Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Ru Nanoparticle Functionalized Silica Nanotubes as a Catalyst for CO2 Hydrogenation Reaction

Author(s): Vivek Srivastava*

Volume 19, Issue 1, 2022

Published on: 10 August, 2021

Page: [46 - 52] Pages: 7

DOI: 10.2174/1570178618666210810151325

Price: $65

Abstract

The catalytic display of supported heterogeneous catalysts is essentially reliant on their constitutive elements, including active species and supports. Accordingly, the scheme and development of active catalysts with synergistically enhanced outcomes between active sites and supports are of high importance. A simple NaBH4 reduction method was used to synthesize cylindrical amine-functionalized silica nanotubes supported Ru catalyst (ASNT@Ru catalyst), including amine functionality. The physicochemical properties of the material were analyzed by various analytical methods such as SEM-TEM analysis, N2 physisorption, ICP-OES, XPS, etc., and all the data were found in good agreement with each other. Amine-free SNT support using the calcination process was also synthesized to examine the effect of amine in ASNT support on the uniform Ru dispersion. Taking advantage of the fundamental physical and chemical properties of ASNT support and well-distributed Ru NPs, the ASNT@Ru catalyst was utilized for CO2 hydrogenation reaction, which gave excellent catalytic activity/ stability in terms of a good quantity of the formic. Catalysts recycling was recorded five times, and formic acid was obtained in good quantity.

Keywords: Formic acid, Ru nanocatalyst, CO2 hydrogenation, functionalized surface, N-myristoyl-D-alanine sodium salt, nanoparticles catalyst.

Graphical Abstract
[1]
Zhao, Y.; Liu, Z. Encyclopedia of Sustainability Science and Technology; Springer New York, 2018, pp. 1-38.
[http://dx.doi.org/10.1007/978-1-4939-2493-6_1011-1]
[2]
Davis, S.J.; Caldeira, K.; Matthews, H.D. Science (80-. ), 2010, 329, 1330-1333.
[3]
Zhao, Y.; Liu, Z. Green chemistry and chemical engineering; Springer New York, 2019, pp. 285-322.
[http://dx.doi.org/10.1007/978-1-4939-9060-3_1011]
[4]
Alper, E.; Yuksel Orhan, O. Petroleum, 2017, 3, 109-126.
[http://dx.doi.org/10.1016/j.petlm.2016.11.003]
[5]
Wang, W.; Wang, S.; Ma, X. Gong. J. Chem. Soc. Rev., 2011, 40(7), 3703-3727.
[http://dx.doi.org/10.1039/c1cs15008a] [PMID: 21505692]
[6]
Aresta, M.; Dibenedetto, A. Dalton Trans., 2007, (28), 2975-2992.
[http://dx.doi.org/10.1039/b700658f] [PMID: 17622414]
[7]
Sakakura, T.; Choi, J.C.; Yasuda, H. Chem. Rev., 2007, 107(6), 2365-2387.
[http://dx.doi.org/10.1021/cr068357u] [PMID: 17564481]
[8]
Bulushev, D.A.; Ross, J.R.H. ChemSusChem, 2018, 11(5), 821-836.
[http://dx.doi.org/10.1002/cssc.201702075] [PMID: 29316342]
[9]
Kar, S.; Kothandaraman, J.; Goeppert, A.; Prakash, G.K.S. Journal of co2 utilization, 2018, 23, 212-218.
[10]
Jessop, P.G.; Ikariya, T.; Noyori, R. Chem. Rev., 1995, 95, 259-272.
[http://dx.doi.org/10.1021/cr00034a001]
[11]
Li, Y.N.; Ma, R.; He, L.N.; Diao, Z.F. Catal. Sci. Technol., 2014, 4, 1498-1512.
[http://dx.doi.org/10.1039/C3CY00564J]
[12]
Whang, H.S.; Lim, J.; Choi, M.S.; Lee, J.; Lee, H. BMC. Chem. Eng., 2019, 1, 1-19.
[http://dx.doi.org/10.1186/s42480-019-0007-7]
[13]
Gunasekar, G.H.; Park, K.; Jung, K.D.; Yoon, S. Inorg. Chem. Front., 2016, 3, 882-895.
[http://dx.doi.org/10.1039/C5QI00231A]
[14]
Li, W.; Wang, H.; Jiang, X.; Zhu, J.; Liu, Z.; Guo, X.; Song, C. RSC Advances, 2018, 8, 7651-7669.
[http://dx.doi.org/10.1039/C7RA13546G]
[15]
Xi, J.; Wang, Q.; Duan, X.; Zhang, N.; Yu, J.; Sun, H.; Wang, S. Chem. Eng. Sci., 2020, 231116303
[http://dx.doi.org/10.1016/j.ces.2020.116303]
[16]
Martín-Jimeno, F.J.; Suárez-García, F.; Paredes, J.I.; Martínez-Alonso, A.; Tascón, J.M.D. J. Alloys Compd., 2021, 853157348
[http://dx.doi.org/10.1016/j.jallcom.2020.157348]
[17]
Liu, J.; Hao, J.; Hu, C.; He, B.; Xi, J.; Xiao, J.; Wang, S.; Bai, Z. J. Phys. Chem. C, 2018, 122, 2696-2703.
[http://dx.doi.org/10.1021/acs.jpcc.7b10237]
[18]
Ross, J.R.H. Heterogeneous catalysis; Elsevier, 2012, pp. 1-15.
[http://dx.doi.org/10.1016/B978-0-444-53363-0.10001-5]
[19]
Zhang, P.; Gong, Y.; Li, H.; Chen, Z.; Wang, Y. Nat. Commun., 2013, 4, 1593.
[http://dx.doi.org/10.1038/ncomms2586] [PMID: 23481401]
[20]
Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C.; Yao, S.; Xie, J.; Li, Y.; Liu, X.; Ma, D. Angew. Chem. Int. Ed. Engl., 2017, 56(36), 10761-10765.
[http://dx.doi.org/10.1002/anie.201705002] [PMID: 28691396]
[21]
Morère, J.; Torralvo, M.J.; Pando, C.; Renuncio, J.A.R.; Cabañas, A. RSC Advances, 2015, 5, 38880-38891.
[http://dx.doi.org/10.1039/C5RA04969E]
[22]
Koizumi, N.; Jiang, X.; Kugai, J.; Song, C. Catal. Today, 2012, 194, 16-24.
[http://dx.doi.org/10.1016/j.cattod.2012.08.007]
[23]
Li, Y.; Bastakoti, B.P.; Abe, H.; Liu, Z.; Minett, A. ALOthman, Z.A.; Yamauchi, Y. RSC Advances, 2015, 5, 97928-97933.
[http://dx.doi.org/10.1039/C5RA17340J]
[24]
Srivastava, V. Lett. Org. Chem., 2017, 14, 74-79.
[http://dx.doi.org/10.2174/1570178614666170126121836]
[25]
Qadir, K.; Kim, S.M.; Seo, H.; Mun, B.S.; Akgul, F.A.; Liu, Z.; Park, J.Y. J. Phys. Chem. C, 2013, 117, 13108-13113.
[http://dx.doi.org/10.1021/jp402688a]
[26]
Carbonio, E.A.; Prieto, M.J.; De Siervo, A.; Landers, R. J. Phys. Chem. C, 2014, 118, 28679-28688.
[http://dx.doi.org/10.1021/jp509574s]
[27]
Qadir, K.; Joo, S.H.; Mun, B.S.; Butcher, D.R.; Renzas, J.R.; Aksoy, F.; Liu, Z.; Somorjai, G.A.; Park, J.Y. Nano Lett., 2012, 12(11), 5761-5768.
[http://dx.doi.org/10.1021/nl303072d] [PMID: 23067327]
[28]
Pandey, P.H.; Pawar, H.S. J. CO2 Util., 2020, 41, 101267.
[29]
Konsolakis, M. Catalysts, 2016, 6, 102.
[http://dx.doi.org/10.3390/catal6070102]
[30]
Wu, B.; Gao, Y.; Jin, F.; Cao, J.; Du, Y.; Zhang, Y. Catal. Today, 2009, 148, 405-410.
[http://dx.doi.org/10.1016/j.cattod.2009.08.012]
[31]
Zhong, H.; Gao, Y.; Yao, G.; Zeng, X.; Li, Q.; Huo, Z.; Jin, F. Chem. Eng. J., 2015, 280, 215-221.
[http://dx.doi.org/10.1016/j.cej.2015.05.098]
[32]
Liu, X.M.; Lu, G.Q.; Yan, Z.F. Beltramini. J. Ind. Eng. Chem. Res., 2003, 42, 6518-6530.
[http://dx.doi.org/10.1021/ie020979s]
[33]
Schmidt, I.; Müller, K.; Arlt, W. Energy Fuels, 2014, 28, 6540-6544.
[http://dx.doi.org/10.1021/ef501802r]
[34]
Wang, S.; Fu, J.; Wang, K.; Gao, M.; Wang, X.; Wang, Z.; Chen, J.; Xu, Q. Appl. Surf. Sci., 2018, 459, 208-216.
[http://dx.doi.org/10.1016/j.apsusc.2018.07.205]
[35]
Zeng, T.; Zhang, X.; Wang, S.; Niu, H.; Cai, Y. Environ. Sci. Technol., 2015, 49(4), 2350-2357.
[http://dx.doi.org/10.1021/es505014z] [PMID: 25608052]
[36]
Morán, M.C.; Pinazo, A.; Pérez, L.; Clapés, P.; Angelet, M.; García, M.T.; Vinardell, M.P.; Infante, M.R. Green Chem., 2004, 6, 233-240.
[http://dx.doi.org/10.1039/B400293H]
[37]
Tripathy, D.B.; Mishra, A.; Clark, J.; Farmer, T. C. R. Chim., 2018, 21, 112-130.
[http://dx.doi.org/10.1016/j.crci.2017.11.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy