Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Another Look at Dietary Polyphenols: Challenges in Cancer Prevention and Treatment

Author(s): Roberto Arrigoni, Andrea Ballini, Luigi Santacroce , Stefania Cantore, Angelo Inchingolo, Francesco Inchingolo , Marina Di Domenico , Lucio Quagliuolo and Mariarosaria Boccellino

Volume 29, Issue 6, 2022

Published on: 06 January, 2022

Page: [1061 - 1082] Pages: 22

DOI: 10.2174/0929867328666210810154732

Price: $65

Abstract

Cancer is a pathology that impacts in a profound manner all over the world. The election strategy against cancer often uses chemotherapy and radiotherapy, which, more often than not, can present many side effects and are not always considered reliable efficacy. By contrast, it is widely known that a diet rich in fruit and vegetables has a protective effect against cancer insurgence and development. Polyphenols are generally believed to be responsible for those beneficial actions, at least partially. In this review, we highlight the metabolic interaction between polyphenols and our metabolism and discuss their potential for anticancer prevention and therapy.

Keywords: Cancer, biological chemistry, chemoprevention, dietary antioxidants, clinical biochemistry and clinical molecular biology, polyphenols, clinical microbiology, translational medicine.

[1]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global cancer observatory: cancer today. International agency for research on cancer: Lyon, France, 2020. Available from: https://gco.iarc.fr/today
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Ksouri, R. Food components and diet habits: chief factors of cancer development. Food Quality and Safety, 2019, 3(4), 227-231.
[http://dx.doi.org/10.1093/fqsafe/fyz021]
[4]
Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients, 2016, 8(3), 156.
[http://dx.doi.org/10.3390/nu8030156] [PMID: 26978396]
[5]
Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant phenolics: bioavailability as a key determinant of their potential health-promoting applications. Antioxidants, 2020, 9(12), 1263.
[http://dx.doi.org/10.3390/antiox9121263] [PMID: 33322700]
[6]
Pott, D.M.; Osorio, S.; Vallarino, J.G. From central to specialized metabolism: an overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Front. Plant Sci., 2019, 10, 835. [eCollection]
[http://dx.doi.org/10.3389/fpls.2019.00835] [PMID: 31316537]
[7]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. (Review) Int. J. Oncol., 2019, 54(2), 407-419.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[8]
George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[9]
Zhang, J.; Sun, X. Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry, 2021, 181, 112588.
[http://dx.doi.org/10.1016/j.phytochem.2020.112588] [PMID: 33232863]
[10]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: a mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[11]
Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Hafiz, A.R.S. Natural polyphenols: An overview. Int. J. Food Prop., 2017, 20(8), 1689-1699.
[http://dx.doi.org/10.1080/10942912.2016.1220393]
[12]
Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J. AOAC Int., 2019, 102(5), 1397-1400.
[http://dx.doi.org/10.5740/jaoacint.19-0133] [PMID: 31200785]
[13]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[14]
Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients, 2014, 6(12), 6020-6047.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[15]
Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Laganà, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors, 2017, 43(4), 495-506.
[http://dx.doi.org/10.1002/biof.1363] [PMID: 28497905]
[16]
Arts, I.C.; van de Putte, B.; Hollman, P.C. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem., 2000, 48(5), 1746-1751.
[http://dx.doi.org/10.1021/jf000025h] [PMID: 10820089]
[17]
Arts, I.C.; van De Putte, B.; Hollman, P.C. Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J. Agric. Food Chem., 2000, 48(5), 1752-1757.
[http://dx.doi.org/10.1021/jf000026+] [PMID: 10820090]
[18]
Wiseman, S.; Mulder, T.; Rietveld, A. Tea flavonoids: bioavailability in vivo and effects on cell signaling pathways in vitro. Antioxid. Redox Signal., 2001, 3(6), 1009-1021.
[http://dx.doi.org/10.1089/152308601317203549] [PMID: 11813977]
[19]
Rodrigues, C.F.; Ascenção, K.; Silva, F.A.; Sarmento, B.; Oliveira, M.B.; Andrade, J.C. Drug-delivery systems of green tea catechins for improved stability and bioavailability. Curr. Med. Chem., 2013, 20(37), 4744-4757.
[http://dx.doi.org/10.2174/09298673113209990158] [PMID: 23834175]
[20]
Boccellino, M.; D’Angelo, S. Anti-obesity effects of polyphenol intake: current status and future possibilities. Int. J. Mol. Sci., 2020, 21(16), 5642.
[21]
Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 2019, 24(2), 370.
[http://dx.doi.org/10.3390/molecules24020370] [PMID: 30669635]
[22]
Roupe, K.A.; Remsberg, C.M.; Yáñez, J.A.; Davies, N.M. Pharmacometrics of stilbenes: seguing towards the clinic. Curr. Clin. Pharmacol., 2006, 1(1), 81-101.
[http://dx.doi.org/10.2174/157488406775268246] [PMID: 18666380]
[23]
Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(9), 1428-1447.
[http://dx.doi.org/10.1080/10408398.2016.1263597] [PMID: 28001084]
[24]
Adlercreutz, H.; Mazur, W. Phyto-oestrogens and Western diseases. Ann. Med., 1997, 29(2), 95-120.
[http://dx.doi.org/10.3109/07853899709113696] [PMID: 9187225]
[25]
Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally lignan-rich foods: a dietary tool for health promotion? Molecules, 2019, 24(5), 917.
[http://dx.doi.org/10.3390/molecules24050917] [PMID: 30845651]
[26]
Panickar, K.S.; Anderson, R.A. Effect of polyphenols on oxidative stress and mitochondrial dysfunction in neuronal death and brain edema in cerebral ischemia. Int. J. Mol. Sci., 2011, 12(11), 8181-8207.
[http://dx.doi.org/10.3390/ijms12118181] [PMID: 22174658]
[27]
Taguchi, C.; Fukushima, Y.; Kishimoto, Y.; Suzuki-Sugihara, N.; Saita, E.; Takahashi, Y.; Kondo, K. Estimated dietary polyphenol intake and major food and beverage sources among elderly Japanese. Nutrients, 2015, 7(12), 10269-10281.
[http://dx.doi.org/10.3390/nu7125530] [PMID: 26690212]
[28]
Costea, T.; Nagy, P.; Ganea, C.; Szöllősi, J.; Mocanu, M.M. Molecular mechanisms and bioavailability of polyphenols in prostate cancer. Int. J. Mol. Sci., 2019, 20(5), 1062.
[http://dx.doi.org/10.3390/ijms20051062] [PMID: 30823649]
[29]
Lafay, S.; Morand, C.; Manach, C.; Besson, C.; Scalbert, A. Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. Br. J. Nutr., 2006, 96(1), 39-46.
[http://dx.doi.org/10.1079/BJN20061714] [PMID: 16869989]
[30]
Scalbert, A.; Morand, C.; Manach, C.; Rémésy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. Biomed. Pharmacother., 2002, 56(6), 276-282.
[http://dx.doi.org/10.1016/s0753-3322(02)00205-6]
[31]
Liu, Z.; Hu, M. Natural polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol., 2007, 3(3), 389-406.
[http://dx.doi.org/10.1517/17425255.3.3.389] [PMID: 17539746]
[32]
D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita, 2007, 43(4), 348-361.
[PMID: 18209268]
[33]
Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res., 2019, 33(9), 2221-2243.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[34]
Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res. Int., 2015, 2015, 905215.
[http://dx.doi.org/10.1155/2015/905215] [PMID: 25802870]
[35]
Wang, S.T.; Cui, W.Q.; Pan, D.; Jiang, M.; Chang, B.; Sang, L.X. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J. Gastroenterol., 2020, 26(6), 562-597.
[http://dx.doi.org/10.3748/wjg.v26.i6.562] [PMID: 32103869]
[36]
Darvesh, A.S.; Bishayee, A. Chemopreventive and therapeutic potential of tea polyphenols in hepatocellular cancer. Nutr. Cancer, 2013, 65(3), 329-344.
[http://dx.doi.org/10.1080/01635581.2013.767367] [PMID: 23530632]
[37]
Mileo, A.M.; Nisticò, P.; Miccadei, S. Polyphenols: Immunomodulatory and therapeutic implication in colorectal cancer. Front. Immunol., 2019, 10, 729.
[http://dx.doi.org/10.3389/fimmu.2019.00729] [PMID: 31031748]
[38]
Prakash, M.D.; Stojanovska, L.; Feehan, J.; Nurgali, K.; Donald, E.L.; Plebanski, M.; Flavel, M.; Kitchen, B.; Apostolopoulos, V. Anti-cancer effects of polyphenol-rich sugarcane extract. PLoS One, 2021, 16(3), e0247492.
[http://dx.doi.org/10.1371/journal.pone.0247492] [PMID: 33690618]
[39]
Sajadimajd, S.; Bahramsoltani, R.; Iranpanah, A.; Kumar Patra, J.; Das, G.; Gouda, S.; Rahimi, R.; Rezaeiamiri, E.; Cao, H.; Giampieri, F.; Battino, M.; Tundis, R.; Campos, M.G.; Farzaei, M.H.; Xiao, J. Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacol. Res., 2020, 151, 104584.
[http://dx.doi.org/10.1016/j.phrs.2019.104584] [PMID: 31809853]
[40]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), 552.
[http://dx.doi.org/10.3390/nu8090552] [PMID: 27618095]
[41]
Khan, H.Y.; Zubair, H.; Ullah, M.F.; Ahmad, A.; Hadi, S.M. A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols. Curr. Drug Targets, 2012, 13(14), 1738-1749.
[http://dx.doi.org/10.2174/138945012804545560] [PMID: 23140285]
[42]
Benvenuto, M.; Fantini, M.; Masuelli, L.; De Smaele, E.; Zazzeroni, F.; Tresoldi, I.; Calabrese, G.; Galvano, F.; Modesti, A.; Bei, R. Inhibition of ErbB receptors, Hedgehog and NF-kappaB signaling by polyphenols in cancer. Front. Biosci., 2013, 18, 1290-1310.
[http://dx.doi.org/10.2741/4180] [PMID: 23747884]
[43]
Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci., 2018, 19(3), 686.
[http://dx.doi.org/10.3390/ijms19030686] [PMID: 29495598]
[44]
Bouallagui, Z.; Mahmoudi, A.; Maalej, A.; Hadrich, F.; Isoda, H.; Sayadi, S. Contribution of major polyphenols to the antioxidant profile and cytotoxic activity of olive leaves. Anticancer. Agents Med. Chem., 2019, 19(13), 1651-1657.
[http://dx.doi.org/10.2174/1871520619666190416101622] [PMID: 31038081]
[45]
Hao, J.; Shen, W.; Yu, G.; Jia, H.; Li, X.; Feng, Z.; Wang, Y.; Weber, P.; Wertz, K.; Sharman, E.; Liu, J. Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes. J. Nutr. Biochem., 2010, 21(7), 634-644.
[http://dx.doi.org/10.1016/j.jnutbio.2009.03.012] [PMID: 19576748]
[46]
Shamshoum, H.; Vlavcheski, F.; Tsiani, E. Anticancer effects of oleuropein. Biofactors, 2017, 43(4), 517-528.
[http://dx.doi.org/10.1002/biof.1366] [PMID: 28612982]
[47]
Liu, X.; Wang, P.; Zhang, C.; Ma, Z. Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget, 2017, 8(30), 50209-50220.
[http://dx.doi.org/10.18632/oncotarget.16854] [PMID: 28430586]
[48]
Terzuoli, E.; Nannelli, G.; Frosini, M.; Giachetti, A.; Ziche, M.; Donnini, S. Inhibition of cell cycle progression by the hydroxytyrosol-cetuximab combination yields enhanced chemotherapeutic efficacy in colon cancer cells. Oncotarget, 2017, 8(47), 83207-83224.
[http://dx.doi.org/10.18632/oncotarget.20544] [PMID: 29137335]
[49]
Colquhoun, A.J.; Mellon, J.K. Epidermal growth factor receptor and bladder cancer. Postgrad. Med. J., 2002, 78(924), 584-589.
[http://dx.doi.org/10.1136/pmj.78.924.584] [PMID: 12415079]
[50]
Dawson, J.P.; Berger, M.B.; Lin, C.C.; Schlessinger, J.; Lemmon, M.A.; Ferguson, K.M. Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol. Cell. Biol., 2005, 25(17), 7734-7742.
[http://dx.doi.org/10.1128/MCB.25.17.7734-7742.2005] [PMID: 16107719]
[51]
Plattner, C.; Hackl, H. Modeling therapy resistance via the EGFR signaling pathway. FEBS J., 2019, 286(7), 1284-1286.
[http://dx.doi.org/10.1111/febs.14809] [PMID: 30892828]
[52]
Schnidar, H.; Eberl, M.; Klingler, S.; Mangelberger, D.; Kasper, M.; Hauser-Kronberger, C.; Regl, G.; Kroismayr, R.; Moriggl, R.; Sibilia, M.; Aberger, F. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res., 2009, 69(4), 1284-1292.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2331] [PMID: 19190345]
[53]
Merkhofer, E.C.; Cogswell, P.; Baldwin, A.S. Her2 activates NF-kappaB and induces invasion through the canonical pathway involving IKKalpha. Oncogene, 2010, 29(8), 1238-1248.
[http://dx.doi.org/10.1038/onc.2009.410] [PMID: 19946332]
[54]
Shaikh, S.B.; Prabhu, A.; Bhandary, Y.P. Curcumin suppresses epithelial growth factor receptor (EGFR) and proliferative protein (Ki 67) in acute lung injury and lung fibrosis in vitro and in vivo. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 558-563.
[http://dx.doi.org/10.2174/1871530319666190823160230] [PMID: 31441735]
[55]
Sun, X.D.; Liu, X.E.; Huang, D.S. Curcumin induces apoptosis of triple-negative breast cancer cells by inhibition of EGFR expression. Mol. Med. Rep., 2012, 6(6), 1267-1270.
[http://dx.doi.org/10.3892/mmr.2012.1103] [PMID: 23023821]
[56]
Cai, X.Z.; Wang, J.; Li, X.D.; Wang, G.L.; Liu, F.N.; Cheng, M.S.; Li, F. Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression. Cancer Biol. Ther., 2009, 8(14), 1360-1368.
[http://dx.doi.org/10.4161/cbt.8.14.8720] [PMID: 19448398]
[57]
Grill, A.E.; Shahani, K.; Koniar, B.; Panyam, J. Chemopreventive efficacy of curcumin-loaded PLGA microparticles in a transgenic mouse model of HER-2-positive breast cancer. Drug Deliv. Transl. Res., 2018, 8(2), 329-341.
[http://dx.doi.org/10.1007/s13346-017-0377-4] [PMID: 28417445]
[58]
Masuelli, L.; Benvenuto, M.; Fantini, M.; Marzocchella, L.; Sacchetti, P.; Di Stefano, E.; Tresoldi, I.; Izzi, V.; Bernardini, R.; Palumbo, C.; Mattei, M.; Lista, F.; Galvano, F.; Modesti, A.; Bei, R. Curcumin induces apoptosis in breast cancer cell lines and delays the growth of mammary tumors in neu transgenic mice. J. Biol. Regul. Homeost. Agents, 2013, 27(1), 105-119.
[PMID: 23489691]
[59]
Lev-Ari, S.; Starr, A.; Vexler, A.; Karaush, V.; Loew, V.; Greif, J.; Fenig, E.; Aderka, D.; Ben-Yosef, R. Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res., 2006, 26(6B), 4423-4430.
[PMID: 17201164]
[60]
Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4), a000034.
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[61]
Naugler, W.E.; Karin, M. NF-kappaB and cancer-identifying targets and mechanisms. Curr. Opin. Genet. Dev., 2008, 18(1), 19-26.
[http://dx.doi.org/10.1016/j.gde.2008.01.020] [PMID: 18440219]
[62]
Sethi, G.; Sung, B.; Aggarwal, B.B. Nuclear factor-kappaB activation: from bench to bedside. Exp. Biol. Med. (Maywood), 2008, 233(1), 21-31.
[http://dx.doi.org/10.3181/0707-MR-196] [PMID: 18156302]
[63]
Gupta, S.; Hastak, K.; Afaq, F.; Ahmad, N.; Mukhtar, H. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene, 2004, 23(14), 2507-2522.
[http://dx.doi.org/10.1038/sj.onc.1207353] [PMID: 14676829]
[64]
Hafeez, B.B.; Siddiqui, I.A.; Asim, M.; Malik, A.; Afaq, F.; Adhami, V.M.; Saleem, M.; Din, M.; Mukhtar, H. A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor-kappaB signaling. Cancer Res., 2008, 68(20), 8564-8572.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2232] [PMID: 18922932]
[65]
Wang, L.S.; Hecht, S.S.; Carmella, S.G.; Yu, N.; Larue, B.; Henry, C.; McIntyre, C.; Rocha, C.; Lechner, J.F.; Stoner, G.D. Anthocyanins in black raspberries prevent esophageal tumors in rats. Cancer Prev. Res. (Phila.), 2009, 2(1), 84-93.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0155] [PMID: 19139022]
[66]
Chung, T.W.; Moon, S.K.; Chang, Y.C.; Ko, J.H.; Lee, Y.C.; Cho, G.; Kim, S.H.; Kim, J.G.; Kim, C.H. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J., 2004, 18(14), 1670-1681.
[http://dx.doi.org/10.1096/fj.04-2126com] [PMID: 15522912]
[67]
Divya, C.S.; Pillai, M.R. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol. Carcinog., 2006, 45(5), 320-332.
[http://dx.doi.org/10.1002/mc.20170] [PMID: 16526022]
[68]
Lee, D.H.; Lee, S.Y.; Oh, S.C. Hedgehog signaling pathway as a potential target in the treatment of advanced gastric cancer. Tumour Biol., 2017, 39(6), 1010428317692266.
[http://dx.doi.org/10.1177/1010428317692266] [PMID: 28621241]
[69]
Giudice, A.; Montella, M.; Boccellino, M.; Crispo, A.; D’Arena, G.; Bimonte, S.; Facchini, G.; Ciliberto, G.; Botti, G.; Quagliuolo, L.; Caraglia, M.; Capunzo, M. Epigenetic changes induced by green tea catechins a re associated with prostate cancer. Curr. Mol. Med., 2017, 17(6), 405-420.
[http://dx.doi.org/10.2174/1566524018666171219101937.Mimeault] [PMID: 29256350]
[70]
Johansson, M.; Henichart, S.L.; Depreux, J.P.P.; Batra, S.K. Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and nonside population cell fractions from human invasive prostate cancer cells. Mol. Cancer Ther., 2010, 9(3), 617-630.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1013]
[71]
Slusarz, A.; Shenouda, N.S.; Sakla, M.S.; Drenkhahn, S.K.; Narula, A.S.; MacDonald, R.S.; Besch-Williford, C.L.; Lubahn, D.B. Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Res., 2010, 70(8), 3382-3390.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3012] [PMID: 20395211]
[72]
Li, W.; Cao, L.; Chen, X.; Lei, J.; Ma, Q. Resveratrol inhibits hypoxia-driven ROS-induced invasive and migratory ability of pancreatic cancer cells via suppression of the Hedgehog signaling pathway. Oncol. Rep., 2016, 35(3), 1718-1726.
[http://dx.doi.org/10.3892/or.2015.4504] [PMID: 26707376]
[73]
Sur, S.; Pal, D.; Roy, R.; Barua, A.; Roy, A.; Saha, P.; Panda, C.K. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice. Toxicol. Appl. Pharmacol., 2016, 300, 34-46.
[http://dx.doi.org/10.1016/j.taap.2016.03.016] [PMID: 27058323]
[74]
Norbury, C.J.; Hickson, I.D. Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 367-401.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.367] [PMID: 11264462]
[75]
Peter, M.E. Programmed cell death: Apoptosis meets necrosis. Nature, 2011, 471(7338), 310-312.
[http://dx.doi.org/10.1038/471310a] [PMID: 21412328]
[76]
Zhang, C.H.; Wang, J.X.; Cai, M.L.; Shao, R.; Liu, H.; Zhao, W.L. The roles and mechanisms of G3BP1 in tumour promotion. J. Drug Target., 2019, 27(3), 300-305.
[http://dx.doi.org/10.1080/1061186X.2018.1523415] [PMID: 30207743]
[77]
Casaburi, I.; Puoci, F.; Chimento, A.; Sirianni, R.; Ruggiero, C.; Avena, P.; Pezzi, V. Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: a review of in vitro studies. Mol. Nutr. Food Res., 2013, 57(1), 71-83.
[http://dx.doi.org/10.1002/mnfr.201200503] [PMID: 23193056]
[78]
Ricciutelli, M.; Marconi, S.; Boarelli, M.C.; Caprioli, G.; Sagratini, G.; Ballini, R.; Fiorini, D. Olive oil polyphenols: A quantitative method by high-performance liquid-chromatography-diode-array detection for their determination and the assessment of the related health claim. J. Chromatogr. A, 2017, 1481(1481), 53-63.
[http://dx.doi.org/10.1016/j.chroma.2016.12.020] [PMID: 28024731]
[79]
Watson, J.L.; Greenshields, A.; Hill, R.; Hilchie, A.; Lee, P.W.; Giacomantonio, C.A.; Hoskin, D.W. Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling. Mol. Carcinog., 2010, 49(1), 13-24.
[http://dx.doi.org/10.1002/mc.20571] [PMID: 19676105]
[80]
Mertens-Talcott, S.U.; Bomser, J.A.; Romero, C.; Talcott, S.T.; Percival, S.S. Ellagic acid potentiates the effect of quercetin on p21waf1/cip1, p53, and MAP-kinases without affecting intracellular generation of reactive oxygen species in vitro. J. Nutr., 2005, 135(3), 609-614.
[http://dx.doi.org/10.1093/jn/135.3.609] [PMID: 15735102]
[81]
Udenigwe, C.C.; Ramprasath, V.R.; Aluko, R.E.; Jones, P.J. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr. Rev., 2008, 66(8), 445-454.
[http://dx.doi.org/10.1111/j.1753-4887.2008.00076.x] [PMID: 18667005]
[82]
Bishayee, A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev. Res. (Phila.), 2009, 2(5), 409-418.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0160] [PMID: 19401532]
[83]
Takashina, M.; Inoue, S.; Tomihara, K.; Tomita, K.; Hattori, K.; Zhao, Q.L.; Suzuki, T.; Noguchi, M.; Ohashi, W.; Hattori, Y. Different effect of resveratrol to induction of apoptosis depending on the type of human cancer cells. Int. J. Oncol., 2017, 50(3), 787-797.
[http://dx.doi.org/10.3892/ijo.2017.3859] [PMID: 28197625]
[84]
Chow, H.H.; Garland, L.L.; Hsu, C.H.; Vining, D.R.; Chew, W.M.; Miller, J.A.; Perloff, M.; Crowell, J.A.; Alberts, D.S. Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev. Res. (Phila.), 2010, 3(9), 1168-1175.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0155] [PMID: 20716633]
[85]
Acconcia, F.; Marino, M. The effects of 17β-estradiol in cancer are mediated by estrogen receptor signaling at the plasma membrane. Front. Physiol., 2011, 2, 30.
[http://dx.doi.org/10.3389/fphys.2011.00030] [PMID: 21747767]
[86]
Métivier, R.; Penot, G.; Hübner, M.R.; Reid, G.; Brand, H.; Kos, M.; Gannon, F. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 2003, 115(6), 751-763.
[http://dx.doi.org/10.1016/S0092-8674(03)00934-6] [PMID: 14675539]
[87]
Deroo, B.J.; Korach, K.S. Estrogen receptors and human disease. J. Clin. Invest., 2006, 116(3), 561-570.
[http://dx.doi.org/10.1172/JCI27987] [PMID: 16511588]
[88]
Liang, J.; Shang, Y. Estrogen and cancer. Annu. Rev. Physiol., 2013, 75, 225-240.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183708] [PMID: 23043248]
[89]
Herynk, M.H.; Fuqua, S.A. Estrogen receptor mutations in human disease. Endocr. Rev., 2004, 25(6), 869-898.
[http://dx.doi.org/10.1210/er.2003-0010] [PMID: 15583021]
[90]
Thomas, C.; Gustafsson, J.Å. The different roles of ER subtypes in cancer biology and therapy. Nat. Rev. Cancer, 2011, 11(8), 597-608.
[http://dx.doi.org/10.1038/nrc3093] [PMID: 21779010]
[91]
Hsieh, C.Y.; Santell, R.C.; Haslam, S.Z.; Helferich, W.G. Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res., 1998, 58(17), 3833-3838.
[PMID: 9731492]
[92]
Seo, H.S.; DeNardo, D.G.; Jacquot, Y.; Laïos, I.; Vidal, D.S.; Zambrana, C.R.; Leclercq, G.; Brown, P.H. Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha. Breast Cancer Res. Treat., 2006, 99(2), 121-134.
[http://dx.doi.org/10.1007/s10549-006-9191-2] [PMID: 16541309]
[93]
Bartik, L.; Whitfield, G.K.; Kaczmarska, M.; Lowmiller, C.L.; Moffet, E.W.; Furmick, J.K.; Hernandez, Z.; Haussler, C.A.; Haussler, M.R.; Jurutka, P.W. Curcumin: a novel nutritionally derived ligand of the vitamin D receptor with implications for colon cancer chemoprevention. J. Nutr. Biochem., 2010, 21(12), 1153-1161.
[http://dx.doi.org/10.1016/j.jnutbio.2009.09.012] [PMID: 20153625]
[94]
Cipolletti, M.; Solar Fernandez, V.; Montalesi, E.; Marino, M.; Fiocchetti, M. Beyond the antioxidant activity of dietary polyphenols in cancer: the modulation of estrogen receptors (ERs) signaling. Int. J. Mol. Sci., 2018, 19(9), 2624.
[http://dx.doi.org/10.3390/ijms19092624] [PMID: 30189583]
[95]
Michel, T.; Halabalaki, M.; Skaltsounis, A.L. New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources. Planta Med., 2013, 79(7), 514-532.
[http://dx.doi.org/10.1055/s-0032-1328300] [PMID: 23479392]
[96]
Wang, S.; Zhao, Y.; Aguilar, A.; Bernard, D.; Yang, C.Y. Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb. Perspect. Med., 2017, 7(5), a026245.
[http://dx.doi.org/10.1101/cshperspect.a026245] [PMID: 28270530]
[97]
Toufektchan, E.; Toledo, F. The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers, 2018, 10(5), 135.
[http://dx.doi.org/10.3390/cancers10050135]
[98]
Verma, S.; Grover, S.; Tyagi, C.; Goyal, S.; Jamal, S.; Singh, A.; Grover, A. Hydrophobic interactions are a key to MDM2 inhibition by polyphenols as revealed by molecular dynamics simulations and MM/PBSA free energy calculations. PLoS One, 2016, 11(2), e0149014.
[http://dx.doi.org/10.1371/journal.pone.0149014] [PMID: 26863418]
[99]
Garrido-Armas, M.; Corona, J.C.; Escobar, M.L.; Torres, L.; Ordóñez-Romero, F.; Hernández-Hernández, A.; Arenas-Huertero, F. Paraptosis in human glioblastoma cell line induced by curcumin. Toxicol In Vitro: An Int. J. BIBRA, 2018, 51, 63-73.
[http://dx.doi.org/10.1016/j.tiv.2018.04.014]
[100]
Vitkeviciene, A.; Baksiene, S.; Borutinskaite, V.; Navakauskiene, R. Epigallocatechin-3-gallate and BIX-01294 have different impact on epigenetics and senescence modulation in acute and chronic myeloid leukemia cells. Eur. J. Pharmacol., 2018, 838, 32-40.
[http://dx.doi.org/10.1016/j.ejphar.2018.09.005] [PMID: 30194939]
[101]
Solanki, I.; Parihar, P.; Mansuri, M.L.; Parihar, M.S. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr., 2015, 6(1), 64-72.
[http://dx.doi.org/10.3945/an.114.007500] [PMID: 25593144]
[102]
Shan, Z.; Liu, Q.; Li, Y.; Wu, J.; Sun, D.; Gao, Z. PUMA decreases the growth of prostate cancer PC-3 cells independent of p53. Oncol. Lett., 2017, 13(3), 1885-1890.
[http://dx.doi.org/10.3892/ol.2017.5657] [PMID: 28454339]
[103]
Thakur, V.S.; Gupta, K.; Gupta, S. Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases. Int. J. Oncol., 2012, 41(1), 353-361.
[http://dx.doi.org/10.3892/ijo.2012.1449] [PMID: 22552582]
[104]
Leão, R.; Apolónio, J.D.; Lee, D.; Figueiredo, A.; Tabori, U.; Castelo-Branco, P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J. Biomed. Sci., 2018, 25(1), 22.
[http://dx.doi.org/10.1186/s12929-018-0422-8] [PMID: 29526163]
[105]
de Punder, K.; Heim, C.; Wadhwa, P.D.; Entringer, S. Stress and immunosenescence: The role of telomerase. Psychoneuroendocrinology, 2019, 101, 87-100.
[http://dx.doi.org/10.1016/j.psyneuen.2018.10.019] [PMID: 30445409]
[106]
Wang, J.; Pan, Y.; Hu, J.; Ma, Q.; Xu, Y.; Zhang, Y.; Zhang, F.; Liu, Y. Tea polyphenols induce S phase arrest and apoptosis in gallbladder cancer cells. Braz. J. Med. Biol. Res., 2018, 51(4), e6891.
[http://dx.doi.org/10.1590/1414-431x20176891] [PMID: 29513793]
[107]
Schneider, G.; Krämer, O.H. NFκB/p53 crosstalk-a promising new therapeutic target. Biochim. Biophys. Acta, 2011, 1815(1), 90-103.
[http://dx.doi.org/10.1016/j.bbcan.2010.10.003] [PMID: 20951769]
[108]
Das, S.; Das, J.; Paul, A.; Samadder, A.; Khuda-Bukhsh, A.R. Apigenin, a bioactive flavonoid from Lycopodium clavatum, stimulates nucleotide excision repair genes to protect skin keratinocytes from ultraviolet B-induced reactive oxygen species and DNA damage. J. Acupunct. Meridian Stud., 2013, 6(5), 252-262.
[http://dx.doi.org/10.1016/j.jams.2013.07.002] [PMID: 24139463]
[109]
Shi, M.D.; Shiao, C.K.; Lee, Y.C.; Shih, Y.W. Apigenin, a dietary flavonoid, inhibits proliferation of human bladder cancer T-24 cells via blocking cell cycle progression and inducing apoptosis. Cancer Cell Int., 2015, 15, 33.
[http://dx.doi.org/10.1186/s12935-015-0186-0] [PMID: 25859163]
[110]
Birt, D.F.; Mitchell, D.; Gold, B.; Pour, P.; Pinch, H.C. Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Res., 1997, 17(1A), 85-91.
[PMID: 9066634]
[111]
Prasad, R.; Katiyar, S.K. Polyphenols from green tea inhibit the growth of melanoma cells through inhibition of class I histone deacetylases and induction of DNA damage. Genes Cancer, 2015, 6(1-2), 49-61.
[http://dx.doi.org/10.18632/genesandcancer.52] [PMID: 25821561]
[112]
Pratheeshkumar, P.; Sreekala, C.; Zhang, Z.; Budhraja, A.; Ding, S.; Son, Y.O.; Wang, X.; Hitron, A.; Hyun-Jung, K.; Wang, L.; Lee, J.C.; Shi, X. Cancer prevention with promising natural products: mechanisms of action and molecular targets. Anticancer. Agents Med. Chem., 2012, 12(10), 1159-1184.
[http://dx.doi.org/10.2174/187152012803833035] [PMID: 22583402]
[113]
Bhat, P.; Kriel, J.; Shubha Priya, B. Basappa; Shivananju, N.S.; Loos, B. Modulating autophagy in cancer therapy: Advancements and challenges for cancer cell death sensitization. Biochem. Pharmacol., 2018, 147, 170-182.
[http://dx.doi.org/10.1016/j.bcp.2017.11.021] [PMID: 29203368]
[114]
De Amicis, F.; Giordano, F.; Vivacqua, A.; Pellegrino, M.; Panno, M.L.; Tramontano, D.; Fuqua, S.A.; Andò, S. Resveratrol, through NF-Y/p53/Sin3/HDAC1 complex phosphorylation, inhibits estrogen receptor alpha gene expression via p38MAPK/CK2 signaling in human breast cancer cells. FASEB J., 2011, 25(10), 3695-3707.
[http://dx.doi.org/10.1096/fj.10-178871] [PMID: 21737614]
[115]
Alamolhodaei, N.S.; Tsatsakis, A.M.; Ramezani, M.; Hayes, A.W.; Karimi, G. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food Chem. Toxicol., 2017, 103, 223-232.
[116]
Fesik, S.W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer, 2005, 5(11), 876-885.
[http://dx.doi.org/10.1038/nrc1736] [PMID: 16239906]
[117]
Guan, G.; Lan, S. Implications of antioxidant systems in inflammatory bowel disease. BioMed Res. Int., 2018, 2018, 1290179.
[http://dx.doi.org/10.1155/2018/1290179] [PMID: 29854724]
[118]
Oz, H.S.; Chen, T.; de Villiers, W.J. Green tea polyphenols and sulfasalazine have parallel anti-inflammatory properties in colitis models. Front. Immunol., 2013, 4, 132.
[http://dx.doi.org/10.3389/fimmu.2013.00132] [PMID: 23761791]
[119]
Bucio-Noble, D.; Kautto, L.; Krisp, C.; Ball, M.S.; Molloy, M.P. Polyphenol extracts from dried sugarcane inhibit inflammatory mediators in an in vitro colon cancer model. J. Proteomics, 2018, 177, 1-10.
[http://dx.doi.org/10.1016/j.jprot.2018.02.009] [PMID: 29432917]
[120]
Zhang, Z.; Wu, X.; Cao, S.; Cromie, M.; Shen, Y.; Feng, Y.; Yang, H.; Li, L. Chlorogenic acid ameliorates experimental colitis by promoting growth of akkermansia in mice. Nutrients, 2017, 9(7), 7.
[http://dx.doi.org/10.3390/nu9070677] [PMID: 28661454]
[121]
Cui, X.; Jin, Y.; Hofseth, A.B.; Pena, E.; Habiger, J.; Chumanevich, A.; Poudyal, D.; Nagarkatti, M.; Nagarkatti, P.S.; Singh, U.P.; Hofseth, L.J. Resveratrol suppresses colitis and colon cancer associated with colitis. Cancer Prev. Res. (Phila.), 2010, 3(4), 549-559.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0117] [PMID: 20332304]
[122]
Churchill, M.; Chadburn, A.; Bilinski, R.T.; Bertagnolli, M.M. Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile. J. Surg. Res., 2000, 89(2), 169-175.
[http://dx.doi.org/10.1006/jsre.2000.5826] [PMID: 10729246]
[123]
Weitzman, M.D.; Lilley, C.E.; Chaurushiya, M.S. Genomes in conflict: maintaining genome integrity during virus infection. Annu. Rev. Microbiol., 2010, 64, 61-81.
[http://dx.doi.org/10.1146/annurev.micro.112408.134016] [PMID: 20690823]
[124]
Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen., 2017, 58(5), 235-263.
[http://dx.doi.org/10.1002/em.22087] [PMID: 28485537]
[125]
Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol., 2010, 28(10), 1057-1068.
[http://dx.doi.org/10.1038/nbt.1685] [PMID: 20944598]
[126]
Audia, J.E.; Campbell, R.M. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol., 2016, 8(4), a019521.
[http://dx.doi.org/10.1101/cshperspect.a019521] [PMID: 27037415]
[127]
Tajima, S.; Suetake, I.; Takeshita, K.; Nakagawa, A.; Kimura, H. Domain structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA methyltransferases. Adv. Exp. Med. Biol., 2016, 945, 63-86.
[http://dx.doi.org/10.1007/978-3-319-43624-1_4] [PMID: 27826835]
[128]
Renaude, E.; Kroemer, M.; Loyon, R.; Binda, D.; Borg, C.; Guittaut, M.; Hervouet, E.; Peixoto, P. The fate of Th17 cells is shaped by epigenetic modifications and remodeled by the tumor microenvironment. Int. J. Mol. Sci., 2020, 21(5), 1673.
[http://dx.doi.org/10.3390/ijms21051673] [PMID: 32121394]
[129]
Shankar, E.; Kanwal, R.; Candamo, M.; Gupta, S. Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges. Semin. Cancer Biol., 2016, 40-41, 82-99.
[http://dx.doi.org/10.1016/j.semcancer.2016.04.002] [PMID: 27117759]
[130]
Link, A.; Balaguer, F.; Goel, A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem. Pharmacol., 2010, 80(12), 1771-1792.
[http://dx.doi.org/10.1016/j.bcp.2010.06.036] [PMID: 20599773]
[131]
Andreescu, N.; Puiu, M.; Niculescu, M. Effects of dietary nutrients on epigenetic changes in cancer. Methods Mol. Biol., 2018, 1856, 121-139.
[http://dx.doi.org/10.1007/978-1-4939-8751-1_7] [PMID: 30178249]
[132]
Vanden Berghe, W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol. Res., 2012, 65(6), 565-576.
[http://dx.doi.org/10.1016/j.phrs.2012.03.007] [PMID: 22465217]
[133]
Russo, G.L.; Vastolo, V.; Ciccarelli, M.; Albano, L.; Macchia, P.E.; Ungaro, P. Dietary polyphenols and chromatin remodeling. Crit. Rev. Food Sci. Nutr., 2017, 57(12), 2589-2599.
[http://dx.doi.org/10.1080/10408398.2015.1062353] [PMID: 26357880]
[134]
Stefanska, B.; Salamé, P.; Bednarek, A.; Fabianowska-Majewska, K. Comparative effects of retinoic acid, vitamin D and resveratrol alone and in combination with adenosine analogues on methylation and expression of phosphatase and tensin homologue tumour suppressor gene in breast cancer cells. Br. J. Nutr., 2012, 107(6), 781-790.
[http://dx.doi.org/10.1017/S0007114511003631] [PMID: 21801466]
[135]
Medina-Aguilar, R.; Pérez-Plasencia, C.; Marchat, L.A.; Gariglio, P.; García Mena, J.; Rodríguez Cuevas, S.; Ruíz-García, E.; Astudillo-de la Vega, H.; Hernández Juárez, J.; Flores-Pérez, A.; López-Camarillo, C. Methylation landscape of human breast cancer cells in response to dietary compound resveratrol. PLoS One, 2016, 11(6), e0157866.
[http://dx.doi.org/10.1371/journal.pone.0157866] [PMID: 27355345]
[136]
Kala, R.; Tollefsbol, T.O. A novel combinatorial epigenetic therapy using resveratrol and pterostilbene for restoring estrogen receptor-α (ERα) expression in ERα-negative breast cancer cells. PLoS One, 2016, 11(5), e0155057.
[http://dx.doi.org/10.1371/journal.pone.0155057] [PMID: 27159275]
[137]
Okawara, M.; Katsuki, H.; Kurimoto, E.; Shibata, H.; Kume, T.; Akaike, A. Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem. Pharmacol., 2007, 73(4), 550-560.
[http://dx.doi.org/10.1016/j.bcp.2006.11.003] [PMID: 17147953]
[138]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[139]
Esquela-Kerscher, A.; Slack, F.J. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer, 2006, 6(4), 259-269.
[http://dx.doi.org/10.1038/nrc1840] [PMID: 16557279]
[140]
Miska, E.A. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev., 2005, 15(5), 563-568.
[http://dx.doi.org/10.1016/j.gde.2005.08.005] [PMID: 16099643]
[141]
Wang, Y.; Lee, C.G. MicroRNA and cancer-focus on apoptosis. J. Cell. Mol. Med., 2009, 13(1), 12-23.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00510.x] [PMID: 19175697]
[142]
Sun, M.; Estrov, Z.; Ji, Y.; Coombes, K.R.; Harris, D.H.; Kurzrock, R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther., 2008, 7(3), 464-473.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2272] [PMID: 18347134]
[143]
Boyanapalli, S.S.; Kong, A.T. “Curcumin, the king of spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr. Pharmacol. Rep., 2015, 1(2), 129-139.
[http://dx.doi.org/10.1007/s40495-015-0018-x] [PMID: 26457241]
[144]
Hernández-Ramírez, R.U.; Galván-Portillo, M.V.; Ward, M.H.; Agudo, A.; González, C.A.; Oñate-Ocaña, L.F.; Herrera-Goepfert, R.; Palma-Coca, O.; López-Carrillo, L. Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico City. Int. J. Cancer, 2009, 125(6), 1424-1430.
[http://dx.doi.org/10.1002/ijc.24454] [PMID: 19449378]
[145]
Bahrami, A.; Jafari, S.; Rafiei, P.; Beigrezaei, S.; Sadeghi, A.; Hekmatdoost, A.; Rashidkhani, B.; Hejazi, E. Dietary intake of polyphenols and risk of colorectal cancer and adenoma-A case-control study from Iran. Complement. Ther. Med., 2019, 45, 269-274.
[http://dx.doi.org/10.1016/j.ctim.2019.04.011] [PMID: 31331573]
[146]
Ghanavati, M.; Clark, C.C.T.; Bahrami, A.; Teymoori, F.; Movahed, M.; Sohrab, G.; Hejazi, E. Dietary intake of polyphenols and total antioxidant capacity and risk of prostate cancer: A case-control study in Iranian men. Eur. J. Cancer Care (Engl.), 2020., e13364.
[http://dx.doi.org/10.1111/ecc.13364] [PMID: 33174661]
[147]
Rossi, M.; Strikoudi, P.; Spei, M.E.; Parpinel, M.; Serraino, D.; Montella, M.; Libra, M.; La Vecchia, C.; Rosato, V. Flavonoids and bladder cancer risk. Cancer Causes Control, 2019, 30(5), 527-535.
[http://dx.doi.org/10.1007/s10552-019-01158-2] [PMID: 30903485]
[148]
Zamora-Ros, R.; Cayssials, V.; Jenab, M.; Rothwell, J.A.; Fedirko, V.; Aleksandrova, K.; Tjønneland, A.; Kyrø, C.; Overvad, K.; Boutron-Ruault, M.C.; Carbonnel, F.; Mahamat-Saleh, Y.; Kaaks, R.; Kühn, T.; Boeing, H.; Trichopoulou, A.; Valanou, E.; Vasilopoulou, E.; Masala, G.; Pala, V.; Panico, S.; Tumino, R.; Ricceri, F.; Weiderpass, E.; Lukic, M.; Sandanger, T.M.; Lasheras, C.; Agudo, A.; Sánchez, M.J.; Amiano, P.; Navarro, C.; Ardanaz, E.; Sonestedt, E.; Ohlsson, B.; Nilsson, L.M.; Rutegård, M.; Bueno-de-Mesquita, B.; Peeters, P.H.; Khaw, K.T.; Wareham, N.J.; Bradbury, K.; Freisling, H.; Romieu, I.; Cross, A.J.; Vineis, P.; Scalbert, A. Dietary intake of total polyphenol and polyphenol classes and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Eur. J. Epidemiol., 2018, 33(11), 1063-1075.
[http://dx.doi.org/10.1007/s10654-018-0408-6] [PMID: 29761424]
[149]
Lee, P.M.Y.; Ng, C.F.; Liu, Z.M.; Ho, W.M.; Lee, M.K.; Wang, F.; Kan, H.D.; He, Y.H.; Ng, S.S.M.; Wong, S.Y.S.; Tse, L.A. Reduced prostate cancer risk with green tea and epigallocatechin 3-gallate intake among Hong Kong Chinese men. Prostate Cancer Prostatic Dis., 2017, 20(3), 318-322.
[http://dx.doi.org/10.1038/pcan.2017.18] [PMID: 28417981]
[150]
Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res., 2017, 61(4)
[http://dx.doi.org/10.1002/mnfr.201600930] [PMID: 27943649]
[151]
Chang, H.; Lei, L.; Zhou, Y.; Ye, F.; Zhao, G. Dietary flavonoids and the risk of colorectal cancer: an updated meta-analysis of epidemiological studies. Nutrients, 2018, 10(7), 950.
[http://dx.doi.org/10.3390/nu10070950] [PMID: 30041489]
[152]
Zamora-Ros, R.; Cayssials, V.; Franceschi, S.; Kyrø, C.; Weiderpass, E.; Hennings, J.; Sandström, M.; Tjønneland, A.; Olsen, A.; Overvad, K.; Boutron-Ruault, M.C.; Truong, T.; Mancini, F.R.; Katzke, V.; Kühn, T.; Boeing, H.; Trichopoulou, A.; Karakatsani, A.; Martimianaki, G.; Palli, D.; Krogh, V.; Panico, S.; Tumino, R.; Sacerdote, C.; Lasheras, C.; Rodríguez-Barranco, M.; Amiano, P.; Colorado-Yohar, S.M.; Ardanaz, E.; Almquist, M.; Ericson, U.; Bueno-de-Mesquita, H.B.; Vermeulen, R.; Schmidt, J.A.; Byrnes, G.; Scalbert, A.; Agudo, A.; Rinaldi, S. Polyphenol intake and differentiated thyroid cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Int. J. Cancer, 2020, 146(7), 1841-1850.
[http://dx.doi.org/10.1002/ijc.32589] [PMID: 31342519]
[153]
Gardeazabal, I.; Romanos-Nanclares, A.; Martínez-González, M.Á.; Sánchez-Bayona, R.; Vitelli-Storelli, F.; Gaforio, J.J.; Aramendía-Beitia, J.M.; Toledo, E. Total polyphenol intake and breast cancer risk in the Seguimiento Universidad de Navarra (SUN) cohort. Br. J. Nutr., 2019, 122(5), 542-551.
[http://dx.doi.org/10.1017/S0007114518003811] [PMID: 30588893]
[154]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[155]
DG, M. Gemcitabine combination chemotherapy of ovarian cancer. Gynecologic oncology, 2003, 90(null), S16-S20.
[156]
Ziaei, S.; Halaby, R. Dietary isoflavones and breast cancer risk. Medicines (Basel), 2017, 4(2), 18.
[http://dx.doi.org/10.3390/medicines4020018] [PMID: 28930233]
[157]
Maj, E.; Maj, B.; Bobak, K.; Gos, M.; Chodyński, M.; Kutner, A.; Wietrzyk, J. Differential response of lung cancer cells, with various driver mutations, to plant polyphenol resveratrol and vitamin D active metabolite PRI-2191. Int. J. Mol. Sci., 2021, 22(5), 2354.
[http://dx.doi.org/10.3390/ijms22052354] [PMID: 33652978]
[158]
Asensi, M.; Ortega, A.; Mena, S.; Feddi, F.; Estrela, J.M. Natural polyphenols in cancer therapy. Crit. Rev. Clin. Lab. Sci., 2011, 48(5-6), 197-216.
[http://dx.doi.org/10.3109/10408363.2011.631268] [PMID: 22141580]
[159]
Rigacci, S.; Stefani, M. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int. J. Mol. Sci., 2016, 17(6), 843.
[http://dx.doi.org/10.3390/ijms17060843] [PMID: 27258251]
[160]
Singh, N.; Zaidi, D.; Shyam, H.; Sharma, R.; Balapure, A.K. Polyphenols sensitization potentiates susceptibility of MCF-7 and MDA MB-231 cells to Centchroman. PLoS One, 2012, 7(6), e37736.
[http://dx.doi.org/10.1371/journal.pone.0037736] [PMID: 22768036]
[161]
Bilici, A. Prognostic factors related with survival in patients with pancreatic adenocarcinoma. World J. Gastroenterol., 2014, 20(31), 10802-10812.
[http://dx.doi.org/10.3748/wjg.v20.i31.10802] [PMID: 25152583]
[162]
Bonferoni, M.C.; Rossi, S.; Sandri, G.; Ferrari, F. Nanoparticle formulations to enhance tumor targeting of poorly soluble polyphenols with potential anticancer properties. Semin. Cancer Biol., 2017, 46, 205-214.
[http://dx.doi.org/10.1016/j.semcancer.2017.06.010] [PMID: 28673607]
[163]
Tyagi, N.; De, R.; Begun, J.; Popat, A. Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. Int. J. Pharm., 2017, 518(1-2), 220-227.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.030] [PMID: 27988378]
[164]
Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 243S-255S.
[http://dx.doi.org/10.1093/ajcn/81.1.243S] [PMID: 15640487]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy