Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Amelioration of Cisplatin-induced Renal Inflammation by Recombinant Human Golimumab in Mice

Author(s): Vishal Pavitrakar, Rustom Mody and Selvan Ravindran*

Volume 23, Issue 7, 2022

Published on: 10 August, 2021

Page: [970 - 977] Pages: 8

DOI: 10.2174/1389201022666210810141139

Price: $65

Abstract

Background: One of the most commonly used anti-cancer agents, Cisplatin (CDDP) often causes nephrotoxicity by eliciting inflammation and oxidative stress. Golimumab, an anti-TNF biologic, is prescribed for the management of numerous inflammatory ailments like psoriatic and rheumatoid arthritis, ulcerative colitis and ankylosing spondylitis.

Objective: Current study has explored the effects of anti-TNF biologics golimumab on mice due to cisplatin-induced nephrotoxicity.

Method: Renal toxicity was caused by administration of single cisplatin injection at 22 mg/kg by intraperitoneal (i/p) route. Golimumab (24 mg/kg, s.c.) was administered consecutively for 7 days. The parameters such as renal functions, oxidative stress, inflammation, and renal damage were evaluated on the 7th day of experiments.

Results: Cisplatin administration caused nephrotoxicity as shown by a significant elevation of various parameters viz; serum creatinine, neutrophil gelatinase-associated lipocalin (NGAL), urea nitrogen (BUN), and cystatin C. There was a significant rise in urinary clusterin, kidney injury molecule 1 (KIM-1), and β-N-acetylglucosaminidase (NAG) concentrations in the animals treated with cisplatin. The markers of oxidative stress (malondialdehyde, reduced glutathione, and catalase), inflammation (IL-6, TNF-α, IL-10, IL-1β, MCP-1, ICAM-1, and TGF-β1), and apoptosis (caspase-3) were also altered in serum and/or kidneys of cisplatin animals. Further, cisplatin-caused histopathological changes in proximal tubular cells as observed in the H&E staining of renal tissue. Golimumab treatment reduced all markers of kidney injury and attenuated cell death. Golimumab significantly reduced inflammatory cytokines TNFα, IL- 6, MCP-1, IL- 1β, ICAM-1, and TGF-β1 and increased anti-inflammatory cytokine IL-10 in cisplatin-intoxicated mice.

Conclusion: The study’s results suggest that golimumab prevented nephrotoxicity induced by cisplatin- through inhibition of oxidative stress, apoptotic cell death inflammatory response, thus improving renal function.

Keywords: Golimumab, Cis-platin, renal inflammation, human recombinant golimumab, anti-TNF biologics, anti-cancer agents.

Graphical Abstract
[1]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[2]
Liu, J.; Liu, Y.; Habeebu, S.S.; Klaassen, C.D. Metallothionein (MT)-null mice are sensitive to cisplatin-induced hepatotoxicity. Toxicol. Appl. Pharmacol., 1998, 149(1), 24-31.
[http://dx.doi.org/10.1006/taap.1997.8325] [PMID: 9512723]
[3]
Hanigan, M.H.; Devarajan, P. Cisplatin nephrotoxicity: Molecular mechanisms. Cancer Ther., 2003, 1, 47-61.
[PMID: 18185852]
[4]
Saisruthi, K.; Sreedevi, A. Amelioration of Cisplatin-induced nephrotoxicity of roots of anthocephalus cadamba. Biomed. Pharmacol. J., 2017, 10(3), 1433-1439.
[http://dx.doi.org/10.13005/bpj/1250]
[5]
Dugbartey, G.J.; Peppone, L.J.; de Graaf, I.A. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 2016, 371, 58-66.
[http://dx.doi.org/10.1016/j.tox.2016.10.001] [PMID: 27717837]
[6]
Peres, L.A.; da Cunha, A.D., Jr Acute nephrotoxicity of cisplatin: Molecular mechanisms. J. Bras. Nefrol., 2013, 35(4), 332-340.
[http://dx.doi.org/10.5935/0101-2800.20130052] [PMID: 24402113]
[7]
Okamoto, K.; Saito, Y.; Narumi, K.; Furugen, A.; Iseki, K.; Kobayashi, M. Comparison of the nephroprotective effects of non-steroidal anti-inflammatory drugs on cisplatin-induced nephrotoxicity in vitro and in vivo. Eur. J. Pharmacol., 2020, 884173339
[http://dx.doi.org/10.1016/j.ejphar.2020.173339] [PMID: 32726655]
[8]
Barnes, P.J.; Karin, M. Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med., 1997, 336(15), 1066-1071.
[http://dx.doi.org/10.1056/NEJM199704103361506] [PMID: 9091804]
[9]
Chirino, Y.I.; Pedraza-Chaverri, J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp. Toxicol. Pathol., 2009, 61(3), 223-242.
[http://dx.doi.org/10.1016/j.etp.2008.09.003] [PMID: 18986801]
[10]
Ramesh, G.; Reeves, W.B. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest., 2002, 110(6), 835-842.
[http://dx.doi.org/10.1172/JCI200215606] [PMID: 12235115]
[11]
Mazumdar, S.; Greenwald, D. Golimumab. MAbs, 2009, 1(5), 422-431.
[http://dx.doi.org/10.4161/mabs.1.5.9286] [PMID: 20065639]
[12]
Löwenberg, M.; de Boer, N.Kh.; Hoentjen, F. Golimumab for the treatment of ulcerative colitis. Clin. Exp. Gastroenterol., 2014, 7, 53-59.
[http://dx.doi.org/10.2147/CEG.S48741] [PMID: 24648749]
[13]
Meng, H.; Fu, G.; Shen, J.; Shen, K.; Xu, Z.; Wang, Y.; Jin, B.; Pan, H. Ameliorative effect of daidzein on cisplatin-induced nephrotoxicity in mice via modulation of inflammation, oxidative stress, and cell death. Oxid. Med. Cell. Longev., 2017, 20173140680
[http://dx.doi.org/10.1155/2017/3140680] [PMID: 28831294]
[14]
Jing, T.; Liao, J.; Shen, K.; Chen, X.; Xu, Z.; Tian, W.; Wang, Y.; Jin, B.; Pan, H. Protective effect of urolithin a on cisplatin-induced nephrotoxicity in mice via modulation of inflammation and oxidative stress. Food Chem. Toxicol., 2019, 129, 108-114.
[http://dx.doi.org/10.1016/j.fct.2019.04.031] [PMID: 31014901]
[15]
Crona, D.J.; Faso, A.; Nishijima, T.F.; McGraw, K.A.; Galsky, M.D.; Milowsky, M.I. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist, 2017, 22(5), 609-619.
[http://dx.doi.org/10.1634/theoncologist.2016-0319] [PMID: 28438887]
[16]
Manohar, S.; Leung, N. Cisplatin nephrotoxicity: A review of the literature. J. Nephrol., 2018, 31(1), 15-25.
[http://dx.doi.org/10.1007/s40620-017-0392-z] [PMID: 28382507]
[17]
Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel), 2010, 2(11), 2490-2518.
[http://dx.doi.org/10.3390/toxins2112490] [PMID: 22069563]
[18]
Abdelrahman, A.M.; Al Suleimani, Y.; Shalaby, A.; Ashique, M.; Manoj, P.; Nemmar, A.; Ali, B.H. Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on cisplatin-induced nephrotoxicity in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(1), 45-53.
[http://dx.doi.org/10.1007/s00210-018-1564-7] [PMID: 30206656]
[19]
Aljuhani, N.; Ismail, R.S.; El-Awady, M.S.; Hassan, M.H. Modulatory effects of perindopril on cisplatin-induced nephrotoxicity in mice: Implication of inflammatory cytokines and caspase-3 mediated apoptosis. Acta Pharm., 2020, 70(4), 515-525.
[http://dx.doi.org/10.2478/acph-2020-0033] [PMID: 32412432]
[20]
Honma, S.; Takahashi, N.; Shinohara, M.; Nakamura, K.; Mitazaki, S.; Abe, S.; Yoshida, M. Amelioration of cisplatin-induced mouse renal lesions by a cyclooxygenase (COX)-2 selective inhibitor. Eur. J. Pharmacol., 2013, 715(1-3), 181-188.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.023] [PMID: 23747596]
[21]
Tsigou, E.; Psallida, V.; Demponeras, C.; Boutzouka, E.; Baltopoulos, G. Role of new biomarkers: Functional and structural damage. Crit. Care Res. Pract., 2013, 2013361078
[http://dx.doi.org/10.1155/2013/361078] [PMID: 23476755]
[22]
Vinken, P.; Starckx, S.; Barale-Thomas, E.; Looszova, A.; Sonee, M.; Goeminne, N.; Versmissen, L.; Buyens, K.; Lampo, A. Tissue Kim-1 and urinary clusterin as early indicators of cisplatin-induced acute kidney injury in rats. Toxicol. Pathol., 2012, 40(7), 1049-1062.
[http://dx.doi.org/10.1177/0192623312444765] [PMID: 22581811]
[23]
González, R.; Romay, C.; Borrego, A.; Hernández, F.; Merino, N.; Zamora, Z.; Rojas, E. Lipid peroxides and antioxidant enzymes in cisplatin-induced chronic nephrotoxicity in rats. Mediators Inflamm., 2005, 2005(3), 139-143.
[http://dx.doi.org/10.1155/MI.2005.139] [PMID: 16106099]
[24]
Aldemir, M.; Okulu, E.; Kösemehmetoğlu, K.; Ener, K.; Topal, F.; Evirgen, O.; Gürleyik, E.; Avcı, A. Evaluation of the protective effect of quercetin against cisplatin-induced renal and testis tissue damage and sperm parameters in rats. Andrologia, 2014, 46(10), 1089-1097.
[http://dx.doi.org/10.1111/and.12197] [PMID: 24266675]
[25]
Domitrović, R.; Cvijanović, O.; Šušnić, V.; Katalinić, N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology, 2014, 324, 98-107.
[http://dx.doi.org/10.1016/j.tox.2014.07.004] [PMID: 25043994]
[26]
Ajith, T.A.; Usha, S.; Nivitha, V. Ascorbic acid and alpha-tocopherol protect anticancer drug cisplatin induced nephrotoxicity in mice: A comparative study. Clin. Chim. Acta, 2007, 375(1-2), 82-86.
[http://dx.doi.org/10.1016/j.cca.2006.06.011] [PMID: 16889761]
[27]
Khan, S.A.; Priyamvada, S.; Khan, W.; Khan, S.; Farooq, N.; Yusufi, A.N. Studies on the protective effect of green tea against cisplatin induced nephrotoxicity. Pharmacol. Res., 2009, 60(5), 382-391.
[http://dx.doi.org/10.1016/j.phrs.2009.07.007] [PMID: 19647078]
[28]
Sen, S.; De, B.; Devanna, N.; Chakraborty, R. Cisplatin-induced nephrotoxicity in mice: Protective role of Leea asiatica leaves. Ren. Fail., 2013, 35(10), 1412-1417.
[http://dx.doi.org/10.3109/0886022X.2013.829405] [PMID: 24001301]
[29]
Deng, J.; Kohda, Y.; Chiao, H.; Wang, Y.; Hu, X.; Hewitt, S.M.; Miyaji, T.; McLeroy, P.; Nibhanupudy, B.; Li, S.; Star, R.A. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int., 2001, 60(6), 2118-2128.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00043.x] [PMID: 11737586]
[30]
Huang, Q.; Dunn, R.T., II; Jayadev, S.; DiSorbo, O.; Pack, F.D.; Farr, S.B.; Stoll, R.E.; Blanchard, K.T. Assessment of cisplatin-induced nephrotoxicity by microarray technology. Toxicol. Sci., 2001, 63(2), 196-207.
[http://dx.doi.org/10.1093/toxsci/63.2.196] [PMID: 11568363]
[31]
Lemay, S.; Rabb, H.; Postler, G.; Singh, A.K. Prominent and sustained up-regulation of gp130-signaling cytokines and the chemokine MIP-2 in murine renal ischemia-reperfusion injury. Transplantation, 2000, 69(5), 959-963.
[http://dx.doi.org/10.1097/00007890-200003150-00049] [PMID: 10755557]
[32]
Takada, M.; Nadeau, K.C.; Shaw, G.D.; Marquette, K.A.; Tilney, N.L. The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand. J. Clin. Invest., 1997, 99(11), 2682-2690.
[http://dx.doi.org/10.1172/JCI119457] [PMID: 9169498]
[33]
Banas, B.; Luckow, B.; Möller, M.; Klier, C.; Nelson, P.J.; Schadde, E.; Brigl, M.; Halevy, D.; Holthöfer, H.; Reinhart, B.; Schlöndorff, D. Chemokine and chemokine receptor expression in a novel human mesangial cell line. J. Am. Soc. Nephrol., 1999, 10(11), 2314-2322.
[http://dx.doi.org/10.1681/ASN.V10112314] [PMID: 10541290]
[34]
Donnahoo, K.K.; Meng, X.; Ayala, A.; Cain, M.P.; Harken, A.H.; Meldrum, D.R. Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am. J. Physiol., 1999, 277(3), R922-R929.
[http://dx.doi.org/10.1152/ajpregu.1999.277.3.R922] [PMID: 10484513]
[35]
Kaushal, G.P.; Kaushal, V.; Hong, X.; Shah, S.V. Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int., 2001, 60(5), 1726-1736.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00026.x] [PMID: 11703590]
[36]
Chahar, D.S.; Ravindran, S.; Pisal, S.S. Monoclonal antibody purification and its progression to commercial scale. Biologicals, 2020, 63, 1-13.
[http://dx.doi.org/10.1016/j.biologicals.2019.09.007] [PMID: 31558429]
[37]
Ravindran, S.; Tambe, A.J.; Suthar, J.K.; Chahar, D.S.; Fernandes, J.M.; Desai, V. Nanomedicine: Bioavailability, biotransformation and biokinetics. Curr. Drug Metab., 2019, 20(7), 542-555.
[http://dx.doi.org/10.2174/1389200220666190614150708] [PMID: 31203796]
[38]
Ravindran, S.; Suthar, J.K.; Rokade, R.; Deshpande, P.; Singh, P.; Pratinidhi, A.; Khambadkhar, R.; Utekar, S. Pharmacokinetics, metabolism, distribution and permeability of nanomedicine.. Curr.Drug Metab., 2018, 19(4), 327-334.
[http://dx.doi.org/10.2174/1389200219666180305154119] [PMID: 29512450]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy