review and meta-analysis. Neurol Sci 2018; 39(4): 705-16.
[http://dx.doi.org/10.1007/s10072-018-3254-0] [PMID: 29427168]
[46]
Zietemann V, Georgakis MK, Dondaine T, et al. Early MoCA predicts long-term cognitive and functional outcome and mortality after stroke. Neurology 2018; 91(20): e1838-50.
[http://dx.doi.org/10.1212/WNL.0000000000006506] [PMID: 30333158]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy