Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Metastatic Breast Cancer, Organotropism and Therapeutics: A Review

Author(s): Ajaz Ahmad Waza*, Najeebul Tarfeen, Sabhiya Majid, Yasmeena Hassan, Rashid Mir, Mohd Younis Rather and Naseer Ue Din Shah

Volume 21 , Issue 10 , 2021

Published on: 05 August, 2021

Page: [813 - 828] Pages: 16

DOI: 10.2174/1568009621666210806094410

Price: $65

Abstract

The final stage of breast cancer involves spreading breast cancer cells to the vital organs like the brain, liver lungs and bones in the process called metastasis. Once the target organ is overtaken by the metastatic breast cancer cells, its usual function is compromised causing organ dysfunction and death. Despite the significant research on breast cancer metastasis, it’s still the main culprit of breast cancer-related deaths. Exploring the complex molecular pathways associated with the initiation and progression of breast cancer metastasis could lead to the discovery of more effective ways of treating the devastating phenomenon. The present review article highlights the recent advances to understand the complexity associated with breast cancer metastases, organotropism and therapeutic advances.

Keywords: Breast cancer, metastasis, metastatic associated genes, organotropism, invasion, therapeutics.

Next »
Graphical Abstract
[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Gupta, G.P.; Massagué, J. Cancer metastasis: building a framework. Cell, 2006, 127(4), 679-695.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[3]
Redig, A.J.; McAllister, S.S. Breast cancer as a systemic disease: a view of metastasis. J. Intern. Med., 2013, 274(2), 113-126.
[http://dx.doi.org/10.1111/joim.12084] [PMID: 23844915]
[4]
Kienast, Y.; von Baumgarten, L.; Fuhrmann, M.; Klinkert, W.E.; Goldbrunner, R.; Herms, J.; Winkler, F. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med., 2010, 16(1), 116-122.
[http://dx.doi.org/10.1038/nm.2072] [PMID: 20023634]
[5]
Vanharanta, S.; Massagué, J. Origins of metastatic traits. Cancer Cell, 2013, 24(4), 410-421.
[http://dx.doi.org/10.1016/j.ccr.2013.09.007] [PMID: 24135279]
[6]
Fidler, I.J.; Gersten, D.M.; Hart, I.R. The biology of cancer invasion and metastasis. Adv. Cancer Res., 1978, 28, 149-250.
[http://dx.doi.org/10.1016/S0065-230X(08)60648-X] [PMID: 360795]
[7]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog., 2013, 18(1-2), 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[8]
Naxerova, K.; Jain, R.K. Using tumour phylogenetics to identify the roots of metastasis in humans. Nat. Rev. Clin. Oncol., 2015, 12(5), 258-272.
[http://dx.doi.org/10.1038/nrclinonc.2014.238] [PMID: 25601447]
[9]
Liu, Q.; Zhang, H.; Jiang, X.; Qian, C.; Liu, Z.; Luo, D. Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Mol. Cancer, 2017, 16(1), 176.
[http://dx.doi.org/10.1186/s12943-017-0742-4] [PMID: 29197379]
[10]
Garner, H.; de Visser, K.E. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat. Rev. Immunol., 2020, 20(8), 483-497.
[http://dx.doi.org/10.1038/s41577-019-0271-z] [PMID: 32024984]
[11]
Liu, Y.; Cao, X. Characteristics and significance of the pre-metastatic niche. Cancer Cell, 2016, 30(5), 668-681.
[http://dx.doi.org/10.1016/j.ccell.2016.09.011] [PMID: 27846389]
[12]
Fidler, I.J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer, 2003, 3(6), 453-458.
[http://dx.doi.org/10.1038/nrc1098] [PMID: 12778135]
[13]
Nguyen, D.X.; Bos, P.D.; Massagué, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer, 2009, 9(4), 274-284.
[http://dx.doi.org/10.1038/nrc2622] [PMID: 19308067]
[14]
Talmadge, J.E.; Fidler, I.J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res., 2010, 70(14), 5649-5669.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1040] [PMID: 20610625]
[15]
Klein, C.A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer, 2009, 9(4), 302-312.
[http://dx.doi.org/10.1038/nrc2627] [PMID: 19308069]
[16]
Hüsemann, Y.; Geigl, J.B.; Schubert, F.; Musiani, P.; Meyer, M.; Burghart, E.; Forni, G.; Eils, R.; Fehm, T.; Riethmüller, G.; Klein, C.A. Systemic spread is an early step in breast cancer. Cancer Cell, 2008, 13(1), 58-68.
[http://dx.doi.org/10.1016/j.ccr.2007.12.003] [PMID: 18167340]
[17]
Wan, L.; Pantel, K.; Kang, Y. Tumor metastasis: moving new biological insights into the clinic. Nat. Med., 2013, 19(11), 1450-1464.
[http://dx.doi.org/10.1038/nm.3391] [PMID: 24202397]
[18]
Minn, A.J.; Gupta, G.P.; Siegel, P.M.; Bos, P.D.; Shu, W.; Giri, D.D.; Viale, A.; Olshen, A.B.; Gerald, W.L.; Massagué, J. Genes that mediate breast cancer metastasis to lung. Nature, 2005, 436(7050), 518-524.
[http://dx.doi.org/10.1038/nature03799] [PMID: 16049480]
[19]
Kang, Y.; Siegel, P.M.; Shu, W.; Drobnjak, M.; Kakonen, S.M.; Cordón-Cardo, C.; Guise, T.A.; Massagué, J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 2003, 3(6), 537-549.
[http://dx.doi.org/10.1016/S1535-6108(03)00132-6] [PMID: 12842083]
[20]
Jin, L.; Zhang, Y.; Li, H.; Yao, L.; Fu, D.; Yao, X.; Xu, L.X.; Hu, X.; Hu, G. Differential secretome analysis reveals CST6 as a suppressor of breast cancer bone metastasis. Cell Res., 2012, 22(9), 1356-1373.
[http://dx.doi.org/10.1038/cr.2012.90] [PMID: 22688893]
[21]
Fisher, R.; Pusztai, L.; Swanton, C. Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer, 2013, 108(3), 479-485.
[http://dx.doi.org/10.1038/bjc.2012.581] [PMID: 23299535]
[22]
Gandalovičová, A.; Vomastek, T.; Rosel, D.; Brábek, J. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget, 2016, 7(18), 25022-25049.
[http://dx.doi.org/10.18632/oncotarget.7214] [PMID: 26872368]
[23]
Friedl, P.; Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer, 2003, 3(5), 362-374.
[http://dx.doi.org/10.1038/nrc1075] [PMID: 12724734]
[24]
Nieto, M.A. Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. Int. J. Dev. Biol., 2009, 53(8-10), 1541-1547.
[http://dx.doi.org/10.1387/ijdb.072410mn] [PMID: 19247945]
[25]
Hegerfeldt, Y.; Tusch, M.; Bröcker, E.B.; Friedl, P. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res., 2002, 62(7), 2125-2130.
[PMID: 11929834]
[26]
Li, D.M.; Feng, Y.M. Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res. Treat., 2011, 128(1), 7-21.
[http://dx.doi.org/10.1007/s10549-011-1499-x] [PMID: 21499686]
[27]
Cavallaro, U.; Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer, 2004, 4(2), 118-132.
[http://dx.doi.org/10.1038/nrc1276] [PMID: 14964308]
[28]
Christofori, G. New signals from the invasive front. Nature, 2006, 441(7092), 444-450.
[http://dx.doi.org/10.1038/nature04872] [PMID: 16724056]
[29]
Jie, X.X.; Zhang, X.Y.; Xu, C.J. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. Oncotarget, 2017, 8(46), 81558-81571.
[http://dx.doi.org/10.18632/oncotarget.18277] [PMID: 29113414]
[30]
Ota, I.; Li, X.Y.; Hu, Y.; Weiss, S.J. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20318-20323.
[http://dx.doi.org/10.1073/pnas.0910962106] [PMID: 19915148]
[31]
Micalizzi, D.S.; Christensen, K.L.; Jedlicka, P.; Coletta, R.D.; Barón, A.E.; Harrell, J.C.; Horwitz, K.B.; Billheimer, D.; Heichman, K.A.; Welm, A.L.; Schiemann, W.P.; Ford, H.L. The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling. J. Clin. Invest., 2009, 119(9), 2678-2690.
[http://dx.doi.org/10.1172/JCI37815] [PMID: 19726885]
[32]
Christensen, K.L.; Patrick, A.N.; McCoy, E.L.; Ford, H.L. The six family of homeobox genes in development and cancer. Adv. Cancer Res., 2008, 101, 93-126.
[http://dx.doi.org/10.1016/S0065-230X(08)00405-3] [PMID: 19055944]
[33]
Blevins, M.A.; Towers, C.G.; Patrick, A.N.; Zhao, R.; Ford, H.L. The SIX1-EYA transcriptional complex as a therapeutic target in cancer. Expert Opin. Ther. Targets, 2015, 19(2), 213-225.
[http://dx.doi.org/10.1517/14728222.2014.978860] [PMID: 25555392]
[34]
Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715.
[http://dx.doi.org/10.1016/j.cell.2008.03.027] [PMID: 18485877]
[35]
Peinado, H.; Olmeda, D.; Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer, 2007, 7(6), 415-428.
[http://dx.doi.org/10.1038/nrc2131] [PMID: 17508028]
[36]
Zavadil, J.; Böttinger, E.P. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 2005, 24(37), 5764-5774.
[http://dx.doi.org/10.1038/sj.onc.1208927] [PMID: 16123809]
[37]
Grusch, M.; Petz, M.; Metzner, T.; Oztürk, D.; Schneller, D.; Mikulits, W. The crosstalk of RAS with the TGF-β family during carcinoma progression and its implications for targeted cancer therapy. Curr. Cancer Drug Targets, 2010, 10(8), 849-857.
[http://dx.doi.org/10.2174/156800910793357943] [PMID: 20718708]
[38]
Massagué, J.; Wotton, D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J., 2000, 19(8), 1745-1754.
[http://dx.doi.org/10.1093/emboj/19.8.1745] [PMID: 10775259]
[39]
Danø, K.; Behrendt, N.; Høyer-Hansen, G.; Johnsen, M.; Lund, L.R.; Ploug, M.; Rømer, J. Plasminogen activation and cancer. Thromb. Haemost., 2005, 93(4), 676-681.
[http://dx.doi.org/10.1160/TH05-01-0054] [PMID: 15841311]
[40]
Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer, 2002, 2(3), 161-174.
[http://dx.doi.org/10.1038/nrc745] [PMID: 11990853]
[41]
Huang, H.Y.; Jiang, Z.F.; Li, Q.X.; Liu, J.Y.; Wang, T.; Zhang, R.; Zhao, J.; Xu, Y.M.; Bao, W.; Zhang, Y.; Jia, L.T.; Yang, A.G. Inhibition of human breast cancer cell invasion by siRNA against urokinase-type plasminogen activator. Cancer Invest., 2010, 28(7), 689-697.
[http://dx.doi.org/10.3109/07357901003735642] [PMID: 20636107]
[42]
Mitchell, K.; Svenson, K.B.; Longmate, W.M.; Gkirtzimanaki, K.; Sadej, R.; Wang, X.; Zhao, J.; Eliopoulos, A.G.; Berditchevski, F.; Dipersio, C.M. Suppression of integrin alpha3beta1 in breast cancer cells reduces cyclooxygenase-2 gene expression and inhibits tumorigenesis, invasion, and cross-talk to endothelial cells. Cancer Res., 2010, 70(15), 6359-6367.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4283] [PMID: 20631072]
[43]
Gocheva, V.; Zeng, W.; Ke, D.; Klimstra, D.; Reinheckel, T.; Peters, C.; Hanahan, D.; Joyce, J.A. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev., 2006, 20(5), 543-556.
[http://dx.doi.org/10.1101/gad.1407406] [PMID: 16481467]
[44]
Rolli, M.; Fransvea, E.; Pilch, J.; Saven, A.; Felding-Habermann, B. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9482-9487.
[http://dx.doi.org/10.1073/pnas.1633689100] [PMID: 12874388]
[45]
Götte, M.; Yip, G.W. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res., 2006, 66(21), 10233-10237.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1464] [PMID: 17079438]
[46]
Bashkin, P.; Doctrow, S.; Klagsbrun, M.; Svahn, C.M.; Folkman, J.; Vlodavsky, I. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry, 1989, 28(4), 1737-1743.
[http://dx.doi.org/10.1021/bi00430a047] [PMID: 2541764]
[47]
Maxhimer, J.B.; Quiros, R.M.; Stewart, R.; Dowlatshahi, K.; Gattuso, P.; Fan, M.; Prinz, R.A.; Xu, X. Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery, 2002, 132(2), 326-333.
[http://dx.doi.org/10.1067/msy.2002.125719] [PMID: 12219030]
[48]
Matsuda, K.; Maruyama, H.; Guo, F.; Kleeff, J.; Itakura, J.; Matsumoto, Y.; Lander, A.D.; Korc, M. Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res., 2001, 61(14), 5562-5569.
[PMID: 11454708]
[49]
Cohen, I.; Pappo, O.; Elkin, M.; San, T.; Bar-Shavit, R.; Hazan, R.; Peretz, T.; Vlodavsky, I.; Abramovitch, R. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int. J. Cancer, 2006, 118(7), 1609-1617.
[http://dx.doi.org/10.1002/ijc.21552] [PMID: 16217746]
[50]
Alitalo, K.; Tammela, T.; Petrova, T.V. Lymphangiogenesis in development and human disease. Nature, 2005, 438(7070), 946-953.
[http://dx.doi.org/10.1038/nature04480] [PMID: 16355212]
[51]
Shields, J.D.; Fleury, M.E.; Yong, C.; Tomei, A.A.; Randolph, G.J.; Swartz, M.A. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell, 2007, 11(6), 526-538.
[http://dx.doi.org/10.1016/j.ccr.2007.04.020] [PMID: 17560334]
[52]
Madlener, S.; Saiko, P.; Vonach, C.; Viola, K.; Huttary, N.; Stark, N.; Popescu, R.; Gridling, M.; Vo, N.T.; Herbacek, I.; Davidovits, A.; Giessrigl, B.; Venkateswarlu, S.; Geleff, S.; Jäger, W.; Grusch, M.; Kerjaschki, D.; Mikulits, W.; Golakoti, T.; Fritzer-Szekeres, M.; Szekeres, T.; Krupitza, G. Multifactorial anticancer effects of digalloyl-resveratrol encompass apoptosis, cell- cycle arrest, and inhibition of lymphendothelial gap formation in vitro. Br. J. Cancer, 2010, 102(9), 1361-1370.
[http://dx.doi.org/10.1038/sj.bjc.6605656] [PMID: 20424615]
[53]
Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer, 2009, 9(4), 239-252.
[http://dx.doi.org/10.1038/nrc2618] [PMID: 19279573]
[54]
Tsuji, T.; Ibaragi, S.; Hu, G.F. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res., 2009, 69(18), 7135-7139.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1618] [PMID: 19738043]
[55]
Huysentruyt, L.C.; Mukherjee, P.; Banerjee, D.; Shelton, L.M.; Seyfried, T.N. Metastatic cancer cells with macrophage properties: evidence from a new murine tumor model. Int. J. Cancer, 2008, 123(1), 73-84.
[http://dx.doi.org/10.1002/ijc.23492] [PMID: 18398829]
[56]
Nieswandt, B.; Hafner, M.; Echtenacher, B.; Männel, D.N. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res., 1999, 59(6), 1295-1300.
[PMID: 10096562]
[57]
Im, J.H.; Fu, W.; Wang, H.; Bhatia, S.K.; Hammer, D.A.; Kowalska, M.A.; Muschel, R.J. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res., 2004, 64(23), 8613-8619.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2078] [PMID: 15574768]
[58]
Nash, G.F.; Turner, L.F.; Scully, M.F.; Kakkar, A.K. Platelets and cancer. Lancet Oncol., 2002, 3(7), 425-430.
[http://dx.doi.org/10.1016/S1470-2045(02)00789-1] [PMID: 12142172]
[59]
Bandyopadhyay, S.; Zhan, R.; Chaudhuri, A.; Watabe, M.; Pai, S.K.; Hirota, S.; Hosobe, S.; Tsukada, T.; Miura, K.; Takano, Y.; Saito, K.; Pauza, M.E.; Hayashi, S.; Wang, Y.; Mohinta, S.; Mashimo, T.; Iiizumi, M.; Furuta, E.; Watabe, K. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat. Med., 2006, 12(8), 933-938.
[http://dx.doi.org/10.1038/nm1444] [PMID: 16862154]
[60]
Fidler, I.J. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J. Natl. Cancer Inst., 1970, 45(4), 773-782.
[PMID: 5513503]
[61]
Bos, P.D.; Zhang, X.H.; Nadal, C.; Shu, W.; Gomis, R.R.; Nguyen, D.X.; Minn, A.J.; van de Vijver, M.J.; Gerald, W.L.; Foekens, J.A.; Massagué, J. Genes that mediate breast cancer metastasis to the brain. Nature, 2009, 459(7249), 1005-1009.
[http://dx.doi.org/10.1038/nature08021] [PMID: 19421193]
[62]
Gupta, G.P.; Nguyen, D.X.; Chiang, A.C.; Bos, P.D.; Kim, J.Y.; Nadal, C.; Gomis, R.R.; Manova-Todorova, K.; Massagué, J. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 2007, 446(7137), 765-770.
[http://dx.doi.org/10.1038/nature05760] [PMID: 17429393]
[63]
Peinado, H.; Lavotshkin, S.; Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol., 2011, 21(2), 139-146.
[http://dx.doi.org/10.1016/j.semcancer.2011.01.002] [PMID: 21251983]
[64]
Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell, 2012, 148(3), 399-408.
[http://dx.doi.org/10.1016/j.cell.2012.01.021] [PMID: 22304911]
[65]
Semenza, G.L. Advances in cancer biology and therapy. J. Mol. Med. (Berl.), 2013, 91(4), 409.
[http://dx.doi.org/10.1007/s00109-013-1024-2] [PMID: 23515622]
[66]
Kaelin, W.G., Jr ROS: really involved in oxygen sensing. Cell Metab., 2005, 1(6), 357-358.
[http://dx.doi.org/10.1016/j.cmet.2005.05.006] [PMID: 16054083]
[67]
Gao, P.; Zhang, H.; Dinavahi, R.; Li, F.; Xiang, Y.; Raman, V.; Bhujwalla, Z.M.; Felsher, D.W.; Cheng, L.; Pevsner, J.; Lee, L.A.; Semenza, G.L.; Dang, C.V. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 2007, 12(3), 230-238.
[http://dx.doi.org/10.1016/j.ccr.2007.08.004] [PMID: 17785204]
[68]
Chen, J.; Imanaka, N.; Chen, J.; Griffin, J.D. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br. J. Cancer, 2010, 102(2), 351-360.
[http://dx.doi.org/10.1038/sj.bjc.6605486] [PMID: 20010940]
[69]
Lundgren, K.; Nordenskjöld, B.; Landberg, G. Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer. Br. J. Cancer, 2009, 101(10), 1769-1781.
[http://dx.doi.org/10.1038/sj.bjc.6605369] [PMID: 19844232]
[70]
Petrella, B.L.; Lohi, J.; Brinckerhoff, C.E. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene, 2005, 24(6), 1043-1052.
[http://dx.doi.org/10.1038/sj.onc.1208305] [PMID: 15592504]
[71]
Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol., 2014, 5(3), 412-424.
[http://dx.doi.org/10.5306/wjco.v5.i3.412] [PMID: 25114856]
[72]
Makki, J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin. Med. Insights Pathol., 2015, 8, 23-31.
[http://dx.doi.org/10.4137/CPath.S31563] [PMID: 26740749]
[73]
Arpino, G.; Bardou, V.J.; Clark, G.M.; Elledge, R.M. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res., 2004, 6(3), R149-R156.
[http://dx.doi.org/10.1186/bcr767] [PMID: 15084238]
[74]
Yates, L. R.; Knappskog, S.; Wedge, D.; Farmery, J.H.R.; Gonzalez, S.; Martincorena, I.; Alexandrov, L.B.; Van Loo, P.; Haugland, H.K.; Lilleng, P.K.; Gundem, G.; Gerstung, M.; Pappaemmanuil, E.; Gazinska, P.; Bhosle, S.G.; Jones, D.; Raine, K.; Mudie, L.; Latimer, C.; Sawyer, E.; Desmedt, C.; Sotiriou, C.; Stratton, M.R.; Sieuwerts, A.M.; Lynch, A.G.; Martens, J.W.; Richardson, A.L.; Tutt, A.; Lonning, P.E.; Campbell, P.J. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell, 2017, 32(2), 169-184.
[http://dx.doi.org/10.1016/j.ccell.2017.07.005]
[75]
Weilbaecher, K.N.; Guise, T.A.; McCauley, L.K. Cancer to bone: a fatal attraction. Nat. Rev. Cancer, 2011, 11(6), 411-425.
[http://dx.doi.org/10.1038/nrc3055] [PMID: 21593787]
[76]
Hess, K.R.; Varadhachary, G.R.; Taylor, S.H.; Wei, W.; Raber, M.N.; Lenzi, R.; Abbruzzese, J.L. Metastatic patterns in adenocarcinoma. Cancer, 2006, 106(7), 1624-1633.
[http://dx.doi.org/10.1002/cncr.21778] [PMID: 16518827]
[77]
Bachmann, C.; Schmidt, S.; Staebler, A.; Fehm, T.; Fend, F.; Schittenhelm, J.; Wallwiener, D.; Grischke, E. CNS metastases in breast cancer patients: prognostic implications of tumor subtype. Med. Oncol., 2015, 32(1), 400.
[http://dx.doi.org/10.1007/s12032-014-0400-2] [PMID: 25433950]
[78]
Yazdani, A.; Dorri, S.; Atashi, A.; Shirafkan, H.; Zabolinezhad, H. Bone Metastasis Prognostic Factors in Breast Cancer. Breast Cancer (Auckl.), 2019, 13, 1178223419830978.
[http://dx.doi.org/10.1177/1178223419830978] [PMID: 30828246]
[79]
Savci-Heijink, C.D.; Halfwerk, H.; Koster, J.; van de Vijver, M.J. A novel gene expression signature for bone metastasis in breast carcinomas. Breast Cancer Res. Treat., 2016, 156(2), 249-259.
[http://dx.doi.org/10.1007/s10549-016-3741-z] [PMID: 26965286]
[80]
Leibbrandt, A.; Penninger, J.M. RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. Adv. Exp. Med. Biol., 2009, 649, 100-113.
[http://dx.doi.org/10.1007/978-1-4419-0298-6_7] [PMID: 19731623]
[81]
Mundy, G.R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer, 2002, 2(8), 584-593.
[http://dx.doi.org/10.1038/nrc867] [PMID: 12154351]
[82]
Roodman, G.D. Mechanisms of bone metastasis. N. Engl. J. Med., 2004, 350(16), 1655-1664.
[http://dx.doi.org/10.1056/NEJMra030831] [PMID: 15084698]
[83]
Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; Barrera, J.L.; Mohar, A.; Verástegui, E.; Zlotnik, A. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410(6824), 50-56.
[http://dx.doi.org/10.1038/35065016] [PMID: 11242036]
[84]
Lynch, C.C. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone, 2011, 48(1), 44-53.
[http://dx.doi.org/10.1016/j.bone.2010.06.007] [PMID: 20601294]
[85]
Kwakwa, K.A.; Sterling, J.A. Integrin αvβ3 signaling in tumor-induced bone disease. Cancers (Basel), 2017, 9(7), E84.
[http://dx.doi.org/10.3390/cancers9070084] [PMID: 28698458]
[86]
Li, X.Q.; Lu, J.T.; Tan, C.C.; Wang, Q.S.; Feng, Y.M. RUNX2 promotes breast cancer bone metastasis by increasing integrin α5- mediated colonization. Cancer Lett., 2016, 380(1), 78-86.
[http://dx.doi.org/10.1016/j.canlet.2016.06.007] [PMID: 27317874]
[87]
Yoneda, T.; Hiasa, M.; Okui, T. Crosstalk between sensory nerves and cancer in bone. Curr. Osteoporos. Rep., 2018, 16(6), 648-656.
[http://dx.doi.org/10.1007/s11914-018-0489-x] [PMID: 30343404]
[88]
Guise, T.A.; Chirgwin, J.M. Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin. Orthop. Relat. Res., 2003, (415)(Suppl.), S32-S38.
[http://dx.doi.org/10.1097/01.blo.0000093055.96273.69] [PMID: 14600590]
[89]
Bandyopadhyay, A.; Agyin, J.K.; Wang, L.; Tang, Y.; Lei, X.; Story, B.M.; Cornell, J.E.; Pollock, B.H.; Mundy, G.R.; Sun, L.Z. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res., 2006, 66(13), 6714-6721.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3565] [PMID: 16818646]
[90]
Oba, Y.; Chung, H. Y.; Choi, S. J.; Roodman, G. D. Eosinophil chemotactic factor-L (ECF-L): a novel osteoclast stimulating factor. J. Bone Mineral Res., 2003, 18(7), 1332-1341.
[91]
Boucharaba, A.; Serre, C.M.; Grès, S.; Saulnier-Blache, J.S.; Bordet, J.C.; Guglielmi, J.; Clézardin, P.; Peyruchaud, O. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J. Clin. Invest., 2004, 114(12), 1714-1725.
[http://dx.doi.org/10.1172/JCI200422123] [PMID: 15599396]
[92]
Gupta, G.P.; Massagué, J. Platelets and metastasis revisited: a novel fatty link. J. Clin. Invest., 2004, 114(12), 1691-1693.
[http://dx.doi.org/10.1172/JCI200423823] [PMID: 15599391]
[93]
Fisher, J.L.; Thomas-Mudge, R.J.; Elliott, J.; Hards, D.K.; Sims, N.A.; Slavin, J.; Martin, T.J.; Gillespie, M.T. Osteoprotegerin overexpression by breast cancer cells enhances orthotopic and osseous tumor growth and contrasts with that delivered therapeutically. Cancer Res., 2006, 66(7), 3620-3628.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3119] [PMID: 16585187]
[94]
Mangashetti, L.S.; Khapli, S.M.; Wani, M.R. IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-kappa B and Ca2+ signaling. J. Immunol., 2005, 175(2), 917-925.
[http://dx.doi.org/10.4049/jimmunol.175.2.917] [PMID: 16002690]
[95]
Qian, J.; Yehia, G.; Molina, C.; Fernandes, A.; Donnelly, R.; Anjaria, D.; Gascon, P.; Rameshwar, P. Cloning of human preprotachykinin-I promoter and the role of cyclic adenosine 5′- monophosphate response elements in its expression by IL-1 and stem cell factor. J. Immunol., 2001, 166(4), 2553-2561.
[http://dx.doi.org/10.4049/jimmunol.166.4.2553] [PMID: 11160316]
[96]
Jones, D.A.; Cummings, J.; Langdon, S.P.; Smyth, J.F. Preclinical studies on the broad-spectrum neuropeptide growth factor antagonist G. Gen. Pharmacol., 1997, 28(2), 183-189.
[http://dx.doi.org/10.1016/S0306-3623(96)00189-9] [PMID: 9013192]
[97]
Rameshwar, P.; Oh, H.S.; Yook, C.; Gascon, P.; Chang, V.T. Substance p-fibronectin-cytokine interactions in myeloproliferative disorders with bone marrow fibrosis. Acta Haematol., 2003, 109(1), 1-10.
[http://dx.doi.org/10.1159/000067268] [PMID: 12486316]
[98]
Rao, G.; Patel, P.S.; Idler, S.P.; Maloof, P.; Gascon, P.; Potian, J.A.; Rameshwar, P. Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression. Cancer Res., 2004, 64(8), 2874-2881.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3121] [PMID: 15087406]
[99]
Platel, V.; Faure, S.; Corre, I.; Clere, N. Endothelial-to-mesenchymal transition (endomt): roles in tumorigenesis, metastatic extravasation and therapy resistance. J. Oncol., 2019, 2019, 8361945.
[http://dx.doi.org/10.1155/2019/8361945] [PMID: 31467544]
[100]
Gilkes, D.M.; Semenza, G.L. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol., 2013, 9(11), 1623-1636.
[http://dx.doi.org/10.2217/fon.13.92] [PMID: 24156323]
[101]
Riccio, A.I.; Wodajo, F.M.; Malawer, M. Metastatic carcinoma of the long bones. Am. Fam. Physician, 2007, 76(10), 1489-1494.
[PMID: 18052014]
[102]
Kohno, N. Treatment of breast cancer with bone metastasis: bisphosphonate treatment - current and future. Int. J. Clin. Oncol., 2008, 13(1), 18-23.
[http://dx.doi.org/10.1007/s10147-007-0726-2] [PMID: 18307015]
[103]
Wong, M.; Pavlakis, N. Optimal management of bone metastases in breast cancer patients. Breast Cancer (Dove Med. Press), 2011, 3, 35-60.
[http://dx.doi.org/10.2147/BCTT.S6655] [PMID: 24367175]
[104]
Hiratani, T.; Asagi, Y.; Matsusaka, A.; Uchida, K.; Yamaguchi, H. In vitro antifungal activity of amorolfine, a new morpholine antimycotic agent. Jpn. J. Antibiot., 1991, 44(9), 993-1006.
[PMID: 1960861]
[105]
Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., III; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; Beck, J.T.; Ito, Y.; Yardley, D.; Deleu, I.; Perez, A.; Bachelot, T.; Vittori, L.; Xu, Z.; Mukhopadhyay, P.; Lebwohl, D.; Hortobagyi, G.N. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med., 2012, 366(6), 520-529.
[http://dx.doi.org/10.1056/NEJMoa1109653] [PMID: 22149876]
[106]
Hiscox, S.; Barrett-Lee, P.; Borley, A.C.; Nicholson, R.I. Combining Src inhibitors and aromatase inhibitors: a novel strategy for overcoming endocrine resistance and bone loss. Eur. J. Cancer, 2010, 46(12), 2187-2195.
[http://dx.doi.org/10.1016/j.ejca.2010.04.012] [PMID: 20471823]
[107]
Tian, E.; Zhan, F.; Walker, R.; Rasmussen, E.; Ma, Y.; Barlogie, B.; Shaughnessy, J.D., Jr The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med., 2003, 349(26), 2483-2494.
[http://dx.doi.org/10.1056/NEJMoa030847] [PMID: 14695408]
[108]
Gennari, A.; Conte, P.; Rosso, R.; Orlandini, C.; Bruzzi, P. Survival of metastatic breast carcinoma patients over a 20-year period: a retrospective analysis based on individual patient data from six consecutive studies. Cancer, 2005, 104(8), 1742-1750.
[http://dx.doi.org/10.1002/cncr.21359] [PMID: 16149088]
[109]
Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; Bescós, C.; Di Croce, L.; Benitah, S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 2017, 541(7635), 41-45.
[http://dx.doi.org/10.1038/nature20791] [PMID: 27974793]
[110]
Smid, M.; Wang, Y.; Zhang, Y.; Sieuwerts, A.M.; Yu, J.; Klijn, J.G.; Foekens, J.A.; Martens, J.W. Subtypes of breast cancer show preferential site of relapse. Cancer Res., 2008, 68(9), 3108-3114.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5644] [PMID: 18451135]
[111]
Huber, M.A.; Kraut, N.; Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol., 2005, 17(5), 548-558.
[http://dx.doi.org/10.1016/j.ceb.2005.08.001] [PMID: 16098727]
[112]
Nigam, A. Breast cancer stem cells, pathways and therapeutic perspectives 2011. Indian J. Surg., 2013, 75(3), 170-180.
[http://dx.doi.org/10.1007/s12262-012-0616-3] [PMID: 24426422]
[113]
Yae, T.; Tsuchihashi, K.; Ishimoto, T.; Motohara, T.; Yoshikawa, M.; Yoshida, G.J.; Wada, T.; Masuko, T.; Mogushi, K.; Tanaka, H.; Osawa, T.; Kanki, Y.; Minami, T.; Aburatani, H.; Ohmura, M.; Kubo, A.; Suematsu, M.; Takahashi, K.; Saya, H.; Nagano, O. Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat. Commun., 2012, 3, 883.
[http://dx.doi.org/10.1038/ncomms1892] [PMID: 22673910]
[114]
Harrison, H.; Farnie, G.; Howell, S.J.; Rock, R.E.; Stylianou, S.; Brennan, K.R.; Bundred, N.J.; Clarke, R.B. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res., 2010, 70(2), 709-718.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1681] [PMID: 20068161]
[115]
Dontu, G.; Jackson, K.W.; McNicholas, E.; Kawamura, M.J.; Abdallah, W.M.; Wicha, M.S. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res., 2004, 6(6), R605-R615.
[http://dx.doi.org/10.1186/bcr920] [PMID: 15535842]
[116]
Sansone, P.; Storci, G.; Giovannini, C.; Pandolfi, S.; Pianetti, S.; Taffurelli, M.; Santini, D.; Ceccarelli, C.; Chieco, P.; Bonafé, M. p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells, 2007, 25(3), 807-815.
[http://dx.doi.org/10.1634/stemcells.2006-0442] [PMID: 17158237]
[117]
Pal, D.; Kolluru, V.; Chandrasekaran, B.; Baby, B.V.; Aman, M.; Suman, S.; Sirimulla, S.; Sanders, M.A.; Alatassi, H.; Ankem, M.K.; Damodaran, C. Targeting aberrant expression of Notch-1 in ALDH+ cancer stem cells in breast cancer. Mol. Carcinog., 2017, 56(3), 1127-1136.
[http://dx.doi.org/10.1002/mc.22579] [PMID: 27753148]
[118]
Suman, S.; Das, T.P.; Damodaran, C. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br. J. Cancer, 2013, 109(10), 2587-2596.
[http://dx.doi.org/10.1038/bjc.2013.642] [PMID: 24129237]
[119]
McGovern, M.; Voutev, R.; Maciejowski, J.; Corsi, A.K.; Hubbard, E.J. A “latent niche” mechanism for tumor initiation. Proc. Natl. Acad. Sci. USA, 2009, 106(28), 11617-11622.
[http://dx.doi.org/10.1073/pnas.0903768106] [PMID: 19564624]
[120]
Chen, W.; Cao, G.; Yuan, X.; Zhang, X.; Zhang, Q.; Zhu, Y.; Dong, Z.; Zhang, S. Notch-1 knockdown suppresses proliferation, migration and metastasis of salivary adenoid cystic carcinoma cells. J. Transl. Med., 2015, 13, 167.
[http://dx.doi.org/10.1186/s12967-015-0520-2] [PMID: 25990317]
[121]
Polakis, P. The many ways of Wnt in cancer. Curr. Opin. Genet. Dev., 2007, 17(1), 45-51.
[http://dx.doi.org/10.1016/j.gde.2006.12.007] [PMID: 17208432]
[122]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[123]
Khramtsov, A.I.; Khramtsova, G.F.; Tretiakova, M.; Huo, D.; Olopade, O.I.; Goss, K.H. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol., 2010, 176(6), 2911-2920.
[http://dx.doi.org/10.2353/ajpath.2010.091125] [PMID: 20395444]
[124]
López-Knowles, E.; Zardawi, S.J.; McNeil, C.M.; Millar, E.K.; Crea, P.; Musgrove, E.A.; Sutherland, R.L.; O’Toole, S.A. Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients. Cancer Epidemiol. Biomarkers Prev., 2010, 19(1), 301-309.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0741] [PMID: 20056651]
[125]
Geyer, F.C.; Lacroix-Triki, M.; Savage, K.; Arnedos, M.; Lambros, M.B.; MacKay, A.; Natrajan, R.; Reis-Filho, J.S. beta- Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Modern Pathol. Inc, 2011, 24(2), 209-231.
[126]
Lindvall, C.; Zylstra, C.R.; Evans, N.; West, R.A.; Dykema, K.; Furge, K.A.; Williams, B.O. The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS One, 2009, 4(6), e5813.
[http://dx.doi.org/10.1371/journal.pone.0005813] [PMID: 19503830]
[127]
Liu, C.C.; Prior, J.; Piwnica-Worms, D.; Bu, G. LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc. Natl. Acad. Sci. USA, 2010, 107(11), 5136-5141.
[http://dx.doi.org/10.1073/pnas.0911220107] [PMID: 20194742]
[128]
Nusse, R. Wnt signaling and stem cell control. Cell Res., 2008, 18(5), 523-527.
[http://dx.doi.org/10.1038/cr.2008.47] [PMID: 18392048]
[129]
Zhuang, X.; Zhang, H.; Li, X.; Li, X.; Cong, M.; Peng, F.; Yu, J.; Zhang, X.; Yang, Q.; Hu, G. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat. Cell Biol., 2017, 19(10), 1274-1285.
[http://dx.doi.org/10.1038/ncb3613] [PMID: 28892080]
[130]
Pires, B.R.; DE Amorim, Í.S.; Souza, L.D.; Rodrigues, J.A.; Mencalha, A.L. Targeting cellular signaling pathways in breast cancer stem cells and its implication for cancer treatment. Anticancer Res., 2016, 36(11), 5681-5691.
[http://dx.doi.org/10.21873/anticanres.11151] [PMID: 27793889]
[131]
Hayashi, H.; Kume, T. Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration. Biochem. Biophys. Res. Commun., 2008, 367(3), 584-589.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.183] [PMID: 18187037]
[132]
Han, B.; Qu, Y.; Jin, Y.; Yu, Y.; Deng, N.; Wawrowsky, K.; Zhang, X.; Li, N.; Bose, S.; Wang, Q.; Sakkiah, S.; Abrol, R.; Jensen, T.W.; Berman, B.P.; Tanaka, H.; Johnson, J.; Gao, B.; Hao, J.; Liu, Z.; Buttyan, R.; Ray, P.S.; Hung, M.C.; Giuliano, A.E.; Cui, X. FOXC1 Activates smoothened-independent hedgehog signaling in basal-like breast cancer. Cell Rep., 2015, 13(5), 1046-1058.
[http://dx.doi.org/10.1016/j.celrep.2015.09.063] [PMID: 26565916]
[133]
Zuo, H. D.; Yao, Wu The role and the potential regulatory pathways of high expression of forkhead box C1 in promoting tumor growth and metastasis of basal-like breast cancer. J. B.U.ON., 2016, 21(4), 818-825.
[134]
Flemban, A.; Qualtrough, D. The potential role of hedgehog signaling in the luminal/basal phenotype of breast epithelia and in breast cancer invasion and metastasis. Cancers (Basel), 2015, 7(3), 1863-1884.
[http://dx.doi.org/10.3390/cancers7030866] [PMID: 26389956]
[135]
Santini, R.; Vinci, M.C.; Pandolfi, S.; Penachioni, J.Y.; Montagnani, V.; Olivito, B.; Gattai, R.; Pimpinelli, N.; Gerlini, G.; Borgognoni, L.; Stecca, B. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells, 2012, 30(9), 1808-1818.
[http://dx.doi.org/10.1002/stem.1160] [PMID: 22730244]
[136]
Zardawi, S.J.; O’Toole, S.A.; Sutherland, R.L.; Musgrove, E.A. Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol. Histopathol., 2009, 24(3), 385-398.
[PMID: 19130408]
[137]
Salem, M.L.; El-Badawy, A.S.; Li, Z. Immunobiology and signaling pathways of cancer stem cells: implication for cancer therapy. Cytotechnology, 2015, 67(5), 749-759.
[http://dx.doi.org/10.1007/s10616-014-9830-0] [PMID: 25516358]
[138]
Okuhashi, Y.; Itoh, M.; Tohda, S. Hedgehog stimulation suppresses clonogenicity and activates notch signalling in t-lymphoblastic leukaemia jurkat cells. Anticancer Res., 2017, 37(9), 5005-5009.
[PMID: 28870926]
[139]
Gong, H.Y.; Hu, W.G.; Hu, Q.Y.; Li, X.P.; Song, Q.B. Radiation-induced pulmonary injury accelerated pulmonary metastasis in a mouse model of breast cancer. Oncol. Lett., 2015, 10(6), 3613-3618.
[http://dx.doi.org/10.3892/ol.2015.3810] [PMID: 26788178]
[140]
Boimel, P.J.; Smirnova, T.; Zhou, Z.N.; Wyckoff, J.; Park, H.; Coniglio, S.J.; Qian, B.Z.; Stanley, E.R.; Cox, D.; Pollard, J.W.; Muller, W.J.; Condeelis, J.; Segall, J.E. Contribution of CXCL12 secretion to invasion of breast cancer cells. Breast Cancer Res., 2012, 14(1), R23.
[http://dx.doi.org/10.1186/bcr3108] [PMID: 22314082]
[141]
Bachelder, R.E.; Wendt, M.A.; Mercurio, A.M. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res., 2002, 62(24), 7203-7206.
[PMID: 12499259]
[142]
Mantovani, A.; Bonecchi, R.; Locati, M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat. Rev. Immunol., 2006, 6(12), 907-918.
[http://dx.doi.org/10.1038/nri1964] [PMID: 17124512]
[143]
Wang, J.; Ou, Z.L.; Hou, Y.F.; Luo, J.M.; Chen, Y.; Zhou, J.; Shen, Z.Z.; Ding, J.; Shao, Z.M. Duffy antigen receptor for chemokines attenuates breast cancer growth and metastasis: an experiment with nude mice. Zhonghua Yi Xue Za Zhi, 2005, 85(29), 2033-2037.
[PMID: 16313795]
[144]
Maru, Y. The lung metastatic niche. J. Mol. Med. (Berl.), 2015, 93(11), 1185-1192.
[http://dx.doi.org/10.1007/s00109-015-1355-2] [PMID: 26489606]
[145]
Acharyya, S.; Oskarsson, T.; Vanharanta, S.; Malladi, S.; Kim, J.; Morris, P.G.; Manova-Todorova, K.; Leversha, M.; Hogg, N.; Seshan, V.E.; Norton, L.; Brogi, E.; Massagué, J. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell, 2012, 150(1), 165-178.
[http://dx.doi.org/10.1016/j.cell.2012.04.042] [PMID: 22770218]
[146]
Soikkeli, J.; Podlasz, P.; Yin, M.; Nummela, P.; Jahkola, T.; Virolainen, S.; Krogerus, L.; Heikkilä, P.; von Smitten, K.; Saksela, O.; Hölttä, E. Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. Am. J. Pathol., 2010, 177(1), 387-403.
[http://dx.doi.org/10.2353/ajpath.2010.090748] [PMID: 20489157]
[147]
Oskarsson, T.; Acharyya, S.; Zhang, X.H.; Vanharanta, S.; Tavazoie, S.F.; Morris, P.G.; Downey, R.J.; Manova-Todorova, K.; Brogi, E.; Massagué, J. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med., 2011, 17(7), 867-874.
[http://dx.doi.org/10.1038/nm.2379] [PMID: 21706029]
[148]
O’Connell, J.T.; Sugimoto, H.; Cooke, V.G.; MacDonald, B.A.; Mehta, A.I.; LeBleu, V.S.; Dewar, R.; Rocha, R.M.; Brentani, R.R.; Resnick, M.B.; Neilson, E.G.; Zeisberg, M.; Kalluri, R. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16002-16007.
[http://dx.doi.org/10.1073/pnas.1109493108] [PMID: 21911392]
[149]
Malanchi, I.; Santamaria-Martínez, A.; Susanto, E.; Peng, H.; Lehr, H.A.; Delaloye, J.F.; Huelsken, J. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 2011, 481(7379), 85-89.
[http://dx.doi.org/10.1038/nature10694] [PMID: 22158103]
[150]
Gao, D.; Joshi, N.; Choi, H.; Ryu, S.; Hahn, M.; Catena, R.; Sadik, H.; Argani, P.; Wagner, P.; Vahdat, L.T.; Port, J.L.; Stiles, B.; Sukumar, S.; Altorki, N.K.; Rafii, S.; Mittal, V. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res., 2012, 72(6), 1384-1394.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2905] [PMID: 22282653]
[151]
Ye, Y.; Liu, S.; Wu, C.; Sun, Z. TGFβ modulates inflammatory cytokines and growth factors to create premetastatic microenvironment and stimulate lung metastasis. J. Mol. Histol., 2015, 46(4-5), 365-375.
[http://dx.doi.org/10.1007/s10735-015-9633-4] [PMID: 26208571]
[152]
Park, C.Y.; Min, K.N.; Son, J.Y.; Park, S.Y.; Nam, J.S.; Kim, D.K.; Sheen, Y.Y. An novel inhibitor of TGF-β type I receptor, IN-1130, blocks breast cancer lung metastasis through inhibition of epithelial-mesenchymal transition. Cancer Lett., 2014, 351(1), 72-80.
[http://dx.doi.org/10.1016/j.canlet.2014.05.006] [PMID: 24887560]
[153]
Hiratsuka, S.; Watanabe, A.; Aburatani, H.; Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol., 2006, 8(12), 1369-1375.
[http://dx.doi.org/10.1038/ncb1507] [PMID: 17128264]
[154]
Li, X.J.; Gangadaran, P.; Kalimuthu, S.; Oh, J.M.; Zhu, L.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. Role of pulmonary macrophages in initiation of lung metastasis in anaplastic thyroid cancer. Int. J. Cancer, 2016, 139(11), 2583-2592.
[http://dx.doi.org/10.1002/ijc.30387] [PMID: 27537102]
[155]
Cao, H.; Dan, Z.; He, X.; Zhang, Z.; Yu, H.; Yin, Q.; Li, Y. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano, 2016, 10(8), 7738-7748.
[http://dx.doi.org/10.1021/acsnano.6b03148] [PMID: 27454827]
[156]
El Rayes, T.; Catena, R.; Lee, S.; Stawowczyk, M.; Joshi, N.; Fischbach, C.; Powell, C.A.; Dannenberg, A.J.; Altorki, N.K.; Gao, D.; Mittal, V. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc. Natl. Acad. Sci. USA, 2015, 112(52), 16000-16005.
[http://dx.doi.org/10.1073/pnas.1507294112] [PMID: 26668367]
[157]
Granot, Z.; Jablonska, J. Distinct functions of neutrophil in cancer and its regulation. Mediators Inflamm., 2015, 2015, 701067.
[http://dx.doi.org/10.1155/2015/701067] [PMID: 26648665]
[158]
Chen, Q.; Massague, J. Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin. Cancer Res.,, 2012, 18(20), 5520-5525.
[159]
Xu, K.; Tian, X.; Oh, S.Y.; Movassaghi, M.; Naber, S.P.; Kuperwasser, C.; Buchsbaum, R.J. The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis. Breast Cancer Res., 2016, 18(1), 14.
[http://dx.doi.org/10.1186/s13058-016-0674-8] [PMID: 26821678]
[160]
Vadrevu, S. K.; Sharma, S.; Chintala, N.; Patel, J.; Karbowniczek, M.; Markiewski, M. Studying the role of alveolar macrophages in breast cancer metastasis. J. Visualized Exp., JoVE, 2016.
[http://dx.doi.org/10.3791/54306]
[161]
Kim, H.M.; Jung, W.H.; Koo, J.S. Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. J. Transl. Med., 2015, 13, 222.
[http://dx.doi.org/10.1186/s12967-015-0587-9] [PMID: 26163388]
[162]
Christen, S.; Lorendeau, D.; Schmieder, R.; Broekaert, D.; Metzger, K.; Veys, K.; Elia, I.; Buescher, J.M.; Orth, M.F.; Davidson, S.M.; Grünewald, T.G.; De Bock, K.; Fendt, S.M. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep., 2016, 17(3), 837-848.
[http://dx.doi.org/10.1016/j.celrep.2016.09.042] [PMID: 27732858]
[163]
Gao, H.; Chakraborty, G.; Lee-Lim, A.P.; Mo, Q.; Decker, M.; Vonica, A.; Shen, R.; Brogi, E.; Brivanlou, A.H.; Giancotti, F.G. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell, 2012, 150(4), 764-779.
[http://dx.doi.org/10.1016/j.cell.2012.06.035] [PMID: 22901808]
[164]
Song, K.H.; Park, M.S.; Nandu, T.S.; Gadad, S.; Kim, S.C.; Kim, M.Y. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat. Commun., 2016, 7, 13796.
[http://dx.doi.org/10.1038/ncomms13796] [PMID: 27982029]
[165]
Ci, Y.; Qiao, J.; Han, M. Molecular mechanisms and metabolomics of natural polyphenols interfering with breast cancer metastasis. Molecules, 2016, 21(12), E1634.
[http://dx.doi.org/10.3390/molecules21121634] [PMID: 27999314]
[166]
Gonzalez-Angulo, A.M.; Morales-Vasquez, F.; Hortobagyi, G.N. Overview of resistance to systemic therapy in patients with breast cancer. Adv. Exp. Med. Biol., 2007, 608, 1-22.
[http://dx.doi.org/10.1007/978-0-387-74039-3_1] [PMID: 17993229]
[167]
Koike, Y.; Ohta, Y.; Saitoh, W.; Yamashita, T.; Kanomata, N.; Moriya, T.; Kurebayashi, J. Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells. Breast Cancer, 2017, 24(5), 683-693.
[http://dx.doi.org/10.1007/s12282-017-0757-0] [PMID: 28144905]
[168]
Bartholomeusz, C.; Xie, X.; Pitner, M.K.; Kondo, K.; Dadbin, A.; Lee, J.; Saso, H.; Smith, P.D.; Dalby, K.N.; Ueno, N.T. MEK inhibitor selumetinib (azd6244; arry-142886) prevents lung metastasis in a triple-negative breast cancer xenograft model. Mol. Cancer Ther., 2015, 14(12), 2773-2781.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0243] [PMID: 26384399]
[169]
Cao, H.; Zhang, Z.; Zhao, S.; He, X.; Yu, H.; Yin, Q.; Gu, W.; Chen, L.; Li, Y. Hydrophobic interaction mediating self-assembled nanoparticles of succinobucol suppress lung metastasis of breast cancer by inhibition of VCAM-1 expression. J. Controlled Release, 2015, 205, 162-171.
[170]
Gray, M.J.; Gong, J.; Hatch, M.M.; Nguyen, V.; Hughes, C.C.; Hutchins, J.T.; Freimark, B.D. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Breast Cancer Res., 2016, 18(1), 50.
[http://dx.doi.org/10.1186/s13058-016-0708-2] [PMID: 27169467]
[171]
Ma, R.; Feng, Y.; Lin, S.; Chen, J.; Lin, H.; Liang, X.; Zheng, H.; Cai, X. Mechanisms involved in breast cancer liver metastasis. J. Transl. Med., 2015, 13, 64.
[http://dx.doi.org/10.1186/s12967-015-0425-0] [PMID: 25885919]
[172]
Wendel, C.; Hemping-Bovenkerk, A.; Krasnyanska, J.; Mees, S.T.; Kochetkova, M.; Stoeppeler, S.; Haier, J. CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PLoS One, 2012, 7(1), e30046.
[http://dx.doi.org/10.1371/journal.pone.0030046] [PMID: 22253872]
[173]
Stormes, K.A.; Lemken, C.A.; Lepre, J.V.; Marinucci, M.N.; Kurt, R.A. Inhibition of metastasis by inhibition of tumor-derived CCL5. Breast Cancer Res. Treat., 2005, 89(2), 209-212.
[http://dx.doi.org/10.1007/s10549-004-5328-3] [PMID: 15692764]
[174]
Kim, S.; Han, J.; Shin, I.; Kil, W.H.; Lee, J.E.; Nam, S.J. A functional comparison between the HER2(high)/HER3 and the HER2(low)/HER3 dimers on heregulin-β1-induced MMP-1 and MMP-9 expression in breast cancer cells. Exp. Mol. Med., 2012, 44(8), 473-482.
[http://dx.doi.org/10.3858/emm.2012.44.8.054] [PMID: 22627808]
[175]
Tabariès, S.; Ouellet, V.; Hsu, B.E.; Annis, M.G.; Rose, A.A.; Meunier, L.; Carmona, E.; Tam, C.E.; Mes-Masson, A.M.; Siegel, P.M. Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Res., 2015, 17, 45.
[http://dx.doi.org/10.1186/s13058-015-0558-3] [PMID: 25882816]
[176]
Hazan, R.B.; Phillips, G.R.; Qiao, R.F.; Norton, L.; Aaronson, S.A. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J. Cell Biol., 2000, 148(4), 779-790.
[http://dx.doi.org/10.1083/jcb.148.4.779] [PMID: 10684258]
[177]
Tabariès, S.; Dupuy, F.; Dong, Z.; Monast, A.; Annis, M.G.; Spicer, J.; Ferri, L.E.; Omeroglu, A.; Basik, M.; Amir, E.; Clemons, M.; Siegel, P.M. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol. Cell. Biol., 2012, 32(15), 2979-2991.
[http://dx.doi.org/10.1128/MCB.00299-12] [PMID: 22645303]
[178]
Tabariès, S.; Dong, Z.; Annis, M.G.; Omeroglu, A.; Pepin, F.; Ouellet, V.; Russo, C.; Hassanain, M.; Metrakos, P.; Diaz, Z.; Basik, M.; Bertos, N.; Park, M.; Guettier, C.; Adam, R.; Hallett, M.; Siegel, P.M. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene, 2011, 30(11), 1318-1328.
[http://dx.doi.org/10.1038/onc.2010.518] [PMID: 21076473]
[179]
Shabo, I.; Olsson, H.; Stål, O.; Svanvik, J. Breast cancer expression of DAP12 is associated with skeletal and liver metastases and poor survival. Clin. Breast Cancer, 2013, 13(5), 371-377.
[http://dx.doi.org/10.1016/j.clbc.2013.05.003] [PMID: 23810293]
[180]
Yang, J.; Wu, N.N.; Huang, D.J.; Luo, Y.C.; Huang, J.Z.; He, H.Y.; Lu, H.L.; Song, W.L. PPFIA1 is upregulated in liver metastasis of breast cancer and is a potential poor prognostic indicator of metastatic relapse. Tumour Biol., 2017, 39(7), 1010428317713492.
[http://dx.doi.org/10.1177/1010428317713492] [PMID: 28720060]
[181]
Erler, J.T.; Bennewith, K.L.; Nicolau, M.; Dornhöfer, N.; Kong, C.; Le, Q.T.; Chi, J.T.; Jeffrey, S.S.; Giaccia, A.J. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 2006, 440(7088), 1222-1226.
[http://dx.doi.org/10.1038/nature04695] [PMID: 16642001]
[182]
Katoh, M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int. J. Mol. Med., 2016, 38(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2016.2620] [PMID: 27245147]
[183]
Ghattass, K.; El-Sitt, S.; Zibara, K.; Rayes, S.; Haddadin, M.J.; El-Sabban, M.; Gali-Muhtasib, H. The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway. Mol. Cancer, 2014, 13, 12.
[http://dx.doi.org/10.1186/1476-4598-13-12] [PMID: 24461075]
[184]
Maximiano, S.; Magalhaes, P.; Guerreiro, M. P.; Morgado, M. Trastuzumab in the treatment of breast cancer. BioDrugs: Clin. Immunotherapeutics, Biopharm. Gene Ther., 2016, 30(2), 75-86.
[185]
Diamond, J.R.; Finlayson, C.A.; Borges, V.F. Hepatic complications of breast cancer. Lancet Oncol., 2009, 10(6), 615-621.
[http://dx.doi.org/10.1016/S1470-2045(09)70029-4] [PMID: 19482250]
[186]
Miller, W.R. Aromatase inhibitors: prediction of response and nature of resistance. Expert Opin. Pharmacother., 2010, 11(11), 1873-1887.
[http://dx.doi.org/10.1517/14656566.2010.487863] [PMID: 20497094]
[187]
Chao, Y.; Wu, Q.; Shepard, C.; Wells, A. Hepatocyte induced re- expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin. Exp. Metastasis, 2012, 29(1), 39-50.
[http://dx.doi.org/10.1007/s10585-011-9427-3] [PMID: 21964676]
[188]
Witzel, I.; Oliveira-Ferrer, L.; Pantel, K.; Müller, V.; Wikman, H. Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res., 2016, 18(1), 8.
[http://dx.doi.org/10.1186/s13058-015-0665-1] [PMID: 26781299]
[189]
Scott, B.J.; Kesari, S. Leptomeningeal metastases in breast cancer. Am. J. Cancer Res., 2013, 3(2), 117-126.
[PMID: 23593536]
[190]
Weil, R.J.; Palmieri, D.C.; Bronder, J.L.; Stark, A.M.; Steeg, P.S. Breast cancer metastasis to the central nervous system. Am. J. Pathol., 2005, 167(4), 913-920.
[http://dx.doi.org/10.1016/S0002-9440(10)61180-7] [PMID: 16192626]
[191]
Bendell, J.C.; Domchek, S.M.; Burstein, H.J.; Harris, L.; Younger, J.; Kuter, I.; Bunnell, C.; Rue, M.; Gelman, R.; Winer, E. Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer, 2003, 97(12), 2972-2977.
[http://dx.doi.org/10.1002/cncr.11436] [PMID: 12784331]
[192]
Burstein, H.J.; Lieberman, G.; Slamon, D.J.; Winer, E.P.; Klein, P. Isolated central nervous system metastases in patients with HER2-overexpressing advanced breast cancer treated with first- line trastuzumab-based therapy. Ann. Oncol., 2005, 16(11), 1772-1777.
[http://dx.doi.org/10.1093/annonc/mdi371] [PMID: 16150805]
[193]
Sevenich, L.; Bowman, R.L.; Mason, S.D.; Quail, D.F.; Rapaport, F.; Elie, B.T.; Brogi, E.; Brastianos, P.K.; Hahn, W.C.; Holsinger, L.J.; Massagué, J.; Leslie, C.S.; Joyce, J.A. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol., 2014, 16(9), 876-888.
[http://dx.doi.org/10.1038/ncb3011] [PMID: 25086747]
[194]
Valiente, M.; Obenauf, A.C.; Jin, X.; Chen, Q.; Zhang, X.H.; Lee, D.J.; Chaft, J.E.; Kris, M.G.; Huse, J.T.; Brogi, E.; Massagué, J. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 2014, 156(5), 1002-1016.
[http://dx.doi.org/10.1016/j.cell.2014.01.040] [PMID: 24581498]
[195]
Wrobel, J.K.; Toborek, M. Blood-brain barrier remodeling during brain metastasis formation. Mol. Med., 2016, 22, 32-40.
[http://dx.doi.org/10.2119/molmed.2015.00207] [PMID: 26837070]
[196]
Termini, J.; Neman, J.; Jandial, R. Role of the neural niche in brain metastatic cancer. Cancer Res., 2014, 74(15), 4011-4015.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1226] [PMID: 25035392]
[197]
Owens, T.; Renno, T.; Taupin, V.; Krakowski, M. Inflammatory cytokines in the brain: does the CNS shape immune responses? Immunol. Today, 1994, 15(12), 566-571.
[http://dx.doi.org/10.1016/0167-5699(94)90218-6] [PMID: 7848517]
[198]
Goldberg, S.B.; Gettinger, S.N.; Mahajan, A.; Chiang, A.C.; Herbst, R.S.; Sznol, M.; Tsiouris, A.J.; Cohen, J.; Vortmeyer, A.; Jilaveanu, L.; Yu, J.; Hegde, U.; Speaker, S.; Madura, M.; Ralabate, A.; Rivera, A.; Rowen, E.; Gerrish, H.; Yao, X.; Chiang, V.; Kluger, H.M. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol., 2016, 17(7), 976-983.
[http://dx.doi.org/10.1016/S1470-2045(16)30053-5] [PMID: 27267608]
[199]
Fitzgerald, D.P.; Emerson, D.L.; Qian, Y.; Anwar, T.; Liewehr, D.J.; Steinberg, S.M.; Silberman, S.; Palmieri, D.; Steeg, P.S. TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol. Cancer Ther., 2012, 11(9), 1959-1967.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0061] [PMID: 22622283]
[200]
Hu, Z.I.; McArthur, H.L.; Ho, A.Y. The abscopal effect of radiation therapy: what is it and how can we use it in breast cancer? Curr. Breast Cancer Rep., 2017, 9(1), 45-51.
[http://dx.doi.org/10.1007/s12609-017-0234-y] [PMID: 28344743]
[201]
He, M.; Zhang, J.X.; Jiang, Y.Z.; Chen, Y.L.; Yang, H.Y.; Tang, L.C.; Shao, Z.M.; Di, G.H. The lymph node ratio as an independent prognostic factor for node-positive triple-negative breast cancer. Oncotarget, 2017, 8(27), 44870-44880.
[http://dx.doi.org/10.18632/oncotarget.17413] [PMID: 28496004]
[202]
Kuru, B.; Camlibel, M.; Dinc, S.; Gulcelik, M. A.; Alagol, H. Prognostic significance of axillary node and infraclavicular lymph node status after mastectomy. European J. Surgical Oncol.,, 2003, 29(10), 839-844.
[203]
Newman, L.A. Epidemiology of locally advanced breast cancer. Semin. Radiat. Oncol., 2009, 19(4), 195-203.
[http://dx.doi.org/10.1016/j.semradonc.2009.05.003] [PMID: 19732683]
[204]
Carter, C.L.; Allen, C.; Henson, D.E. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer, 1989, 63(1), 181-187.
[http://dx.doi.org/10.1002/1097-0142(19890101)63:1<181::AID-CNCR2820630129>3.0.CO;2-H] [PMID: 2910416]
[205]
He, Z.Y.; Wu, S.G.; Yang, Q.; Sun, J.Y.; Li, F.Y.; Lin, Q.; Lin, H.X. Breast cancer subtype is associated with axillary lymph node metastasis: a retrospective cohort study. Medicine (Baltimore), 2015, 94(48), e2213.
[http://dx.doi.org/10.1097/MD.0000000000002213] [PMID: 26632910]
[206]
Kim, J.Y.; Shin, J.K.; Lee, S.H. The breast tumor strain ratio is a predictive parameter for axillary lymph node metastasis in patients with invasive breast cancer. AJR Am. J. Roentgenol., 2015, 205(6), W630-8.
[http://dx.doi.org/10.2214/AJR.14.14269] [PMID: 26587952]
[207]
Lyman, G.H.; Somerfield, M.R.; Bosserman, L.D.; Perkins, C.L.; Weaver, D.L.; Giuliano, A.E. Sentinel lymph node biopsy for patients with early-stage breast cancer: american society of clinical oncology clinical practice guideline update. J. Clin. Oncol., 2017, 35(5), 561-564.
[http://dx.doi.org/10.1200/JCO.2016.71.0947] [PMID: 27937089]
[208]
Kamath, V.J.; Giuliano, R.; Dauway, E.L.; Cantor, A.; Berman, C.; Ku, N.N.; Cox, C.E.; Reintgen, D.S. Characteristics of the sentinel lymph node in breast cancer predict further involvement of higher-echelon nodes in the axilla: a study to evaluate the need for complete axillary lymph node dissection. Arch. Surg., 2001, 136(6), 688-692.
[http://dx.doi.org/10.1001/archsurg.136.6.688] [PMID: 11387010]
[209]
Liang, F.; Qu, H.; Lin, Q.; Yang, Y.; Ruan, X.; Zhang, B.; Liu, Y.; Yu, C.; Zhang, H.; Fang, X.; Hao, X. Molecular biomarkers screened by next-generation RNA sequencing for non-sentinel lymph node status prediction in breast cancer patients with metastatic sentinel lymph nodes. World J. Surg. Oncol., 2015, 13, 258.
[http://dx.doi.org/10.1186/s12957-015-0642-2] [PMID: 26311227]
[210]
DeSantis, C.; Siegel, R.; Bandi, P.; Jemal, A. Breast cancer statistics, 2011. CA Cancer J. Clin., 2011, 61(6), 409-418.
[http://dx.doi.org/10.3322/caac.20134] [PMID: 21969133]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy