Review Article

The Role of Bacterial Proteases in Microbe and Host-microbe Interactions

Author(s): Daniel Hammers, Katelyn Carothers and Shaun Lee*

Volume 23, Issue 3, 2022

Published on: 09 August, 2021

Page: [222 - 239] Pages: 18

DOI: 10.2174/1389450122666210809094100

Price: $65

Abstract

Background: Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation.

Objective: In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti- biofilm dynamics.

Conclusion: Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.

Keywords: Bacterial proteases, bacterial pathogenesis, polymicrobialinteractions, Host immunity, therapeutics, polypeptides.

Graphical Abstract
[1]
Barrett AJ. Bioinformatics of proteases in the MEROPS database. Curr Opin Drug Discov Devel 2004; 7(3): 334-41.
[PMID: 15216937]
[2]
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2018; 38(4): 1295-331.
[http://dx.doi.org/10.1002/med.21475] [PMID: 29149530]
[3]
Rawlings ND. Twenty-five years of nomenclature and classification of proteolytic enzymes. Biochim Biophys Acta Proteins Proteomics 2020; 1868(2): 140345.
[http://dx.doi.org/10.1016/j.bbapap.2019.140345] [PMID: 31838087]
[4]
Ingmer H, Brøndsted L. Proteases in bacterial pathogenesis. Res Microbiol 2009; 160(9): 704-10.
[http://dx.doi.org/10.1016/j.resmic.2009.08.017] [PMID: 19778606]
[5]
Koziel J, Potempa J. Protease-armed bacteria in the skin. Cell Tissue Res 2013; 351(2): 325-37.
[http://dx.doi.org/10.1007/s00441-012-1355-2] [PMID: 22358849]
[6]
Potempa J, Pike RN. Corruption of innate immunity by bacterial proteases. J Innate Immun 2009; 1(2): 70-87.
[http://dx.doi.org/10.1159/000181144] [PMID: 19756242]
[7]
Wilson M, Seymour R, Henderson B. Bacterial perturbation of cytokine networks. Infect Immun 1998; 66(6): 2401-9.
[http://dx.doi.org/10.1128/IAI.66.6.2401-2409.1998] [PMID: 9596695]
[8]
Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 1992; 307(1): 97-101.
[http://dx.doi.org/10.1016/0014-5793(92)80909-Z] [PMID: 1639201]
[9]
Mikolajczyk-Pawlinska J, Travis J, Potempa J. Modulation of interleukin-8 activity by gingipains from Porphyromonas gingivalis: implications for pathogenicity of periodontal disease. FEBS Lett 1998; 440(3): 282-6.
[http://dx.doi.org/10.1016/S0014-5793(98)01461-6] [PMID: 9872387]
[10]
Deng S, Jepsen S, Dommisch H, et al. Cysteine proteases from Porphyromonas gingivalis and TLR ligands synergistically induce the synthesis of the cytokine IL-8 in human artery endothelial cells. Arch Oral Biol 2011; 56(12): 1583-91.
[http://dx.doi.org/10.1016/j.archoralbio.2011.06.018] [PMID: 21802653]
[11]
Jayaprakash K, Khalaf H, Bengtsson T. Gingipains from Porphyromonas gingivalis play a significant role in induction and regulation of CXCL8 in THP-1 cells. BMC Microbiol 2014; 14(1): 193.
[http://dx.doi.org/10.1186/1471-2180-14-193] [PMID: 25037882]
[12]
Zhang J, Dong H, Kashket S, Duncan MJ. IL-8 degradation by Porphyromonas gingivalis proteases. Microb Pathog 1999; 26(5): 275-80.
[http://dx.doi.org/10.1006/mpat.1998.0277] [PMID: 10222212]
[13]
Okuda J, Hayashi N, Tanabe S, Minagawa S, Gotoh N. Degradation of interleukin 8 by the serine protease MucD of Pseudomonas aeruginosa. J Infect Chemother 2011; 17(6): 782-92.
[http://dx.doi.org/10.1007/s10156-011-0257-7] [PMID: 21626303]
[14]
Kon Y, Tsukada H, Hasegawa T, et al. The role of Pseudomonas aeruginosa elastase as a potent inflammatory factor in a rat air pouch inflammation model. FEMS Immunol Med Microbiol 1999; 25(3): 313-21.
[http://dx.doi.org/10.1111/j.1574-695X.1999.tb01356.x] [PMID: 10459586]
[15]
Chang CW, Wu SY, Chuang WJ, et al. The IL-8 production by Streptococcal pyrogenic exotoxin B. Exp Biol Med (Maywood) 2009; 234(11): 1316-26.
[http://dx.doi.org/10.3181/0905-RM-156] [PMID: 19855073]
[16]
Sjölinder H, Lövkvist L, Plant L, et al. The ScpC protease of Streptococcus pyogenes affects the outcome of sepsis in a murine model. Infect Immun 2008; 76(9): 3959-66.
[http://dx.doi.org/10.1128/IAI.00128-08] [PMID: 18573900]
[17]
Zinkernagel AS, Timmer AM, Pence MA, et al. The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host Microbe 2008; 4(2): 170-8.
[http://dx.doi.org/10.1016/j.chom.2008.07.002] [PMID: 18692776]
[18]
Jobichen C, Tan YC, Prabhakar MT, et al. Structure of ScpC, a virulence protease from Streptococcus pyogenes, reveals the functional domains and maturation mechanism. Biochem J 2018; 475(17): 2847-60.
[http://dx.doi.org/10.1042/BCJ20180145] [PMID: 30049896]
[19]
Bengtsson T, Khalaf A, Khalaf H. Secreted gingipains from Porphyromonas gingivalis colonies exert potent immunomodulatory effects on human gingival fibroblasts. Microbiol Res 2015; 178: 18-26.
[http://dx.doi.org/10.1016/j.micres.2015.05.008] [PMID: 26302843]
[20]
Palm E, Khalaf H, Bengtsson T. Suppression of inflammatory responses of human gingival fibroblasts by gingipains from Porphyromonas gingivalis. Mol Oral Microbiol 2015; 30(1): 74-85.
[http://dx.doi.org/10.1111/omi.12073] [PMID: 25055828]
[21]
Steffen MJ, Holt SC, Ebersole JL. Porphyromonas gingivalis induction of mediator and cytokine secretion by human gingival fibroblasts. Oral Microbiol Immunol 2000; 15(3): 172-80.
[http://dx.doi.org/10.1034/j.1399-302x.2000.150305.x] [PMID: 11154400]
[22]
Leidal KG, Munson KL, Johnson MC, Denning GM. Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78. J Interferon Cytokine Res 2003; 23(6): 307-18.
[http://dx.doi.org/10.1089/107999003766628151] [PMID: 12859857]
[23]
Mochizuki Y, Suzuki T, Oka N, et al. Pseudomonas aeruginosa MucD protease mediates keratitis by inhibiting neutrophil recruitment and promoting bacterial survival. Invest Ophthalmol Vis Sci 2014; 55(1): 240-6.
[http://dx.doi.org/10.1167/iovs.13-13151] [PMID: 24255043]
[24]
Theander TG, Kharazmi A, Pedersen BK, et al. Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases. Infect Immun 1988; 56(7): 1673-7.
[http://dx.doi.org/10.1128/iai.56.7.1673-1677.1988] [PMID: 3133317]
[25]
Kharazmi A. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett 1991; 30(2): 201-5.
[http://dx.doi.org/10.1016/0165-2478(91)90026-7] [PMID: 1757106]
[26]
Parmely M, Gale A, Clabaugh M, Horvat R, Zhou WW. Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. Infect Immun 1990; 58(9): 3009-14.
[http://dx.doi.org/10.1128/iai.58.9.3009-3014.1990] [PMID: 2117578]
[27]
Bradshaw JL, Caballero AR, Bierdeman MA, et al. Pseudomonas aeruginosa protease IV exacerbates pneumococcal pneumonia and systemic disease. MSphere 2018; 3(3): e00212-18.
[http://dx.doi.org/10.1128/mSphere.00212-18] [PMID: 29720526]
[28]
O’Callaghan R, Caballero A, Tang A, Bierdeman M. Pseudomonas aeruginosa keratitis: Protease iv and pasp as corneal virulence mediators. Microorganisms 2019; 7(9): E281.
[http://dx.doi.org/10.3390/microorganisms7090281] [PMID: 31443433]
[29]
Nelson DC, Garbe J, Collin M. Cysteine proteinase SpeB from Streptococcus pyogenes - a potent modifier of immunologically important host and bacterial proteins. Biol Chem 2011; 392(12): 1077-88.
[http://dx.doi.org/10.1515/BC.2011.208] [PMID: 22050223]
[30]
Egesten A, Olin AI, Linge HM, et al. SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS One 2009; 4(3): e4769.
[http://dx.doi.org/10.1371/journal.pone.0004769] [PMID: 19274094]
[31]
Sumby P, Zhang S, Whitney AR, et al. A chemokine-degrading extracellular protease made by group A Streptococcus alters pathogenesis by enhancing evasion of the innate immune response. Infect Immun 2008; 76(3): 978-85.
[http://dx.doi.org/10.1128/IAI.01354-07] [PMID: 18174342]
[32]
Bryan JD, Shelver DW. Streptococcus agalactiae CspA is a serine protease that inactivates chemokines. J Bacteriol 2009; 191(6): 1847-54.
[http://dx.doi.org/10.1128/JB.01124-08] [PMID: 19114481]
[33]
Tapader R, Bose D, Basu P, et al. Role in proinflammatory response of YghJ, a secreted metalloprotease from neonatal septicemic Escherichia coli. Int J Med Microbiol 2016; 306(7): 554-65.
[http://dx.doi.org/10.1016/j.ijmm.2016.06.003] [PMID: 27389679]
[34]
Déry O, Corvera CU, Steinhoff M, Bunnett NW. Proteinase-activated receptors: Novel mechanisms of signaling by serine proteases.American journal of physiology - cell physiology. American Physiological Society 1998; 274.
[35]
Lourbakos A, Potempa J, Travis J, et al. Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun 2001; 69(8): 5121-30.
[http://dx.doi.org/10.1128/IAI.69.8.5121-5130.2001] [PMID: 11447194]
[36]
Palm E, Demirel I, Bengtsson T, Khalaf H. The role of toll-like and protease-activated receptors in the expression of cytokines by gingival fibroblasts stimulated with the periodontal pathogen Porphyromonas gingivalis. Cytokine 2015; 76(2): 424-32.
[http://dx.doi.org/10.1016/j.cyto.2015.08.263] [PMID: 26318255]
[37]
Uehara A, Muramoto K, Imamura T, et al. Arginine-specific gingipains from Porphyromonas gingivalis stimulate production of hepatocyte growth factor (scatter factor) through protease-activated receptors in human gingival fibroblasts in culture. J Immunol 2005; 175(9): 6076-84.
[http://dx.doi.org/10.4049/jimmunol.175.9.6076] [PMID: 16237103]
[38]
Giacaman RA, Asrani AC, Ross KF, Herzberg MC. Cleavage of protease-activated receptors on an immortalized oral epithelial cell line by Porphyromonas gingivalis gingipains. Microbiology 2009; 155(Pt 10): 3238-46.
[http://dx.doi.org/10.1099/mic.0.029132-0] [PMID: 19608609]
[39]
Klarström Engström K, Khalaf H, Kälvegren H, Bengtsson T. The role of Porphyromonas gingivalis gingipains in platelet activation and innate immune modulation. Mol Oral Microbiol 2015; 30(1): 62-73.
[http://dx.doi.org/10.1111/omi.12067] [PMID: 25043711]
[40]
Lourbakos A, Yuan YP, Jenkins AL, et al. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 2001; 97(12): 3790-7.
[http://dx.doi.org/10.1182/blood.V97.12.3790] [PMID: 11389018]
[41]
Horvat RT, Parmely MJ. Pseudomonas aeruginosa alkaline protease degrades human gamma interferon and inhibits its bioactivity. Infect Immun 1988; 56(11): 2925-32.
[http://dx.doi.org/10.1128/iai.56.11.2925-2932.1988] [PMID: 3139565]
[42]
Sörensen M, Kantorek J, Byrnes L, et al. Pseudomonas aeruginosa modulates the antiviral response of bronchial epithelial cells. Front Immunol 2020; (Feb): 11.
[http://dx.doi.org/10.3389/fimmu.2020.00096]
[43]
Bonney EA. Mapping out p38MAPK. Am J Reprod Immunol 2017; 77(5): e12652.
[http://dx.doi.org/10.1111/aji.12652] [PMID: 28194826]
[44]
Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JAT. Identification of the cellular receptor for anthrax toxin. Nature 2001; 414(6860): 225-9.
[http://dx.doi.org/10.1038/n35101999] [PMID: 11700562]
[45]
Park JM, Greten FR, Li ZW, Karin M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 2002; 297(5589): 2048-51.
[http://dx.doi.org/10.1126/science.1073163]
[46]
Kida Y, Higashimoto Y, Inoue H, Shimizu T, Kuwano K. A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell Microbiol 2008; 10(7): 1491-504.
[http://dx.doi.org/10.1111/j.1462-5822.2008.01142.x] [PMID: 18331590]
[47]
Tada H, Nishioka T, Takase A, Numazaki K, Bando K, Matsushita K. Porphyromonas gingivalis induces the production of interleukin-31 by human mast cells, resulting in dysfunction of the gingival epithelial barrier. Cell Microbiol 2019; 21(3): e12972.
[http://dx.doi.org/10.1111/cmi.12972] [PMID: 30423602]
[48]
Rudack C, Sachse F, Albert N, Becker K, von Eiff C. Immunomodulation of nasal epithelial cells by Staphylococcus aureus-derived serine proteases. J Immunol 2009; 183(11): 7592-601.
[http://dx.doi.org/10.4049/jimmunol.0803902] [PMID: 19917683]
[49]
Woof JM, Kerr MA. The function of immunoglobulin A in immunity. J Pathol 2006; 208(2): 270-82.
[http://dx.doi.org/10.1002/path.1877] [PMID: 16362985]
[50]
Kilian M, Reinholdt J, Lomholt H, Poulsen K, Frandsen EVG. Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence. Acta Pathol Microbiol Scand Suppl 1996; 104(5): 321-38.
[http://dx.doi.org/10.1111/j.1699-0463.1996.tb00724.x] [PMID: 8703438]
[51]
Polissi A, Pontiggia A, Feger G, et al. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 1998; 66(12): 5620-9.
[http://dx.doi.org/10.1128/IAI.66.12.5620-5629.1998] [PMID: 9826334]
[52]
Janoff EN, Rubins JB, Fasching C, et al. Pneumococcal IgA1 protease subverts specific protection by human IgA1. Mucosal Immunol 2014; 7(2): 249-56.
[http://dx.doi.org/10.1038/mi.2013.41] [PMID: 23820749]
[53]
Mulks MH, Kornfeld SJ, Plaut AG. Specific proteolysis of human IgA by Streptococcus pneumoniae and Haemophilus influenzae. J Infect Dis 1980; 141(4): 450-6.
[http://dx.doi.org/10.1093/infdis/141.4.450] [PMID: 6989925]
[54]
SJ K, AG P. Secretory immunity and the bacterial IgA proteases. Rev Infect Dis 1981; 3(3)
[55]
Plaut AG. The IgA1 proteases of pathogenic bacteria. Annu Rev Microbiol 1983; 37(1): 603-22.
[http://dx.doi.org/10.1146/annurev.mi.37.100183.003131] [PMID: 6416146]
[56]
Mulks MH, Plaut AG. IgA protease production as a characteristic distinguishing pathogenic from harmless neisseriaceae. N Engl J Med 1978; 299(18): 973-6.
[http://dx.doi.org/10.1056/NEJM197811022991802] [PMID: 99655]
[57]
Kilian M, Mestecky J, Schrohenloher RE. Pathogenic species of the genus Haemophilus and Streptococcus pneumoniae produce immunoglobulin A1 protease. Infect Immun 1979; 26(1): 143-9.
[http://dx.doi.org/10.1128/iai.26.1.143-149.1979] [PMID: 40878]
[58]
Vitovski S, Read RC, Sayers JR. Invasive isolates of Neisseria meningitidis possess enhanced immunoglobulin A1 protease activity compared to colonizing strains. FASEB J 1999; 13(2): 331-7.
[http://dx.doi.org/10.1096/fasebj.13.2.331] [PMID: 9973321]
[59]
Van Epps DE, Plaut A, Bernier GM, Williams RC Jr. IgA paraprotein inhibition of human neutrophil chemotaxis. Reduced activity following treatment with IgA-specific protease from Neisseria gonorrhoeae. Inflammation 1980; 4(2): 137-44.
[http://dx.doi.org/10.1007/BF00914160] [PMID: 6771212]
[60]
Kilian M, Thomsen B, Petersen TE, Bleeg HS. Occurrence and nature of bacterial IgA proteases. Ann N Y Acad Sci 1983; 409(1): 612-24.
[http://dx.doi.org/10.1111/j.1749-6632.1983.tb26903.x] [PMID: 6347000]
[61]
SB M, M K. Purification and characterization of an immunoglobulin a1 protease from bacteroides melaninogenicus. Infect Immun 1984; 45(3): 550-7.
[62]
Sato M, Otsuka M, Maehara R, Endo J, Nakamura R. Degradation of human secretory immunoglobulin A by protease isolated from the anaerobic periodontopathogenic bacterium, Bacteroides gingivalis. Arch Oral Biol 1987; 32(4): 235-8.
[http://dx.doi.org/10.1016/0003-9969(87)90016-1] [PMID: 3310980]
[63]
Reinholdt J, Tomana M, Mortensen SB, Kilian M. Molecular aspects of immunoglobulin A1 degradation by oral streptococci. Infect Immun 1990; 58(5): 1186-94.
[http://dx.doi.org/10.1128/iai.58.5.1186-1194.1990] [PMID: 2182537]
[64]
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: From structure to effector functions. Front Immunol 2014; 5: 520.
[65]
Vincents B, Guentsch A, Kostolowska D, et al. Cleavage of IgG1 and IgG3 by gingipain K from Porphyromonas gingivalis may compromise host defense in progressive periodontitis. FASEB J 2011; 25(10): 3741-50.
[http://dx.doi.org/10.1096/fj.11-187799] [PMID: 21768393]
[66]
Eriksson A, Norgren M. Cleavage of antigen-bound immunoglobulin G by SpeB contributes to streptococcal persistence in opsonizing blood. Infect Immun 2003; 71(1): 211-7.
[http://dx.doi.org/10.1128/IAI.71.1.211-217.2003] [PMID: 12496168]
[67]
Collin M, Olsén A. Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun 2001; 69(11): 7187-9.
[http://dx.doi.org/10.1128/IAI.69.11.7187-7189.2001] [PMID: 11598100]
[68]
Trastoy B, Lomino JV, Pierce BG, et al. Crystal structure of Streptococcus pyogenes EndoS, an immunomodulatory endoglycosidase specific for human IgG antibodies. Proc Natl Acad Sci USA 2014; 111(18): 6714-9.
[http://dx.doi.org/10.1073/pnas.1322908111] [PMID: 24753590]
[69]
Collin M, Olsén A. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 2001; 20(12): 3046-55.
[http://dx.doi.org/10.1093/emboj/20.12.3046] [PMID: 11406581]
[70]
von Pawel-Rammingen U, Johansson BP, Björck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 2002; 21(7): 1607-15.
[http://dx.doi.org/10.1093/emboj/21.7.1607] [PMID: 11927545]
[71]
Spoerry C, Hessle P, Lewis MJ, Paton L, Woof JM, Von Pawel-Rammingen U. Novel IgG-degrading enzymes of the IgdE protease family link substrate specificity to host tropism of streptococcus species. PLoS One 2017; 11(10) eCollection
[72]
Spoerry C, Seele J, Valentin-Weigand P, Baums CG, von Pawel-Rammingen U. Identification and characterization of IgdE, a novel IgG-degrading protease of streptococcus suis with unique specificity for porcine IgG. J Biol Chem 2016; 291(15): 7915-25.
[http://dx.doi.org/10.1074/jbc.M115.711440] [PMID: 26861873]
[73]
Persson H, Vindebro R, von Pawel-Rammingen U. The streptococcal cysteine protease SpeB is not a natural immunoglobulin-cleaving enzyme. Infect Immun 2013; 81(6): 2236-41.
[http://dx.doi.org/10.1128/IAI.00168-13] [PMID: 23569114]
[74]
Karlsson CAQ, Järnum S, Winstedt L, et al. Streptococcus pyogenes Infection and the Human Proteome with a Special Focus on the Immunoglobulin G-cleaving Enzyme IdeS. Mol Cell Proteomics 2018; 17(6): 1097-111.
[http://dx.doi.org/10.1074/mcp.RA117.000525] [PMID: 29511047]
[75]
Okumura CYM, Anderson EL, Döhrmann S, et al. IgG protease Mac/IdeS is not essential for phagocyte resistance or mouse virulence of M1T1 group A Streptococcus. MBio 2013; 4(4): e00499-13.
[76]
Fernandez Falcon MF, Echague CG, Hair PS, Nyalwidhe JO, Cunnion KM. Protease inhibitors decrease IgG shedding from Staphylococcus aureus, increasing complement activation and phagocytosis efficiency. J Med Microbiol 2011; 60(Pt 10): 1415-22.
[http://dx.doi.org/10.1099/jmm.0.027557-0] [PMID: 21636671]
[77]
Ehrenstein MR, Notley CA. The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 2010; 10(11): 778-86.
[http://dx.doi.org/10.1038/nri2849] [PMID: 20948548]
[78]
Seele J, Singpiel A, Spoerry C, von Pawel-Rammingen U, Valentin-Weigand P, Baums CG. Identification of a novel host-specific IgM protease in Streptococcus suis. J Bacteriol 2013; 195(5): 930-40.
[http://dx.doi.org/10.1128/JB.01875-12] [PMID: 23243300]
[79]
Rungelrath V, Weiße C, Schütze N, et al. IgM cleavage by Streptococcus suis reduces IgM bound to the bacterial surface and is a novel complement evasion mechanism. Virulence 2018; 9(1): 1314-37.
[http://dx.doi.org/10.1080/21505594.2018.1496778] [PMID: 30001174]
[80]
Seele J, Beineke A, Hillermann LM, Jaschok-Kentner B, Von Pawel-Rammingen U, Valentin-Weigand P, et al. The immunoglobulin M-degrading enzyme of Streptococcus suis, Ide Ssuis, is involved in complement evasion. Vet Res (Faisalabad) 2015; 46(1): 1-14.
[81]
Kizlik-Masson C, Deveuve Q, Zhou Y, et al. Cleavage of anti-PF4/heparin IgG by a bacterial protease and potential benefit in heparin-induced thrombocytopenia. Blood 2019; 133(22): 2427-35.
[http://dx.doi.org/10.1182/blood.2019000437] [PMID: 30917957]
[82]
Nandakumar KS, Collin M, Olsén A, et al. Endoglycosidase treatment abrogates IgG arthritogenicity: importance of IgG glycosylation in arthritis. Eur J Immunol 2007; 37(10): 2973-82.
[http://dx.doi.org/10.1002/eji.200737581] [PMID: 17899548]
[83]
Benkhoucha M, Molnarfi N, Santiago-Raber ML, et al. IgG glycan hydrolysis by EndoS inhibits experimental autoimmune encephalomyelitis. J Neuroinflammation 2012; 9(209): 209.
[http://dx.doi.org/10.1186/1742-2094-9-209] [PMID: 22943418]
[84]
Yang R, Otten MA, Hellmark T, et al. Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes. Nephrol Dial Transplant 2010; 25(8): 2479-86.
[http://dx.doi.org/10.1093/ndt/gfq115] [PMID: 20219834]
[85]
Johansson BP, Shannon O, Björck L, Ide S. IdeS: a bacterial proteolytic enzyme with therapeutic potential. PLoS One 2008; 3(2): e1692.
[http://dx.doi.org/10.1371/journal.pone.0001692] [PMID: 18301769]
[86]
Wang L, Li X, Shen H, et al. Bacterial IgA protease-mediated degradation of agIgA1 and agIgA1 immune complexes as a potential therapy for IgA Nephropathy. Sci Rep 2016; 6(Aug): 30964.
[http://dx.doi.org/10.1038/srep30964] [PMID: 27485391]
[87]
Nesargikar PN, Spiller B, Chavez R. The complement system: history, pathways, cascade and inhibitors. Eur J Microbiol Immunol (Bp) 2012; 2(2): 103-11.
[http://dx.doi.org/10.1556/EuJMI.2.2012.2.2] [PMID: 24672678]
[88]
Potempa M, Potempa J. Protease-dependent mechanisms of complement evasion by bacterial pathogens. Biol Chem 2012; 393(9): 873-88.
[http://dx.doi.org/10.1515/hsz-2012-0174] [PMID: 22944688]
[89]
Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 1994; 269(23): 15957-60.
[http://dx.doi.org/10.1016/S0021-9258(17)33954-6] [PMID: 8206889]
[90]
Lathem WW, Grys TE, Witowski SE, et al. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol Microbiol 2002; 45(2): 277-88.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02997.x] [PMID: 12123444]
[91]
Lathem WW, Bergsbaken T, Welch RA. Potentiation of C1 esterase inhibitor by StcE, a metalloprotease secreted by Escherichia coli O157:H7. J Exp Med 2004; 199(8): 1077-87.
[http://dx.doi.org/10.1084/jem.20030255] [PMID: 15096536]
[92]
Honda-Ogawa M, Ogawa T, Terao Y, et al. Cysteine proteinase from Streptococcus pyogenes enables evasion of innate immunity via degradation of complement factors. J Biol Chem 2013; 288(22): 15854-64.
[http://dx.doi.org/10.1074/jbc.M113.469106] [PMID: 23589297]
[93]
Honda-Ogawa M, Sumitomo T, Mori Y, et al. Streptococcus pyogenes endopeptidase O contributes to evasion from complement-mediated bacteriolysis via binding to human complement factor C1q. J Biol Chem 2017; 292(10): 4244-54.
[http://dx.doi.org/10.1074/jbc.M116.749275] [PMID: 28154192]
[94]
Agarwal V, Sroka M, Fulde M, Bergmann S, Riesbeck K, Blom AM. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence. J Biol Chem 2014; 289(22): 15833-44.
[http://dx.doi.org/10.1074/jbc.M113.530212] [PMID: 24739385]
[95]
Jusko M, Potempa J, Kantyka T, et al. Staphylococcal proteases aid in evasion of the human complement system. J Innate Immun 2014; 6(1): 31-46.
[http://dx.doi.org/10.1159/000351458] [PMID: 23838186]
[96]
Hong YQ, Ghebrehiwet B. Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin Immunol Immunopathol 1992; 62(2): 133-8.
[http://dx.doi.org/10.1016/0090-1229(92)90065-V] [PMID: 1730152]
[97]
Popadiak K, Potempa J, Riesbeck K, Blom AM. Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system. J Immunol 2007; 178(11): 7242-50.
[http://dx.doi.org/10.4049/jimmunol.178.11.7242] [PMID: 17513773]
[98]
Laarman AJ, Bardoel BW, Ruyken M, et al. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J Immunol 2012; 188(1): 386-93.
[http://dx.doi.org/10.4049/jimmunol.1102162] [PMID: 22131330]
[99]
Abreu AG, Barbosa AS. How Escherichia coli circumvent complement-mediated killing. Front Immunol 2017; 8(452) eCollection
[http://dx.doi.org/10.3389/fimmu.2017.00452]
[100]
Abreu AG, Abe CM, Nunes KO, et al. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli. Gut Microbes 2016; 7(2): 115-25.
[http://dx.doi.org/10.1080/19490976.2015.1136775] [PMID: 26963626]
[101]
Abreu AG, Fraga TR, Granados Martínez AP, et al. The serine protease Pic from enteroaggregative Escherichia coli mediates immune evasion by the direct cleavage of complement proteins. J Infect Dis 2015; 212(1): 106-15.
[http://dx.doi.org/10.1093/infdis/jiv013] [PMID: 25583166]
[102]
Kuo C-F, Lin Y-S, Chuang W-J, Wu J-J, Tsao N. Degradation of complement 3 by streptococcal pyrogenic exotoxin B inhibits complement activation and neutrophil opsonophagocytosis. Infect Immun 2008; 76(3): 1163-9.
[http://dx.doi.org/10.1128/IAI.01116-07] [PMID: 18174338]
[103]
Terao Y, Mori Y, Yamaguchi M, et al. Group A streptococcal cysteine protease degrades C3 (C3b) and contributes to evasion of innate immunity. J Biol Chem 2008; 283(10): 6253-60.
[http://dx.doi.org/10.1074/jbc.M704821200] [PMID: 18160402]
[104]
Tsao N, Tsai W-H, Lin Y-S, Chuang W-J, Wang C-H, Kuo C-F. Streptococcal pyrogenic exotoxin B cleaves properdin and inhibits complement-mediated opsonophagocytosis. Biochem Biophys Res Commun 2006; 339(3): 779-84.
[http://dx.doi.org/10.1016/j.bbrc.2005.11.078] [PMID: 16329996]
[105]
Wingrove JA, DiScipio RG, Chen Z, Potempa J, Travis J, Hugli TE. Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem 1992; 267(26): 18902-7.
[http://dx.doi.org/10.1016/S0021-9258(19)37046-2] [PMID: 1527018]
[106]
Potempa M, Potempa J, Kantyka T, et al. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3. PLoS Pathog 2009; 5(2): e1000316.
[http://dx.doi.org/10.1371/journal.ppat.1000316] [PMID: 19247445]
[107]
Schenkein HA. The effect of periodontal proteolytic Bacteroides species on proteins of the human complement system. J Periodontal Res 1988; 23(3): 187-92.
[http://dx.doi.org/10.1111/j.1600-0765.1988.tb01356.x] [PMID: 2969970]
[108]
Fan M, Chen S, Zhang L, et al. Riemerella anatipestifer extracellular protease S blocks complement activation via the classical and lectin pathways. Avian Pathol 2017; 46(4): 426-33.
[http://dx.doi.org/10.1080/03079457.2017.1301648] [PMID: 28277777]
[109]
Del Tordello E, Vacca I, Ram S, Rappuoli R, Serruto D. Neisseria meningitidis NalP cleaves human complement C3, facilitating degradation of C3b and survival in human serum. Proc Natl Acad Sci USA 2014; 111(1): 427-32.
[http://dx.doi.org/10.1073/pnas.1321556111] [PMID: 24367091]
[110]
Fraga TR, Courrol DdosS, Castiblanco-Valencia MM, et al. Immune evasion by pathogenic Leptospira strains: the secretion of proteases that directly cleave complement proteins. J Infect Dis 2014; 209(6): 876-86.
[http://dx.doi.org/10.1093/infdis/jit569] [PMID: 24163418]
[111]
Park SY, Shin YP, Kim CH, et al. Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. J Immunol 2008; 181(9): 6328-36.
[http://dx.doi.org/10.4049/jimmunol.181.9.6328] [PMID: 18941224]
[112]
Ramu P, Tanskanen R, Holmberg M, Lähteenmäki K, Korhonen TK, Meri S. The surface protease PgtE of Salmonella enterica affects complement activity by proteolytically cleaving C3b, C4b and C5. FEBS Lett 2007; 581(9): 1716-20.
[http://dx.doi.org/10.1016/j.febslet.2007.03.049] [PMID: 17418141]
[113]
Orth D, Ehrlenbach S, Brockmeyer J, et al. EspP, a serine protease of enterohemorrhagic Escherichia coli, impairs complement activation by cleaving complement factors C3/C3b and C5. Infect Immun 2010; 78(10): 4294-301.
[http://dx.doi.org/10.1128/IAI.00488-10] [PMID: 20643852]
[114]
Potempa M, Potempa J, Okroj M, et al. Binding of complement inhibitor C4b-binding protein contributes to serum resistance of Porphyromonas gingivalis. J Immunol 2008; 181(8): 5537-44.
[http://dx.doi.org/10.4049/jimmunol.181.8.5537] [PMID: 18832711]
[115]
Ji Y, McLandsborough L, Kondagunta A, Cleary PP. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect Immun 1996; 64(2): 503-10.
[http://dx.doi.org/10.1128/iai.64.2.503-510.1996] [PMID: 8550199]
[116]
Lynskey NN, Reglinski M, Calay D, et al. Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLoS Pathog 2017; 13(8): e1006493.
[http://dx.doi.org/10.1371/journal.ppat.1006493] [PMID: 28806402]
[117]
Bohnsack JF, Mollison KW, Buko AM, Ashworth JC, Hill HR. Group B streptococci inactivate complement component C5a by enzymic cleavage at the C-terminus. Biochem J 1991; 273(Pt 3): 635-40.
[http://dx.doi.org/10.1042/bj2730635] [PMID: 1996961]
[118]
Chmouryguina I, Suvorov A, Ferrieri P, Cleary PP. Conservation of the C5a peptidase genes in group A and B streptococci. Infect Immun 1996; 64(7): 2387-90.
[http://dx.doi.org/10.1128/iai.64.7.2387-2390.1996] [PMID: 8698456]
[119]
Oda T, Kojima Y, Akaike T, Ijiri S, Molla A, Maeda H. Inactivation of chemotactic activity of C5a by the serratial 56-kilodalton protease. Infect Immun 1990; 58(5): 1269-72.
[http://dx.doi.org/10.1128/iai.58.5.1269-1272.1990] [PMID: 1691142]
[120]
Jusko M, Potempa J, Mizgalska D, et al. A metalloproteinase mirolysin of tannerella forsythia inhibits all pathways of the complement system. J Immunol 2015; 195(5): 2231-40.
[http://dx.doi.org/10.4049/jimmunol.1402892] [PMID: 26209620]
[121]
Nitta H, Imamura T, Wada Y, et al. Production of C5a by ASP, a serine protease released from Aeromonas sobria. J Immunol 2008; 181(5): 3602-8.
[http://dx.doi.org/10.4049/jimmunol.181.5.3602] [PMID: 18714034]
[122]
Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 2017; 133: 117-38.
[http://dx.doi.org/10.1016/j.bcp.2016.09.018] [PMID: 27663838]
[123]
Lehrer RI, Lu W. α-Defensins in human innate immunity. Immunol Rev 2012; 245(1): 84-112.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01082.x] [PMID: 22168415]
[124]
Nizet V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol 2006; 8(1): 11-26.
[PMID: 16450883]
[125]
Carlisle MD, Srikantha RN, Brogden KA. Degradation of human α- and β-defensins by culture supernatants of Porphyromonas gingivalis strain 381. J Innate Immun 2009; 1(2): 118-22.
[http://dx.doi.org/10.1159/000181015] [PMID: 20375570]
[126]
Chieosilapatham P, Ikeda S, Ogawa H, Niyonsaba F. Tissue-specific regulation of innate immune responses by human cathelicidin LL-37. Curr Pharm Des 2018; 24(10): 1079-91.
[http://dx.doi.org/10.2174/1381612824666180327113418] [PMID: 29589544]
[127]
Schmidtchen A, Frick IM, Andersson E, Tapper H, Björck L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 2002; 46(1): 157-68.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03146.x] [PMID: 12366839]
[128]
Belas R, Manos J, Suvanasuthi R. Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect Immun 2004; 72(9): 5159-67.
[http://dx.doi.org/10.1128/IAI.72.9.5159-5167.2004] [PMID: 15322010]
[129]
Xie F, Zan Y, Zhang Y, et al. The cysteine protease ApdS from Streptococcus suis promotes evasion of innate immune defenses by cleaving the antimicrobial peptide cathelicidin LL-37. J Biol Chem 2019; 294(47): 17962-77.
[130]
Karlsson C, Andersson M-L, Collin M, Schmidtchen A, Björck L, Frick I-M. SufA--a novel subtilisin-like serine proteinase of Finegoldia magna. Microbiology 2007; 294(47): 17962-77.
[http://dx.doi.org/10.1099/mic.0.2007/010322-0] [PMID: 18048934]
[131]
Sieprawska-Lupa M, Mydel P, Krawczyk K, et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 2004; 48(12): 4673-9.
[http://dx.doi.org/10.1128/AAC.48.12.4673-4679.2004] [PMID: 15561843]
[132]
Nyberg P, Rasmussen M, Björck L. alpha2-Macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J Biol Chem 2004; 279(51): 52820-3.
[http://dx.doi.org/10.1074/jbc.C400485200] [PMID: 15520011]
[133]
Johansson L, Thulin P, Sendi P, et al. Cathelicidin LL-37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect Immun 2008; 76(8): 3399-404.
[http://dx.doi.org/10.1128/IAI.01392-07] [PMID: 18490458]
[134]
Schittek B, Hipfel R, Sauer B, et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2001; 2(12): 1133-7.
[http://dx.doi.org/10.1038/ni732] [PMID: 11694882]
[135]
Lai Y, Villaruz AE, Li M, Cha DJ, Sturdevant DE, Otto M. The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol Microbiol 2007; 63(2): 497-506.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05540.x] [PMID: 17176256]
[136]
Furniss RCD, Low WW, Mavridou DAI, et al. Plasma membrane profiling during enterohemorrhagic E. coli infection reveals that the metalloprotease StcE cleaves CD55 from host epithelial surfaces. J Biol Chem 2018; 293(44): 17188-99.
[http://dx.doi.org/10.1074/jbc.RA118.005114] [PMID: 30190327]
[137]
Ruiz-Perez F, Wahid R, Faherty CS, et al. Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc Natl Acad Sci USA 2011; 108(31): 12881-6.
[http://dx.doi.org/10.1073/pnas.1101006108] [PMID: 21768350]
[138]
Dutra IL, Araújo LG, Assunção RG, et al. Pic-producing escherichia coli induces high production of proinflammatory mediators by the host leading to death by sepsis. Int J Mol Sci 2020; 21(6): E2068.
[http://dx.doi.org/10.3390/ijms21062068] [PMID: 32197297]
[139]
Laarman AJ, Mijnheer G, Mootz JM, et al. Staphylococcus aureus Staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J 2012; 31(17): 3607-19.
[http://dx.doi.org/10.1038/emboj.2012.212] [PMID: 22850671]
[140]
Mintz CS, Miller RD, Gutgsell NS, Malek T. Legionella pneumophila protease inactivates interleukin-2 and cleaves CD4 on human T cells. Infect Immun 1993; 61(8): 3416-21.
[http://dx.doi.org/10.1128/iai.61.8.3416-3421.1993] [PMID: 8335371]
[141]
Miwa T, Song WC. Membrane complement regulatory proteins: Insight from animal studies and relevance to human diseases. Int Immunopharmacol 2001; 1(3): 445-59.
[142]
Mahtout H, Chandad F, Rojo JM, Grenier D. Porphyromonas gingivalis mediates the shedding and proteolysis of complement regulatory protein CD46 expressed by oral epithelial cells. Oral Microbiol Immunol 2009; 24(5): 396-400.
[http://dx.doi.org/10.1111/j.1399-302X.2009.00532.x] [PMID: 19702953]
[143]
Thulin P, Johansson L, Low DE, et al. Viable group A streptococci in macrophages during acute soft tissue infection.PLoS Med. 2006; 3: p. (3)e53.
[http://dx.doi.org/10.1371/journal.pmed.0030053]
[144]
Chiang-Ni C, Wang CH, Tsai PJ, et al. Streptococcal pyrogenic exotoxin B causes mitochondria damage to polymorphonuclear cells preventing phagocytosis of group A streptococcus. Med Microbiol Immunol (Berl) 2006; 195(2): 55-63.
[http://dx.doi.org/10.1007/s00430-005-0001-y] [PMID: 16059700]
[145]
Chen CL, Wu YY, Lin CF, et al. Streptococcal pyrogenic exotoxin B inhibits apoptotic cell clearance by macrophages through protein S cleavage. Sci Rep 2016; 6: 26026.
[http://dx.doi.org/10.1038/srep26026] [PMID: 27181595]
[146]
Smagur J, Guzik K, Magiera L, et al. A new pathway of staphylococcal pathogenesis: apoptosis-like death induced by Staphopain B in human neutrophils and monocytes. J Innate Immun 2009; 1(2): 98-108.
[http://dx.doi.org/10.1159/000181014] [PMID: 20375568]
[147]
Smagur J, Guzik K, Bzowska M, et al. Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biol Chem 2009; 390(4): 361-71.
[http://dx.doi.org/10.1515/BC.2009.042] [PMID: 19284294]
[148]
Guzik K, Bzowska M, Smagur J, et al. A new insight into phagocytosis of apoptotic cells: proteolytic enzymes divert the recognition and clearance of polymorphonuclear leukocytes by macrophages. Cell Death Differ 2007; 14(1): 171-82.
[http://dx.doi.org/10.1038/sj.cdd.4401927] [PMID: 16628232]
[149]
Kapur V, Topouzis S, Majesky MW, et al. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog 1993; 15(5): 327-46.
[http://dx.doi.org/10.1006/mpat.1993.1083] [PMID: 7516997]
[150]
Ohbayashi T, Irie A, Murakami Y, et al. Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus. Microbiology 2011; 157(Pt 3): 786-92.
[http://dx.doi.org/10.1099/mic.0.044503-0] [PMID: 21081759]
[151]
Potempa J, Dubin A, Korzus G, Travis J. Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J Biol Chem 1988; 263(6): 2664-7.
[http://dx.doi.org/10.1016/S0021-9258(18)69118-5] [PMID: 3422637]
[152]
Oleksy A, Golonka E, Bańbuła A, et al. Growth phase-dependent production of a cell wall-associated elastinolytic cysteine proteinase by Staphylococcus epidermidis. Biol Chem 2004; 385(6): 525-35.
[http://dx.doi.org/10.1515/BC.2004.062] [PMID: 15255185]
[153]
Hirasawa Y, Takai T, Nakamura T, et al. Staphylococcus aureus extracellular protease causes epidermal barrier dysfunction. J Invest Dermatol 2010; 130(2): 614-7.
[http://dx.doi.org/10.1038/jid.2009.257] [PMID: 19812593]
[154]
Nakatsuji T, Chen TH, Two AM, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol 2016; 136(11): 2192-200.
[http://dx.doi.org/10.1016/j.jid.2016.05.127] [PMID: 27381887]
[155]
Murphy J, Ramezanpour M, Stach N, et al. Staphylococcus Aureus V8 protease disrupts the integrity of the airway epithelial barrier and impairs IL-6 production in vitro. Laryngoscope 2018; 128(1): E8-E15.
[156]
Amagai M, Yamaguchi T, Hanakawa Y, Nishifuji K, Sugai M, Stanley JR. Staphylococcal exfoliative toxin B specifically cleaves desmoglein 1. J Invest Dermatol 2002; 118(5): 845-50.
[http://dx.doi.org/10.1046/j.1523-1747.2002.01751.x] [PMID: 11982763]
[157]
Schmidtchen A, Holst E, Tapper H, Björck L. Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth. Microb Pathog 2003; 34(1): 47-55.
[http://dx.doi.org/10.1016/S0882-4010(02)00197-3] [PMID: 12620384]
[158]
Johansson A, Kalfas S. Characterization of the proteinase-dependent cytotoxicity of Porphyromonas gingivalis. Eur J Oral Sci 1998; 106(4): 863-71.
[http://dx.doi.org/10.1046/j.0909-8836.1998.eos106405.x] [PMID: 9708689]
[159]
Wang PL, Shinohara M, Murakawa N, et al. Effect of cysteine protease of Porphyromonas gingivalis on adhesion molecules in gingival epithelial cells. Jpn J Pharmacol 1999; 80(1): 75-9.
[http://dx.doi.org/10.1254/jjp.80.75] [PMID: 10446759]
[160]
Tada H, Sugawara S, Nemoto E, et al. Proteolysis of ICAM-1 on human oral epithelial cells by gingipains. J Dent Res 2003; 82(10): 796-801.
[http://dx.doi.org/10.1177/154405910308201007] [PMID: 14514759]
[161]
Katz J, Sambandam V, Wu JH, Michalek SM, Balkovetz DF. Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes. Infect Immun 2000; 68(3): 1441-9.
[http://dx.doi.org/10.1128/IAI.68.3.1441-1449.2000] [PMID: 10678958]
[162]
Andrian E, Grenier D, Rouabhia M. In vitro models of tissue penetration and destruction by Porphyromonas gingivalis. Infect Immun 2004; 72(8): 4689-98.
[http://dx.doi.org/10.1128/IAI.72.8.4689-4698.2004] [PMID: 15271930]
[163]
Molloy K, Cagney G, Dillon ET, Wynne K, Greene CM, McElvaney NG. Impaired airway epithelial barrier integrity in response to stenotrophomonas maltophilia proteases, novel insights using cystic fibrosis bronchial epithelial cell secretomics. Front Immunol 2020; 11(Feb): 198.
[http://dx.doi.org/10.3389/fimmu.2020.00198] [PMID: 32161586]
[164]
DuMont AL, Cianciotto NP. Stenotrophomonas maltophilia serine protease StmPr1 induces matrilysis, anoikis, and protease-activated receptor 2 activation in human lung epithelial cells. Infect Immun 2017; 85(12): e00544-17.
[http://dx.doi.org/10.1128/IAI.00544-17] [PMID: 28893914]
[165]
Hoy B, Löwer M, Weydig C, et al. Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 2010; 11(10): 798-804.
[http://dx.doi.org/10.1038/embor.2010.114] [PMID: 20814423]
[166]
Harrer A, Bücker R, Boehm M, et al. Campylobacter jejuni enters gut epithelial cells and impairs intestinal barrier function through cleavage of occludin by serine protease HtrA. Gut Pathog 2019; 11(1): 4.
[http://dx.doi.org/10.1186/s13099-019-0283-z] [PMID: 30805031]
[167]
Frick IM, Björck L, Herwald H. The dual role of the contact system in bacterial infectious disease. Thromb Haemost 2007; 98(3): 497-502.
[http://dx.doi.org/10.1160/TH07-01-0051] [PMID: 17849037]
[168]
Wu Y. Contact pathway of coagulation and inflammation. Thromb J 2015; 13(1): 17.
[http://dx.doi.org/10.1186/s12959-015-0048-y]
[169]
Maeda H, Yamamoto T. Pathogenic mechanisms induced by microbial proteases in microbial infections. Biol Chem Hoppe Seyler 1996; 377(4): 217-26.
[PMID: 8737987]
[170]
Herwald H, Collin M, Müller-Esterl W, Björck L. Streptococcal cysteine proteinase releases kinins: a virulence mechanism. J Exp Med 1996; 184(2): 665-73.
[http://dx.doi.org/10.1084/jem.184.2.665] [PMID: 8760820]
[171]
Imamura T, Tanase S, Szmyd G, Kozik A, Travis J, Potempa J. Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. J Exp Med 2005; 201(10): 1669-76.
[http://dx.doi.org/10.1084/jem.20042041] [PMID: 15897280]
[172]
Imamura T, Tanase S, Szmyd G, Kozik A, Travis J, Potempa J. Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. J Exp Med 2014; 201(10): 1669-76.
[173]
Imamura T, Potempa J, Pike RN, Travis J. Dependence of vascular permeability enhancement on cysteine proteinases in vesicles of Porphyromonas gingivalis. Infect Immun 1995; 63(5): 1999-2003.
[http://dx.doi.org/10.1128/iai.63.5.1999-2003.1995] [PMID: 7729914]
[174]
Hu S-W, Huang C-H, Huang H-C, Lai Y-Y, Lin Y-Y. Transvascular dissemination of Porphyromonas gingivalis from a sequestered site is dependent upon activation of the kallikrein/kinin pathway. J Periodontal Res 2006; 41(3): 200-7.
[http://dx.doi.org/10.1111/j.1600-0765.2005.00858.x] [PMID: 16677289]
[175]
Sakata Y, Akaike T, Suga M, Ijiri S, Ando M, Maeda H. Bradykinin generation triggered by Pseudomonas proteases facilitates invasion of the systemic circulation by Pseudomonas aeruginosa. Microbiol Immunol 1996; 40(6): 415-23.
[http://dx.doi.org/10.1111/j.1348-0421.1996.tb01088.x] [PMID: 8839427]
[176]
Waack U, Warnock M, Yee A, et al. CpaA is a glycan-specific adamalysin-like protease secreted by acinetobacter baumannii that inactivates coagulation factor XII. MBio 2018; 9(6): e01606-18.
[http://dx.doi.org/10.1128/mBio.01606-18] [PMID: 30563903]
[177]
Brunder W, Schmidt H, Karch H. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol 1997; 24(4): 767-78.
[http://dx.doi.org/10.1046/j.1365-2958.1997.3871751.x] [PMID: 9194704]
[178]
Macrae FL, Duval C, Papareddy P, et al. A fibrin biofilm covers blood clots and protects from microbial invasion. J Clin Invest 2018; 128(8): 3356-68.
[http://dx.doi.org/10.1172/JCI98734] [PMID: 29723163]
[179]
Varjú I, Kolev K. Networks that stop the flow: A fresh look at fibrin and neutrophil extracellular traps. Thromb Res 2019; 182: 1-11.
[http://dx.doi.org/10.1016/j.thromres.2019.08.003] [PMID: 31415922]
[180]
Plow EF, Herren T, Redlitz A, Miles LA, Hoover-Plow JL. The cell biology of the plasminogen system. FASEB J 1995; 9(10): 939-45.
[http://dx.doi.org/10.1096/fasebj.9.10.7615163] [PMID: 7615163]
[181]
Bergmann S, Hammerschmidt S. Fibrinolysis and host response in bacterial infections. Thromb Haemost 2007; 98(3): 512-20.
[http://dx.doi.org/10.1160/TH07-02-0117] [PMID: 17849039]
[182]
Hritonenko V, Stathopoulos C. Omptin proteins: an expanding family of outer membrane proteases in Gram-negative Enterobacteriaceae. Mol Membr Biol 2007; 24(5-6): 395-406. [Review].
[http://dx.doi.org/10.1080/09687680701443822] [PMID: 17710644]
[183]
Sebbane F, Jarrett CO, Gardner D, Long D, Hinnebusch BJ. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci USA 2006; 103(14): 5526-30.
[http://dx.doi.org/10.1073/pnas.0509544103] [PMID: 16567636]
[184]
Sodeinde OA, Goguen JD. Nucleotide sequence of the plasminogen activator gene of Yersinia pestis: relationship to ompT of Escherichia coli and gene E of Salmonella typhimurium. Infect Immun 1989; 57(5): 1517-23.
[http://dx.doi.org/10.1128/iai.57.5.1517-1523.1989] [PMID: 2651310]
[185]
Korhonen TK, Haiko J, Laakkonen L, Järvinen HM, Westerlund-Wikström B. Fibrinolytic and coagulative activities of Yersinia pestis. Front Cell Infect Microbiol 2013; 3: 35.
[http://dx.doi.org/10.3389/fcimb.2013.00035]
[186]
Degen JL, Bugge TH, Goguen JD. Fibrin and fibrinolysis in infection and host defense. J Thromb Haemost 2007; 5(Suppl. 1): 24-31.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02519.x] [PMID: 17635705]
[187]
Richards GP, Watson MA, Needleman DS, Uknalis J, Boyd EF, Fay JP. Mechanisms for Pseudoalteromonas piscicida-induced killing of vibrios and other bacterial pathogens. Appl Environ Microbiol 2017; 83(11): e00175-17.
[http://dx.doi.org/10.1128/AEM.00175-17]
[188]
Szweda P, Schielmann M, Kotlowski R, Gorczyca G, Zalewska M, Milewski S. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol 2012; 96(5): 1157-74.
[http://dx.doi.org/10.1007/s00253-012-4484-3] [PMID: 23076591]
[189]
Schindler CA, Schuhardt VT. Lysostaphin: a new bacteriolytic agent for the staphylococcus. Proc Natl Acad Sci USA 1964; 51: 414-21.
[http://dx.doi.org/10.1073/pnas.51.3.414] [PMID: 14171453]
[190]
Schindler CA, Schuhardt VT. Purification and properties of lysostaphin-A lytic agent for Staphylococcus aureus. BBA - Gen Subj 1965; 97(2): 242-50.
[http://dx.doi.org/10.1016/0304-4165(65)90088-7]
[191]
Chandra Ojha S, Imtong C, Meetum K, Sakdee S, Katzenmeier G, Angsuthanasombat C. Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans: Adverse influence of Zn2+ on bacteriolytic activity. Protein Expr Purif 2018; 151: 106-12.
[http://dx.doi.org/10.1016/j.pep.2018.06.013] [PMID: 29944958]
[192]
Becker SC, Foster-Frey J, Donovan DM. The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 2008; 287(2): 185-91.
[http://dx.doi.org/10.1111/j.1574-6968.2008.01308.x] [PMID: 18721148]
[193]
Barequet IS, Ben Simon GJ, Safrin M, Ohman DE, Kessler E. Pseudomonas aeruginosa LasA protease in treatment of experimental staphylococcal keratitis. Antimicrob Agents Chemother 2004; 48(5): 1681-7.
[http://dx.doi.org/10.1128/AAC.48.5.1681-1687.2004] [PMID: 15105121]
[194]
Khan Z, Shafique M, Nawaz HR, Jabeen N, Naz SA. Bacillus tequilensis ZMS-2: A novel source of alkaline protease with antimicrobial, anti-coagulant, fibrinolytic and dehairing potentials. Pak J Pharm Sci 2019; 32(4(Supplementary)): 1913-8.
[PMID: 31680092]
[195]
Meisel H. Biochemical properties of peptides encrypted in bovine milk proteins. Curr Med Chem 2005; 12(16): 1905-19.
[http://dx.doi.org/10.2174/0929867054546618] [PMID: 16101509]
[196]
Ouertani A, Chaabouni I, Mosbah A, et al. Two new secreted proteases generate a casein-derived antimicrobial peptide in Bacillus cereus food born isolate leading to bacterial competition in milk. Front Microbiol 2018; 9.
[http://dx.doi.org/10.3389/fmicb.2018.01148]
[197]
Hayes M, Ross RP, Fitzgerald GF, Hill C, Stanton C. Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Appl Environ Microbiol 2006; 72(3): 2260-4.
[http://dx.doi.org/10.1128/AEM.72.3.2260-2264.2006] [PMID: 16517684]
[198]
Saraiva RG, Fang J, Kang S, Angleró-Rodríguez YI, Dong Y, Dimopoulos G. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLoS Negl Trop Dis 2018; 12(4): e0006443.
[http://dx.doi.org/10.1371/journal.pntd.0006443] [PMID: 29694346]
[199]
Qin Y, Wang J, Wang F, et al. Purification and characterization of a secretory alkaline metalloprotease with highly potent antiviral activity from serratia marcescens strain s3. J Agric Food Chem 2019; 67(11): 3168-78.
[http://dx.doi.org/10.1021/acs.jafc.8b06909] [PMID: 30799619]
[200]
Ali S, Hameed S, Shahid M, Iqbal M, Lazarovits G, Imran A. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol Res 2020; 232: 126389.
[http://dx.doi.org/10.1016/j.micres.2019.126389] [PMID: 31821969]
[201]
Ji ZL, Peng S, Chen LL, Liu Y, Yan C, Zhu F. Identification and characterization of a serine protease from Bacillus licheniformis W10: A potential antifungal agent. Int J Biol Macromol 2020; 145: 594-603.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.216] [PMID: 31891703]
[202]
Hu H, Gao Y, Li X, Chen S, Yan S, Tian X. Identification and nematicidal characterization of proteases secreted by endophytic bacteria bacillus cereus BCM2. Phytopathology 2020; 110(2): 336-44.
[http://dx.doi.org/10.1094/PHYTO-05-19-0164-R] [PMID: 31524559]
[203]
Chávez de Paz LE, Davies JR, Bergenholtz G, Svensäter G. Strains of Enterococcus faecalis differ in their ability to coexist in biofilms with other root canal bacteria. Int Endod J 2015; 48(10): 916-25.
[http://dx.doi.org/10.1111/iej.12501] [PMID: 26172346]
[204]
Esoda CN, Kuehn MJ. Pseudomonas aeruginosa leucine aminopeptidase influences early biofilm composition and structure via vesicle-associated antibiofilm activity. MBio 2019; 10(6): e02548-19.
[205]
Lee DC, Kananurak A, Tran MT, et al. Bacterial colonization of the hospitalized newborn: competition between staphylococcus aureus and staphylococcus epidermidis. Pediatr Infect Dis J 2019; 38(7): 682-6.
[http://dx.doi.org/10.1097/INF.0000000000002285] [PMID: 30985510]
[206]
Sugimoto S, Iwamoto T, Takada K, et al. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol 2013; 195(8): 1645-55.
[http://dx.doi.org/10.1128/JB.01672-12] [PMID: 23316041]
[207]
Iwase T, Uehara Y, Shinji H, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 2010; 465(7296): 346-9.
[http://dx.doi.org/10.1038/nature09074] [PMID: 20485435]
[208]
Martínez-García S, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Extracellular proteases of Staphylococcus epidermidis: roles as virulence factors and their participation in biofilm. APMIS 2018; 126(3): 177-85.
[http://dx.doi.org/10.1111/apm.12805] [PMID: 29399876]
[209]
Fang K, Jin X, Hong SH. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci Rep 2018; 8(1): 4939.
[http://dx.doi.org/10.1038/s41598-018-23180-1] [PMID: 29563542]
[210]
Carothers KE, Liang Z, Mayfield J, et al. The Streptococcal protease SpeB antagonizes the biofilms of the human pathogen Staphylococcus aureus USA300 through cleavage of the Staphylococcal SdrC protein. J Bacteriol 2020; 202(11): e00008-20.
[http://dx.doi.org/10.1128/JB.00008-20] [PMID: 32205460]
[211]
Lister JL, Horswill AR. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front Cell Infect Microbiol 2014; 4 eCollection
[212]
McGavin MJ, Zahradka C, Rice K, Scott JE. Modification of the Staphylococcus aureus fibronectin binding phenotype by V8 protease. Infect Immun 1997; 65(7): 2621-8.
[http://dx.doi.org/10.1128/iai.65.7.2621-2628.1997] [PMID: 9199429]
[213]
Martí M, Trotonda MP, Tormo-Más MÁ, et al. Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect 2010; 12(1): 55-64.
[http://dx.doi.org/10.1016/j.micinf.2009.10.005] [PMID: 19883788]
[214]
Abraham NM, Jefferson KK. Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. Microbiology 2012; 158(Pt 6): 1504-12.
[http://dx.doi.org/10.1099/mic.0.057018-0] [PMID: 22442307]
[215]
Kim SM, Park JH, Lee HS, et al. LuxR homologue SmcR is essential for Vibrio vulnificus pathogenesis and biofilm detachment, and its expression is induced by host cells. Infect Immun 2013; 81(10): 3721-30.
[http://dx.doi.org/10.1128/IAI.00561-13] [PMID: 23897607]
[216]
Doern CD, Roberts AL, Hong W, et al. Biofilm formation by group A Streptococcus: a role for the streptococcal regulator of virulence (Srv) and streptococcal cysteine protease (SpeB). Microbiology 2009; 155(Pt 1): 46-52.
[http://dx.doi.org/10.1099/mic.0.021048-0] [PMID: 19118345]
[217]
Reid SD, Chaussee MS, Doern CD, et al. Inactivation of the group A Streptococcus regulator srv results in chromosome wide reduction of transcript levels, and changes in extracellular levels of Sic and SpeB. FEMS Immunol Med Microbiol 2006; 48(2): 283-92.
[http://dx.doi.org/10.1111/j.1574-695X.2006.00150.x] [PMID: 16999824]
[218]
Gouran H, Gillespie H, Nascimento R, et al. The secreted protease PrtA controls cell growth, biofilm formation and pathogenicity in xylella fastidiosa. Sci Rep 2016; 6(Aug): 31098.
[http://dx.doi.org/10.1038/srep31098] [PMID: 27492542]
[219]
Kobayashi K, Ikemoto Y. Biofilm-associated toxin and extracellular protease cooperatively suppress competitors in Bacillus subtilis biofilms. PLoS Genet 2019; 15(10): e1008232.
[http://dx.doi.org/10.1371/journal.pgen.1008232] [PMID: 31622331]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy