Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Nature-Derived Hit, Lead, and Drug-Like Small Molecules: Current Status and Future Aspects Against Key Target Proteins of Coronaviruses

Author(s): Md. Junaid*, Yeasmin Akter, Aysha Siddika, S. M. Abdul Nayeem, Afsana Nahrin, Syeda Samira Afrose, Md. Muzahid Ahmed Ezaj and Muhammad Shaiful Alam

Volume 22, Issue 3, 2022

Published on: 05 August, 2021

Page: [498 - 549] Pages: 52

DOI: 10.2174/1389557521666210805113231

Price: $65

Abstract

Background: COVID-19 pandemic, the most unprecedented event of the year 2020, has brought millions of scientists worldwide in a single platform to fight against it. Though several drugs are now in the clinical trial, few vaccines are available on the market already, but the lack of an effect of those is making the situation worse.

Aim of the study: In this review, we demonstrated comprehensive data of natural antiviral products showing activities against different proteins of Human Coronaviruses (HCoV) that are responsible for its pathogenesis. Furthermore, we categorized the compounds into the hit, lead, and drug based on the IC50/EC50 value, drug-likeness, and lead-likeness test to portray their potentiality to be a drug. We also demonstrated the present status of our screened antiviral compounds with respect to clinical trials and reported the lead compounds that can be promoted to clinical trial against COVID-19.

Methods: A systematic search strategy was employed focusing on Natural Products (NPs) with proven activity (in vitro, in vivo, or in silico) against human coronaviruses, in general, and data were gathered from databases like PubMed, Web of Science, Google Scholar, SciVerse, and Scopus. Information regarding clinical trials retrieved from the Clinical Trial Database.

Results: Total "245" natural compounds were identified initially from the literature study. Among them, Glycyrrhizin, Caffeic acid, Curcumin is in phase 3, and Tetrandrine, Cyclosporine, Tacrolimus, Everolimus are in phase 4 clinical trial. Except for Glycyrrhizin, all compounds showed activity against COVID-19.

Conclusion: In summary, our demonstrated specific small molecules with lead and drug-like capabilities clarified their position in the drug discovery pipeline and proposed future research against COVID-19.

Keywords: COVID-19, HCoV, natural products, in vivo, in vitro, in silico.

Graphical Abstract
[1]
Bindseil, K.U.; Jakupovic, J.; Wolf, D.; Lavayre, J.; Leboul, J.; van der Pyl, D. Pure compound libraries; a new perspective for natural product based drug discovery. Drug Discov. Today, 2001, 6(16), 840-847.
[http://dx.doi.org/10.1016/S1359-6446(01)01856-6] [PMID: 11495757]
[2]
Chin, Y-W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J., 2006, 8(2), E239-E253.
[http://dx.doi.org/10.1007/BF02854894] [PMID: 16796374]
[3]
Afrose, S.S.; Junaid, M.; Akter, Y.; Tania, M.; Zheng, M.; Khan, M.A. Targeting kinases with thymoquinone: A molecular approach to cancer therapeutics. Drug Discov. Today, 2020, 25(12), 2294-2306.
[http://dx.doi.org/10.1016/j.drudis.2020.07.019] [PMID: 32721537]
[4]
Kitazato, K.; Wang, Y.; Kobayashi, N. Viral infectious disease and natural products with antiviral activity. Drug Discov. Ther., 2007, 1(1), 14-22.
[PMID: 22504360]
[5]
Méndez, C.; Salas, J.A. Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol., 2001, 19(11), 449-456.
[http://dx.doi.org/10.1016/S0167-7799(01)01765-6] [PMID: 11602309]
[6]
Hao, B-J.; Wu, Y-H.; Wang, J-G.; Hu, S-Q.; Keil, D.J.; Hu, H-J.; Lou, J-D.; Zhao, Y. Hepatoprotective and antiviral properties of isochlorogenic acid A from Laggera alata against hepatitis B virus infection. J. Ethnopharmacol., 2012, 144(1), 190-194.
[http://dx.doi.org/10.1016/j.jep.2012.09.003] [PMID: 22982394]
[7]
Zeng, F-L.; Xiang, Y-F.; Liang, Z-R.; Wang, X.; Huang, D.E.; Zhu, S-N.; Li, M-M.; Yang, D-P.; Wang, D-M.; Wang, Y-F. Anti-hepatitis B virus effects of dehydrocheilanthifoline from Corydalis saxicola. Am. J. Chin. Med., 2013, 41(1), 119-130.
[http://dx.doi.org/10.1142/S0192415X13500092] [PMID: 23336511]
[8]
Jiang, Z-Y.; Liu, W-F.; Zhang, X-M.; Luo, J.; Ma, Y-B.; Chen, J-J. Anti-HBV active constituents from Piper longum. Bioorg. Med. Chem. Lett., 2013, 23(7), 2123-2127.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.118] [PMID: 23434420]
[9]
Ying, C.; Li, Y.; Leung, C-H.; Robek, M.D.; Cheng, Y-C. Unique antiviral mechanism discovered in anti-hepatitis B virus research with a natural product analogue. Proc. Natl. Acad. Sci. USA, 2007, 104(20), 8526-8531.
[http://dx.doi.org/10.1073/pnas.0609883104] [PMID: 17488817]
[10]
Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protoc Pharmacol., 2009, 46(1), 9-21.
[11]
Hood, J.L.; Jallouk, A.P.; Campbell, N.; Ratner, L.; Wickline, S.A. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir. Ther., 2013, 18(1), 95-103.
[http://dx.doi.org/10.3851/IMP2346] [PMID: 22954649]
[12]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[13]
Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol., 2005, 32(10), 811-816.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[14]
Zandi, K.; Teoh, B-T.; Sam, S-S.; Wong, P-F.; Mustafa, M.R.; Abubakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[15]
Zandi, K.; Teoh, B-T.; Sam, S-S.; Wong, P-F.; Mustafa, M.R.; Abubakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med., 2012, 12(1), 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]
[16]
Polyak, S.J.; Morishima, C.; Lohmann, V.; Pal, S.; Lee, D.Y.; Liu, Y.; Graf, T.N.; Oberlies, N.H. Identification of hepatoprotective flavonolignans from silymarin. Proc. Natl. Acad. Sci. USA, 2010, 107(13), 5995-5999.
[http://dx.doi.org/10.1073/pnas.0914009107] [PMID: 20231449]
[17]
Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; Pietschmann, T.; Steinmann, E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54(6), 1947-1955.
[http://dx.doi.org/10.1002/hep.24610] [PMID: 21837753]
[18]
Takebe, Y.; Saucedo, C.J.; Lund, G.; Uenishi, R.; Hase, S.; Tsuchiura, T.; Kneteman, N.; Ramessar, K.; Tyrrell, D.L.J.; Shirakura, M.; Wakita, T.; McMahon, J.B.; O’Keefe, B.R. Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against hepatitis C virus. PLoS One, 2013, 8(5)e64449
[http://dx.doi.org/10.1371/journal.pone.0064449] [PMID: 23700478]
[19]
Tamura, S.; Yang, G-M.; Yasueda, N.; Matsuura, Y.; Komoda, Y.; Murakami, N.; Tellimagrandin, I. HCV invasion inhibitor from Rosae rugosae Flos. Bioorg. Med. Chem. Lett., 2010, 20(5), 1598-1600.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.084] [PMID: 20144544]
[20]
Grienke, U.; Schmidtke, M.; von Grafenstein, S.; Kirchmair, J.; Liedl, K.R.; Rollinger, J.M. Influenza neuraminidase: A druggable target for natural products. Nat. Prod. Rep., 2012, 29(1), 11-36.
[http://dx.doi.org/10.1039/C1NP00053E] [PMID: 22025274]
[21]
Jeong, H.J.; Kim, Y.M.; Kim, J.H.; Kim, J.Y.; Park, J-Y.; Park, S-J.; Ryu, Y.B.; Lee, W.S. Homoisoflavonoids from Caesalpinia sappan displaying viral neuraminidases inhibition. Biol. Pharm. Bull., 2012, 35(5), 786-790.
[http://dx.doi.org/10.1248/bpb.35.786] [PMID: 22687418]
[22]
Ma, L-Y.; Ma, S-C.; Wei, F.; Lin, R-C.; But, P.P-H.; Lee, S.H-S.; Lee, S.F. Uncinoside A and B, two new antiviral chromone glycosides from Selaginella uncinata. Chem. Pharm. Bull. (Tokyo), 2003, 51(11), 1264-1267.
[http://dx.doi.org/10.1248/cpb.51.1264] [PMID: 14600370]
[23]
Huang, W.; Zhang, X.; Wang, Y.; Ye, W.; Ooi, V.E.; Chung, H.Y.; Li, Y. Antiviral biflavonoids from Radix wikstroemiae (Liaogewanggen). Chin. Med., 2010, 5(1), 23.
[http://dx.doi.org/10.1186/1749-8546-5-23] [PMID: 20565950]
[24]
Lin, L-T.; Chen, T-Y.; Lin, S-C.; Chung, C-Y.; Lin, T-C.; Wang, G-H.; Anderson, R.; Lin, C-C.; Richardson, C.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol., 2013, 13(1), 187.
[http://dx.doi.org/10.1186/1471-2180-13-187] [PMID: 23924316]
[25]
Vlietinck, A.; De Bruyne, T.; Vanden Berghe, D. Plant substances as antiviral agents. Curr. Org. Chem., 1997, 1(4), 307-344.
[26]
Zhang, M-Z.; Chen, Q.; Yang, G-F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.065] [PMID: 25462257]
[27]
Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[28]
Horvath, D.; Orlov, A.; Osolodkin, D.I.; Ishmukhametov, A.A.; Marcou, G.; Varnek, A. A chemographic audit of anti‐coronavirus structure‐activity information from public databases (ChEMBL). Mol. Inf, 2020, 39(12)e2000080
[29]
Berry, M.; Fielding, B.C.; Gamieldien, J. Potential broad spectrum inhibitors of the coronavirus 3CLpro: A virtual screening and structure-based drug design study. Viruses, 2015, 7(12), 6642-6660.
[http://dx.doi.org/10.3390/v7122963] [PMID: 26694449]
[30]
Motta Zanin, G.; Gentile, E.; Parisi, A.; Spasiano, D. A Preliminary evaluation of the public risk perception related to the covid-19 health emergency in italy. Int. J. Environ. Res. Public Health, 2020, 17(9), 3024.
[http://dx.doi.org/10.3390/ijerph17093024] [PMID: 32349253]
[31]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[32]
Rosén, J.; Gottfries, J.; Muresan, S.; Backlund, A.; Oprea, T.I. Novel chemical space exploration in via natural products. J. Med. Chem., 2009, 52(7), 1953-1962.
[http://dx.doi.org/10.1021/jm801514w] [PMID: 19265440]
[33]
Clardy, J.; Walsh, C. Lessons from natural molecules. Nature, 2004, 432(7019), 829-837.
[http://dx.doi.org/10.1038/nature03194] [PMID: 15602548]
[34]
Dixon, N.; Wong, L.S.; Geerlings, T.H.; Micklefield, J. Cellular targets of natural products. Nat. Prod. Rep., 2007, 24(6), 1288-1310.
[http://dx.doi.org/10.1039/b616808f] [PMID: 18033580]
[35]
Schmitt, E.K.; Moore, C.M.; Krastel, P.; Petersen, F. Natural products as catalysts for innovation: A pharmaceutical industry perspective. Curr. Opin. Chem. Biol., 2011, 15(4), 497-504.
[http://dx.doi.org/10.1016/j.cbpa.2011.05.018] [PMID: 21684800]
[36]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep., 2000, 17(3), 215-234.
[http://dx.doi.org/10.1039/a902202c] [PMID: 10888010]
[37]
Bergmann, W.; Burke, D.C. Contributions to the study of marine products. XL. The nucleosides of sponges. IV. Spongosine. J. Org. Chem., 1956, 21, 226-228.
[http://dx.doi.org/10.1021/jo01108a020]
[38]
Bergmann, W.; Feeney, R.J. The isolation of a new thymine pentoside from sponges1. J. Am. Chem. Soc., 1950, 72(6), 2809-2810.
[http://dx.doi.org/10.1021/ja01162a543]
[39]
Bergmann, W.; Feeney, R. Nucleosides of sponges: Discovery of the arabinosebased nucleotides—Tethya crypta. J. Org. Chem., 1951, 16, 981-987.
[http://dx.doi.org/10.1021/jo01146a023]
[40]
Darnall, K.R.; Townsend, L.B.; Robins, R.K. The structure of showdomycin, a novel carbon-linked nucleoside antibiotic related to uridine. Proc. Natl. Acad. Sci. USA, 1967, 57(3), 548-553.
[http://dx.doi.org/10.1073/pnas.57.3.548] [PMID: 16591497]
[41]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[42]
Kim, D.; Lee, J-Y.; Yang, J-S.; Kim, J.W.; Kim, V.N.; Chang, H. The architecture of SARS-CoV-2 transcriptome. Cell, 2020, 181(4), 914-921.e10.
[http://dx.doi.org/10.1016/j.cell.2020.04.011] [PMID: 32330414]
[43]
Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B-J.; Jiang, S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009, 7(3), 226-236.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[44]
Du, L.; Yang, Y.; Zhou, Y.; Lu, L.; Li, F.; Jiang, S. MERS-CoV spike protein: A key target for antivirals. Expert Opin. Ther. Targets, 2017, 21(2), 131-143.
[http://dx.doi.org/10.1080/14728222.2017.1271415] [PMID: 27936982]
[45]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[46]
Shirato, K.; Kawase, M.; Matsuyama, S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology, 2018, 517, 9-15.
[http://dx.doi.org/10.1016/j.virol.2017.11.012] [PMID: 29217279]
[47]
Stobart, C.C.; Sexton, N.R.; Munjal, H.; Lu, X.; Molland, K.L.; Tomar, S.; Mesecar, A.D.; Denison, M.R. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J. Virol., 2013, 87(23), 12611-12618.
[http://dx.doi.org/10.1128/JVI.02050-13] [PMID: 24027335]
[48]
Wang, H.; Xue, S.; Yang, H.; Chen, C. Recent progress in the discovery of inhibitors targeting coronavirus proteases. Virol. Sin., 2016, 31(1), 24-30.
[http://dx.doi.org/10.1007/s12250-015-3711-3] [PMID: 26920707]
[49]
te Velthuis, A.J.; van den Worm, S.H.; Snijder, E.J. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res., 2012, 40(4), 1737-1747.
[http://dx.doi.org/10.1093/nar/gkr893] [PMID: 22039154]
[50]
Egloff, M-P.; Ferron, F.; Campanacci, V.; Longhi, S.; Rancurel, C.; Dutartre, H.; Snijder, E.J.; Gorbalenya, A.E.; Cambillau, C.; Canard, B. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc. Natl. Acad. Sci. USA, 2004, 101(11), 3792-3796.
[http://dx.doi.org/10.1073/pnas.0307877101] [PMID: 15007178]
[51]
Hu, T.; Chen, C.; Li, H.; Dou, Y.; Zhou, M.; Lu, D.; Zong, Q.; Li, Y.; Yang, C.; Zhong, Z.; Singh, N.; Hu, H.; Zhang, R.; Yang, H.; Su, D. Structural basis for dimerization and RNA binding of avian infectious bronchitis virus nsp9. Protein Sci., 2017, 26(5), 1037-1048.
[http://dx.doi.org/10.1002/pro.3150] [PMID: 28257598]
[52]
Bouvet, M.; Lugari, A.; Posthuma, C.C.; Zevenhoven, J.C.; Bernard, S.; Betzi, S.; Imbert, I.; Canard, B.; Guillemot, J-C.; Lécine, P.; Pfefferle, S.; Drosten, C.; Snijder, E.J.; Decroly, E.; Morelli, X. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J. Biol. Chem., 2014, 289(37), 25783-25796.
[http://dx.doi.org/10.1074/jbc.M114.577353] [PMID: 25074927]
[53]
Snijder, E.; Decroly, E.; Ziebuhr, J. In Advances in virus research.Elsevier,, 2016, 96, 59-126.
[54]
Sola, I.; Almazán, F.; Zúñiga, S.; Enjuanes, L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol., 2015, 2(1), 265-288.
[http://dx.doi.org/10.1146/annurev-virology-100114-055218] [PMID: 26958916]
[55]
Zhou, Y.; Yang, Y.; Huang, J.; Jiang, S.; Du, L. Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain. Viruses, 2019, 11(1), 60.
[http://dx.doi.org/10.3390/v11010060] [PMID: 30646569]
[56]
Walls, A.C.; Park, Y-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 183(6), 1735.
[http://dx.doi.org/10.1016/j.cell.2020.11.032]
[57]
Westerbeck, J.W.; Machamer, C.E. The infectious bronchitis coronavirus envelope protein alters Golgi pH to protect the spike protein and promote the release of infectious virus. J. Virol., 2019, 93(11), e00015-e00019.
[http://dx.doi.org/10.1128/JVI.00015-19] [PMID: 30867314]
[58]
Ashour, H.M.; Elkhatib, W.F.; Rahman, M.M.; Elshabrawy, H.A. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens, 2020, 9(3), 186.
[http://dx.doi.org/10.3390/pathogens9030186] [PMID: 32143502]
[59]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: Current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[60]
Venkatagopalan, P.; Daskalova, S.M.; Lopez, L.A.; Dolezal, K.A.; Hogue, B.G. Coronavirus envelope (E) protein remains at the site of assembly. Virology, 2015, 478, 75-85.
[http://dx.doi.org/10.1016/j.virol.2015.02.005] [PMID: 25726972]
[61]
Arbely, E.; Khattari, Z.; Brotons, G.; Akkawi, M.; Salditt, T.; Arkin, I.T. A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J. Mol. Biol., 2004, 341(3), 769-779.
[http://dx.doi.org/10.1016/j.jmb.2004.06.044] [PMID: 15288785]
[62]
Kuo, L.; Hurst, K.R.; Masters, P.S. Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J. Virol., 2007, 81(5), 2249-2262.
[http://dx.doi.org/10.1128/JVI.01577-06] [PMID: 17182690]
[63]
Verdiá-Báguena, C.; Nieto-Torres, J.L.; Alcaraz, A.; Dediego, M.L.; Enjuanes, L.; Aguilella, V.M. Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge. Biochim. Biophys. Acta, 2013, 1828(9), 2026-2031.
[http://dx.doi.org/10.1016/j.bbamem.2013.05.008] [PMID: 23688394]
[64]
Torres, J.; Maheswari, U.; Parthasarathy, K.; Ng, L.; Liu, D.X.; Gong, X. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci., 2007, 16(9), 2065-2071.
[http://dx.doi.org/10.1110/ps.062730007] [PMID: 17766393]
[65]
Curtis, K.M.; Yount, B.; Baric, R.S. Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J. Virol., 2002, 76(3), 1422-1434.
[http://dx.doi.org/10.1128/JVI.76.3.1422-1434.2002] [PMID: 11773416]
[66]
Pervushin, K.; Tan, E.; Parthasarathy, K.; Lin, X.; Jiang, F.L.; Yu, D.; Vararattanavech, A.; Soong, T.W.; Liu, D.X.; Torres, J. Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog., 2009, 5(7)e1000511
[http://dx.doi.org/10.1371/journal.ppat.1000511] [PMID: 19593379]
[67]
Gupta, M.K.; Vemula, S.; Donde, R.; Gouda, G.; Behera, L.; Vadde, R. In silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J. Biomol. Struct. Dyn., 2020, 39(7), 1-17.
[http://dx.doi.org/10.1080/07391102.2020.1751300] [PMID: 32238078]
[68]
Hogue, B.G.; Machamer, C.E. Nidoviruses; American Society of Microbiology, 2008, pp. 179-200.
[69]
Arndt, A.L.; Larson, B.J.; Hogue, B.G. A conserved domain in the coronavirus membrane protein tail is important for virus assembly. J. Virol., 2010, 84(21), 11418-11428.
[http://dx.doi.org/10.1128/JVI.01131-10] [PMID: 20719948]
[70]
de Haan, C.A.; Kuo, L.; Masters, P.S.; Vennema, H.; Rottier, P.J. Coronavirus particle assembly: Primary structure requirements of the membrane protein. J. Virol., 1998, 72(8), 6838-6850.
[http://dx.doi.org/10.1128/JVI.72.8.6838-6850.1998] [PMID: 9658133]
[71]
de Haan, C.A.; Vennema, H.; Rottier, P.J. Assembly of the coronavirus envelope: Homotypic interactions between the M proteins. J. Virol., 2000, 74(11), 4967-4978.
[http://dx.doi.org/10.1128/JVI.74.11.4967-4978.2000] [PMID: 10799570]
[72]
Hurst, K.R.; Kuo, L.; Koetzner, C.A.; Ye, R.; Hsue, B.; Masters, P.S. A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J. Virol., 2005, 79(21), 13285-13297.
[http://dx.doi.org/10.1128/JVI.79.21.13285-13297.2005] [PMID: 16227251]
[73]
Wang, Y.; Liu, L. The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction in via a Toll-like-receptor-related TRAF3-independent mechanism. MBio, 2016, 7(1), e01872-e15.
[http://dx.doi.org/10.1128/mBio.01872-15] [PMID: 26861016]
[74]
Bos, E.C.; Luytjes, W.; van der Meulen, H.V.; Koerten, H.K.; Spaan, W.J. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology, 1996, 218(1), 52-60.
[http://dx.doi.org/10.1006/viro.1996.0165] [PMID: 8615041]
[75]
Vennema, H.; Godeke, G-J.; Rossen, J.W.; Voorhout, W.F.; Horzinek, M.C.; Opstelten, D.J.; Rottier, P.J. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J., 1996, 15(8), 2020-2028.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00553.x] [PMID: 8617249]
[76]
Chang, C.K.; Lo, S-C.; Wang, Y-S.; Hou, M-H. Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov. Today, 2016, 21(4), 562-572.
[http://dx.doi.org/10.1016/j.drudis.2015.11.015] [PMID: 26691874]
[77]
Parker, M.M.; Masters, P.S. Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology, 1990, 179(1), 463-468.
[http://dx.doi.org/10.1016/0042-6822(90)90316-J] [PMID: 2171216]
[78]
Masters, P.S. Localization of an RNA-binding domain in the nucleocapsid protein of the coronavirus mouse hepatitis virus. Arch. Virol., 1992, 125(1-4), 141-160.
[http://dx.doi.org/10.1007/BF01309634] [PMID: 1322650]
[79]
Surjit, M.; Liu, B.; Kumar, P.; Chow, V.T.; Lal, S.K. The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochem. Biophys. Res. Commun., 2004, 317(4), 1030-1036.
[http://dx.doi.org/10.1016/j.bbrc.2004.03.154] [PMID: 15094372]
[80]
Yu, I-M.; Gustafson, C.L.; Diao, J.; Burgner, J.W., II; Li, Z.; Zhang, J.; Chen, J. Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain. J. Biol. Chem., 2005, 280(24), 23280-23286.
[http://dx.doi.org/10.1074/jbc.M501015200] [PMID: 15849181]
[81]
Chang, C.K.; Hou, M-H.; Chang, C-F.; Hsiao, C-D.; Huang, T.H. The SARS coronavirus nucleocapsid protein--forms and functions. Antiviral Res., 2014, 103, 39-50.
[http://dx.doi.org/10.1016/j.antiviral.2013.12.009] [PMID: 24418573]
[82]
Lin, S-Y.; Liu, C-L.; Chang, Y-M.; Zhao, J.; Perlman, S.; Hou, M-H. Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target. J. Med. Chem., 2014, 57(6), 2247-2257.
[http://dx.doi.org/10.1021/jm500089r] [PMID: 24564608]
[83]
McBride, R.; van Zyl, M.; Fielding, B.C. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6(8), 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[84]
Zhou, B.; Liu, J.; Wang, Q.; Liu, X.; Li, X.; Li, P.; Ma, Q.; Cao, C. The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1α. J. Virol., 2008, 82(14), 6962-6971.
[http://dx.doi.org/10.1128/JVI.00133-08] [PMID: 18448518]
[85]
Zeng, Q.; Langereis, M.A.; van Vliet, A.L.; Huizinga, E.G.; de Groot, R.J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9065-9069.
[http://dx.doi.org/10.1073/pnas.0800502105] [PMID: 18550812]
[86]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[87]
Wu, K.; Peng, G.; Wilken, M.; Geraghty, R.J.; Li, F. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J. Biol. Chem., 2012, 287(12), 8904-8911.
[http://dx.doi.org/10.1074/jbc.M111.325803] [PMID: 22291007]
[88]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[89]
Ratia, K.; Pegan, S.; Takayama, J.; Sleeman, K.; Coughlin, M.; Baliji, S.; Chaudhuri, R.; Fu, W.; Prabhakar, B.S.; Johnson, M.E.; Baker, S.C.; Ghosh, A.K.; Mesecar, A.D. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl. Acad. Sci. USA, 2008, 105(42), 16119-16124.
[http://dx.doi.org/10.1073/pnas.0805240105] [PMID: 18852458]
[90]
Devaraj, S.G.; Wang, N.; Chen, Z.; Chen, Z.; Tseng, M.; Barretto, N.; Lin, R.; Peters, C.J.; Tseng, C-T.K.; Baker, S.C.; Li, K. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem., 2007, 282(44), 32208-32221.
[http://dx.doi.org/10.1074/jbc.M704870200] [PMID: 17761676]
[91]
Lindner, H.A.; Fotouhi-Ardakani, N.; Lytvyn, V.; Lachance, P.; Sulea, T.; Ménard, R. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol., 2005, 79(24), 15199-15208.
[http://dx.doi.org/10.1128/JVI.79.24.15199-15208.2005] [PMID: 16306591]
[92]
Sulea, T.; Lindner, H.A.; Purisima, E.O.; Ménard, R. Deubiquitination, a new function of the severe acute respiratory syndrome coronavirus papain-like protease? J. Virol., 2005, 79(7), 4550-4551.
[http://dx.doi.org/10.1128/JVI.79.7.4550-4551.2005] [PMID: 15767458]
[93]
Fan, K.; Wei, P.; Feng, Q.; Chen, S.; Huang, C.; Ma, L.; Lai, B.; Pei, J.; Liu, Y.; Chen, J.; Lai, L. Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J. Biol. Chem., 2004, 279(3), 1637-1642.
[http://dx.doi.org/10.1074/jbc.M310875200] [PMID: 14561748]
[94]
Liu, S.; Zheng, Q.; Wang, Z. Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics, 2020, 36(11), 3295-3298.
[http://dx.doi.org/10.1093/bioinformatics/btaa224] [PMID: 32239142]
[95]
Thiel, V.; Ivanov, K.A.; Putics, Á.; Hertzig, T.; Schelle, B.; Bayer, S.; Weißbrich, B.; Snijder, E.J.; Rabenau, H.; Doerr, H.W.; Gorbalenya, A.E.; Ziebuhr, J. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol., 2003, 84(9), 2305-2315.
[http://dx.doi.org/10.1099/vir.0.19424-0] [PMID: 12917450]
[96]
Goetz, D.H.; Choe, Y.; Hansell, E.; Chen, Y.T.; McDowell, M.; Jonsson, C.B.; Roush, W.R.; McKerrow, J.; Craik, C.S. Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry, 2007, 46(30), 8744-8752.
[http://dx.doi.org/10.1021/bi0621415] [PMID: 17605471]
[97]
Adedeji, A.O.; Sarafianos, S.G. Antiviral drugs specific for coronaviruses in preclinical development. Curr. Opin. Virol., 2014, 8, 45-53.
[http://dx.doi.org/10.1016/j.coviro.2014.06.002] [PMID: 24997250]
[98]
Yang, H.; Xie, W.; Xue, X.; Yang, K.; Ma, J.; Liang, W.; Zhao, Q.; Zhou, Z.; Pei, D.; Ziebuhr, J.; Hilgenfeld, R.; Yuen, K.Y.; Wong, L.; Gao, G.; Chen, S.; Chen, Z.; Ma, D.; Bartlam, M.; Rao, Z. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol., 2005, 3(10)e324
[http://dx.doi.org/10.1371/journal.pbio.0030324] [PMID: 16128623]
[99]
Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K-Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[100]
Subissi, L.; Posthuma, C.C.; Collet, A.; Zevenhoven-Dobbe, J.C.; Gorbalenya, A.E.; Decroly, E.; Snijder, E.J.; Canard, B.; Imbert, I. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. USA, 2014, 111(37), E3900-E3909.
[http://dx.doi.org/10.1073/pnas.1323705111] [PMID: 25197083]
[101]
Khan, R.J.; Jha, R.K.; Amera, G.; Jain, M.; Singh, E.; Pathak, A.; Singh, R.P.; Muthukumaran, J.; Singh, A.K. Targeting SARS-Cov-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like Proteinase and 2′-O-Ribose Methyltransferase. J. Biomol. Struct. Dyn., 2020, 1-40.
[102]
Chen, Y.; Su, C.; Ke, M.; Jin, X.; Xu, L.; Zhang, Z.; Wu, A.; Sun, Y.; Yang, Z.; Tien, P.; Ahola, T.; Liang, Y.; Liu, X.; Guo, D. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog., 2011, 7(10)e1002294
[http://dx.doi.org/10.1371/journal.ppat.1002294] [PMID: 22022266]
[103]
Frick, D.N.; Lam, A.M. Understanding helicases as a means of virus control. Curr. Pharm. Des., 2006, 12(11), 1315-1338.
[http://dx.doi.org/10.2174/138161206776361147] [PMID: 16611118]
[104]
Karpe, Y.A.; Lole, K.S. NTPase and 5′ to 3′ RNA duplex-unwinding activities of the hepatitis E virus helicase domain. J. Virol., 2010, 84(7), 3595-3602.
[http://dx.doi.org/10.1128/JVI.02130-09] [PMID: 20071563]
[105]
Gorbalenya, A.E.; Koonin, E.V.; Donchenko, A.P.; Blinov, V.M. Coronavirus genome: Prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res., 1989, 17(12), 4847-4861.
[http://dx.doi.org/10.1093/nar/17.12.4847] [PMID: 2526320]
[106]
Heusipp, G.; Harms, U.; Siddell, S.G.; Ziebuhr, J. Identification of an ATPase activity associated with a 71-kilodalton polypeptide encoded in gene 1 of the human coronavirus 229E. J. Virol., 1997, 71(7), 5631-5634.
[http://dx.doi.org/10.1128/jvi.71.7.5631-5634.1997] [PMID: 9188639]
[107]
Ivanov, K.A.; Thiel, V.; Dobbe, J.C.; van der Meer, Y.; Snijder, E.J.; Ziebuhr, J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol., 2004, 78(11), 5619-5632.
[http://dx.doi.org/10.1128/JVI.78.11.5619-5632.2004] [PMID: 15140959]
[108]
Betz, U.A.; Fischer, R.; Kleymann, G.; Hendrix, M.; Rübsamen-Waigmann, H. Potent in vivo antiviral activity of the herpes simplex virus primase-helicase inhibitor BAY 57-1293. Antimicrob. Agents Chemother., 2002, 46(6), 1766-1772.
[http://dx.doi.org/10.1128/AAC.46.6.1766-1772.2002] [PMID: 12019088]
[109]
Kwong, A.D.; Rao, B.G.; Jeang, K-T. Viral and cellular RNA helicases as antiviral targets. Nat. Rev. Drug Discov., 2005, 4(10), 845-853.
[http://dx.doi.org/10.1038/nrd1853] [PMID: 16184083]
[110]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[111]
Khan, M.T.H.; Ather, A.; Thompson, K.D.; Gambari, R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res., 2005, 67(2), 107-119.
[http://dx.doi.org/10.1016/j.antiviral.2005.05.002] [PMID: 16040137]
[112]
Chattopadhyay, D.; Bhattacharya, S. Ethnopharmacology: A new search engine for the development of antivirals from naturaceuticals. 1ST ed., Handbook of Ethnopharmacology, Research Signpost 2008, pp. 129-197;
[113]
Chattopadhyay, D.; Naik, T.N. Antivirals of ethnomedicinal origin: Structure-activity relationship and scope. Mini Rev. Med. Chem., 2007, 7(3), 275-301.
[http://dx.doi.org/10.2174/138955707780059844] [PMID: 17346219]
[114]
Chattopadhyay, D. .Ethnomedicinal antivirals: Scope and opportunity. Med. Plant Biotechnol., 2006, 250,
[115]
Naithani, R.; Huma, L.C.; Holland, L.E.; Shukla, D.; McCormick, D.L.; Mehta, R.G.; Moriarty, R.M. Antiviral activity of phytochemicals: a comprehensive review. Mini Rev. Med. Chem., 2008, 8(11), 1106-1133.
[http://dx.doi.org/10.2174/138955708785909943] [PMID: 18855727]
[116]
Sengupta, P.S.J.P.U.-P.A. Use of Piper Betel to combat COVID 19.2019 , 1-10.,
[http://dx.doi.org/10.36375/prepare_u.a92]
[117]
Lin, C-W.; Tsai, F-J.; Tsai, C-H.; Lai, C-C.; Wan, L.; Ho, T-Y.; Hsieh, C-C.; Chao, P-D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[118]
Wen, C-C.; Kuo, Y-H.; Jan, J-T.; Liang, P-H.; Wang, S-Y.; Liu, H-G.; Lee, C-K.; Chang, S-T.; Kuo, C-J.; Lee, S-S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[119]
Xiao, S.; Tian, Z.; Wang, Y.; Si, L.; Zhang, L.; Zhou, D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev., 2018, 38(3), 951-976.
[http://dx.doi.org/10.1002/med.21484] [PMID: 29350407]
[120]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J-Y.; Kim, D.; Nguyen, T.T.; Park, S-J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[121]
Wang, S-Q.; Du, Q-S.; Zhao, K.; Li, A-X.; Wei, D-Q.; Chou, K-C. Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy. Amino Acids, 2007, 33(1), 129-135.
[http://dx.doi.org/10.1007/s00726-006-0403-1] [PMID: 16998715]
[122]
Liu, H.; Ye, F.; Sun, Q.; Liang, H.; Li, C.; Lu, R.; Huang, B.; Tan, W.; Lai, L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 497-503.
[123]
Shen, Y-C.; Wang, L-T.; Khalil, A.T.; Chiang, L.C.; Cheng, P-W. Bioactive pyranoxanthones from the roots of Calophyllum blancoi. Chem. Pharm. Bull. (Tokyo), 2005, 53(2), 244-247.
[http://dx.doi.org/10.1248/cpb.53.244] [PMID: 15684529]
[124]
Park, J-Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-515.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[125]
Weng, J-R.; Lin, C-S.; Lai, H-C.; Lin, Y-P.; Wang, C-Y.; Tsai, Y-C.; Wu, K-C.; Huang, S-H.; Lin, C-W.J.V.R. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res., 2019, 273197767
[http://dx.doi.org/10.1016/j.virusres.2019.197767] [PMID: 31560964]
[126]
Ryu, Y.B.; Park, S-J.; Kim, Y.M.; Lee, J-Y.; Seo, W.D.; Chang, J.S.; Park, K.H.; Rho, M-C.; Lee, W.S. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg. Med. Chem. Lett., 2010, 20(6), 1873-1876.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.152] [PMID: 20167482]
[127]
Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.H.; Kwon, S. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules, 2019, 9(11), 696.
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[128]
Park, J-Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H-J.; Park, S-J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[129]
Takizawa, N.; Yamasaki, M. Current landscape and future prospects of antiviral drugs derived from microbial products. J. Antibiot. Res., 2018, 71(1), 45-52.
[http://dx.doi.org/10.1038/ja.2017.115]
[130]
Park, J-Y.; Kim, J.H.; Kwon, J.M.; Kwon, H-J.; Jeong, H.J.; Kim, Y.M.; Kim, D.; Lee, W.S.; Ryu, Y.B. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg. Med. Chem., 2013, 21(13), 3730-3737.
[http://dx.doi.org/10.1016/j.bmc.2013.04.026] [PMID: 23647823]
[131]
Kwon, H-J.; Ryu, Y.B.; Kim, Y-M.; Song, N.; Kim, C.Y.; Rho, M-C.; Jeong, J-H.; Cho, K-O.; Lee, W.S.; Park, S-J.J.B. in vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorg. Med. Chem., 2013, 21(15), 4706-4713.
[http://dx.doi.org/10.1016/j.bmc.2013.04.085] [PMID: 23746631]
[132]
Kim, J.Y.; Kim, Y.I.; Park, S.J.; Kim, I.K.; Choi, Y.K.; Kim, S-H. Safe, high-throughput screening of natural compounds of MERS-CoV entry inhibitors using a pseudovirus expressing MERS-CoV spike protein. Int. J. Antimicrob. Agents, 2018, 52(5), 730-732.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.05.003] [PMID: 29772395]
[133]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[134]
Schwarz, S.; Wang, K.; Yu, W.; Sun, B.; Schwarz, W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res., 2011, 90(1), 64-69.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.008] [PMID: 21356245]
[135]
Nguyen, T.T.H.; Woo, H-J.; Kang, H-K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[136]
Lira, S.P.d.; Seleghim, M.H.; Williams, D.E.; Marion, F.; Hamill, P.; Jean, F.; Andersen, R.J.; Hajdu, E.; Berlinck, R.G. A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: Structure elucidation and synthesis. J. Braz. Chem. Soc., 2007, 18(2), 440-443.
[http://dx.doi.org/10.1590/S0103-50532007000200030]
[137]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[138]
Jo, S.; Kim, H.; Kim, S.; Shin, D.H.; Kim, M.S. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem. Biol. Drug Des., 2019, 94(6), 2023-2030.
[http://dx.doi.org/10.1111/cbdd.13604] [PMID: 31436895]
[139]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[140]
Dong, H-J.; Wang, Z-H.; Meng, W.; Li, C-C.; Hu, Y-X.; Zhou, L.; Wang, X-J. The natural compound homoharringtonine presents broad antiviral activity in vitro and in vivo. Viruses, 2018, 10(11), 601.
[http://dx.doi.org/10.3390/v10110601] [PMID: 30388805]
[141]
Tsai, Y-C.; Lee, C-L.; Yen, H-R.; Chang, Y-S.; Lin, Y-P.; Huang, S-H.; Lin, C-W. Antiviral Action of Tryptanthrin Isolated from Strobilanthes cusia Leaf against Human Coronavirus NL63. Biomolecules, 2020, 10(3), 366.
[http://dx.doi.org/10.3390/biom10030366] [PMID: 32120929]
[142]
Schwarz, S.; Sauter, D.; Wang, K.; Zhang, R.; Sun, B.; Karioti, A.; Bilia, A.R.; Efferth, T.; Schwarz, W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med., 2014, 80(03), 177-182.
[143]
Thabti, I.; Albert, Q.; Philippot, S.; Dupire, F.; Westerhuis, B.; Fontanay, S.; Risler, A.; Kassab, T.; Elfalleh, W.; Aferchichi, A.; Varbanov, M. Advances on antiviral activity of Morus spp. plant extracts: Human coronavirus and virus-related respiratory tract infections in the Spotlight. Molecules, 2020, 25(8), 1876.
[http://dx.doi.org/10.3390/molecules25081876] [PMID: 32325742]
[144]
Yang, Q-Y.; Tian, X-Y.; Fang, W-S. Bioactive coumarins from Boenninghausenia sessilicarpa. J. Asian Nat. Prod. Res., 2007, 9(1), 59-65.
[http://dx.doi.org/10.1080/10286020500382397] [PMID: 17365191]
[145]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[146]
Shen, L.; Niu, J.; Wang, C.; Huang, B.; Wang, W.; Zhu, N.; Deng, Y.; Wang, H.; Ye, F.; Cen, S.; Tan, W. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J. Virol., 2019, 93(12), e00023-e00019.
[http://dx.doi.org/10.1128/JVI.00023-19] [PMID: 30918074]
[147]
Yu, M-S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y-W.; Jee, J-G.; Keum, Y-S.; Jeong, Y-J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[148]
Zhuang, M.; Jiang, H.; Suzuki, Y.; Li, X.; Xiao, P.; Tanaka, T.; Ling, H.; Yang, B.; Saitoh, H.; Zhang, L.; Qin, C.; Sugamura, K.; Hattori, T. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Res., 2009, 82(1), 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[149]
Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O.W.; Zhu, W.; Puah, C.M.; Shen, X.; Jiang, H. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): Structure-activity relationship studies reveal salient pharmacophore features. Bioorg. Med. Chem., 2006, 14(24), 8295-8306.
[http://dx.doi.org/10.1016/j.bmc.2006.09.014] [PMID: 17046271]
[150]
Yuan, B.; Yang, R.; Ma, Y.; Zhou, S.; Zhang, X.; Liu, Y. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. Pharm. Biol., 2017, 55(1), 620-635.
[http://dx.doi.org/10.1080/13880209.2016.1262433] [PMID: 27951737]
[151]
Müller, C.; Schulte, F.W.; Lange-Grünweller, K.; Obermann, W.; Madhugiri, R.; Pleschka, S.; Ziebuhr, J.; Hartmann, R.K.; Grünweller, A. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res., 2018, 150, 123-129.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.010] [PMID: 29258862]
[152]
Chen, C-N.; Lin, C.P.; Huang, K-K.; Chen, W-C.; Hsieh, H-P.; Liang, P-H.; Hsu, J.T-A. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3′-digallate (TF3). Evid. Based Complement. Alternat. Med., 2005, 2(2), 209-215.
[http://dx.doi.org/10.1093/ecam/neh081] [PMID: 15937562]
[153]
Chattopadhyay, D. Role and scope of ethnomedical plants in the development of Antivirals. Pharmacologyonline, 2006, 3, 64-72.
[154]
Yang, C-W.; Lee, Y-Z.; Kang, I-J.; Barnard, D.L.; Jan, J-T.; Lin, D.; Huang, C-W.; Yeh, T-K.; Chao, Y-S.; Lee, S-J. Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res., 2010, 88(2), 160-168.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.009] [PMID: 20727913]
[155]
Roh, C. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide. Int. J. Nanomed, 2012, 7, 2173-2179.
[http://dx.doi.org/10.2147/IJN.S31379] [PMID: 22619553]
[156]
Joshi, T.; Joshi, T.; Sharma, P.; Mathpal, S.; Pundir, H.; Bhatt, V.; Chandra, S. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4529-4536.
[PMID: 32373991]
[157]
Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling Study. Mar. Drugs, 2020, 18(4), 225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[158]
Das, S.; Singha Roy, A. Naturally occurring anthraquinones as potential inhibitors of SARS-CoV-2 main protease: A molecular docking study. ChemRxiv,, 2020.https://chemrxiv.org/engage/chemrxiv/article-details/60c74ac9567dfe52deec4e1b
[159]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 Main Protease: An In Silico Approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098.
[http://dx.doi.org/10.1080/07391102.2020.1760136] [PMID: 32329419]
[160]
Alabboud, M.; Javadmanesh, A. In silico study of various antiviral drugs, vitamins, and natural substances as potential binding compounds with SARS-CoV-2 main protease; DLS, 2020, pp. 44-63.
[http://dx.doi.org/10.30493/DLS.2020.225404]
[161]
Pitchiah Kumar, M.; Sundaram, K.M.; Ramasamy, M. Coronavirus Spike (S) Glycoprotein (2019-Ncov) Targeted drug. Asian J. Pharm. Res. Health Care, 2019, 11(2), 1-9.
[162]
Tallei, T.E.; Tumilaar, S.G.; Niode, N.J.; Fatimawali, F.; Kepel, B.J.; Idroes, R.; Effendi, Y. Potential of plant bioactive compounds as sars-cov-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study. Scientifica, 2020.
[http://dx.doi.org/10.1155/2020/6307457]]
[163]
Umesh, D.H.; Kundu, D.; Selvaraj, C.; Singh, S.K.; Dubey, V.K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J. Biomol. Struct. Dyn., 2020, 9(9), 3428-3434.
[164]
Zhang, D.H.; Wu, K.L.; Zhang, X.; Deng, S.Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[165]
Hashem, H. In silico approach of some selected honey constituents as SARS-CoV-2 main protease (COVID-19). Eurasian J. Med. Oncol., 2020, 4(3), 196-200.
[166]
Ettayapuram Ramaprasad, A.S.; Durkin, K.A.; Smith, M. Structure-Based virtual screening of a natural product database to identify several possible SARS-CoV-2 main protease inhibitors. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12143394]]
[167]
Latha, N.; Pandit, M. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. Res. Sq., 2020.http://dx.doi.org/%2010.21203/rs.3.rs-22687/v1
[168]
Basu, A.; Sarkar, A.; Maulik, U. Computational approach for the design of potential spike protein binding natural compounds in SARS-CoV2. Res. Sq.,, 2020.http://dx.doi.org/%2010.21203/rs.3.rs-33181/v1
[169]
Lyndem, S.; Sarmah, S.; Das, S.; Singha Roy, A. In silico screening of naturally occurring coumarin derivatives for the inhibition of the main protease of SARS-CoV-2. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12234728.v1]]
[170]
Gyebi, G.A.; Ogunro, O.B.; Adegunloye, A.P.; Ogunyemi, O.M.; Afolabi, S.O. Potential Inhibitors of Coronavirus 3-Chymotrypsin-Like Protease (3CLpro): An in silico screening of Alkaloids and Terpenoids from African medicinal plants. J. Biomol. Struct. Dyn., 2020, 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1764868] [PMID: 32367767]
[171]
Barquero, J.F. Natural and synthetic probable inhibitors of endoribonuclease Nsp15 encoded by Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Computer modeling approach. p-coumaric acid, Curcumin and their Boronic acid derivatives. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.23.002881]]
[172]
Pendyala, B.; Patras, A. In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12051927.v2]]
[173]
Rao, S.V.; Tulasi, D.; Pavithra, K.; Nisha, R.; Taj, R. In silico studies on dengue and mers coronavirus proteins with selected Coriandrum Sativum L. Herb constituents. World J. Pharm. Pharm. Sci., 2018, 7(2), 2278-4357.
[174]
Shaghaghi, N. Molecular docking study of novel COVID-19 protease with low risk terpenoides compounds of plants. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.11935722.v1]]
[175]
Sharma, A.D.; Kaur, I. Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection. Res. Rev. Biotechnol. Biosci., 2020, 7, 59-66.
[176]
Giri, S.; Lal, A.F.; Singh, S. Battle against Coronavirus: Repurposing old friends (Food borne polyphenols) for new enemy (COVID-19). ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12108546.v1]]
[177]
Sharma, A.; Tiwari, V.; Sowdhamini, R.; Campus, G. Computational search for potential COVID-19 Drugs from FDA-Approved drugs and small molecules of natural origin identifies several anti-virals and plant products. J. Biosci., 2020, 45(1), 100.
[http://dx.doi.org/10.1007/s12038-020-00069-8]
[178]
Khalifa, I.; Zhu, W.; Nafie, M.; Dutta, K.; Li, C. Anti-COVID-19 Effects of Ten structurally different hydrolysable tannins through binding with the catalytic-closed Sites of COVID-19 main protease: An In silico Approach; Preprints, 2020.
[http://dx.doi.org/10.20944/preprints202003.0277.v1]
[179]
Wahedi, H.M.; Ahmad, S.; Abbasi, S.W. Stilbene-based natural compounds as promising drug candidates against COVID-19. J. Biomol. Struct. Dyn., 2020, 39(9), 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1762743] [PMID: 32345140]
[180]
Toney, J.H.; Navas-Martín, S.; Weiss, S.R.; Koeller, A. Sabadinine: A potential non-peptide anti-severe acute-respiratory-syndrome agent identified using structure-aided design. J. Med. Chem., 2004, 47(5), 1079-1080.
[http://dx.doi.org/10.1021/jm034137m] [PMID: 14971887]
[181]
Sinha, S.K.; Shakya, A.; Prasad, S.K.; Singh, S.; Gurav, N.S.; Prasad, R.S.; Gurav, S.S. An in silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. J. Biomol. Struct. Dyn., 2020, 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1762741] [PMID: 32345124]
[182]
Lung, J.; Lin, Y.S.; Yang, Y.H.; Chou, Y.L.; Shu, L.H.; Cheng, Y.C.; Liu, H.T.; Wu, C.Y. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J. Med. Virol., 2020, 92(6), 693-697.
[http://dx.doi.org/10.1002/jmv.25761] [PMID: 32167173]
[183]
Karypidou, K.; Ribone, S.R.; Quevedo, M.A.; Persoons, L.; Pannecouque, C.; Helsen, C.; Claessens, F.; Dehaen, W. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorg. Med. Chem. Lett., 2018, 28(21), 3472-3476.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.019] [PMID: 30286952]
[184]
Bjornsson, T.D.; Callaghan, J.T.; Einolf, H.J.; Fischer, V.; Gan, L.; Grimm, S.; Kao, J.; King, S.P.; Miwa, G.; Ni, L.; Kumar, G.; McLeod, J.; Obach, R.S.; Roberts, S.; Roe, A.; Shah, A.; Snikeris, F.; Sullivan, J.T.; Tweedie, D.; Vega, J.M.; Walsh, J.; Wrighton, S.A. The conduct of in vitro and in vivo drug-drug interaction studies: A Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab. Dispos., 2003, 31(7), 815-832.
[http://dx.doi.org/10.1124/dmd.31.7.815] [PMID: 12814957]
[185]
Khalili, N.; Karimi, A.; Moradi, M-T.; Shirzad, H. In vitro immunomodulatory activity of celastrol against influenza A virus infection. Immunopharmacol. Immunotoxicol., 2018, 40(3), 250-255.
[http://dx.doi.org/10.1080/08923973.2018.1440591] [PMID: 29493374]
[186]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[187]
Saradhi, U.V.; Gupta, S.V.; Chiu, M.; Wang, J.; Ling, Y.; Liu, Z.; Newman, D.J.; Covey, J.M.; Kinghorn, A.D.; Marcucci, G.; Lucas, D.M.; Grever, M.R.; Phelps, M.A.; Chan, K.K. Characterization of silvestrol pharmacokinetics in mice using liquid chromatography-tandem mass spectrometry. AAPS J., 2011, 13(3), 347-356.
[http://dx.doi.org/10.1208/s12248-011-9273-x] [PMID: 21499689]
[188]
Theoharides, T.C.J.B. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors, 2020, 46(3), 306-308.
[http://dx.doi.org/10.1002/biof.1633] [PMID: 32339387]
[189]
Xu, Y.; Lou, Z.; Liu, Y.; Pang, H.; Tien, P.; Gao, G.F.; Rao, Z. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J. Biol. Chem., 2004, 279(47), 49414-49419.
[http://dx.doi.org/10.1074/jbc.M408782200] [PMID: 15345712]
[190]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[191]
Stevens, E. Medicinal chemistry. Eurasian J. Med. Oncol.,, 2014.
[192]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[193]
Pascolutti, M.; Quinn, R.J. Natural products as lead structures: Chemical transformations to create lead-like libraries. Drug Discov. Today, 2014, 19(3), 215-221.
[http://dx.doi.org/10.1016/j.drudis.2013.10.013] [PMID: 24171951]
[194]
Wunberg, T.; Hendrix, M.; Hillisch, A.; Lobell, M.; Meier, H.; Schmeck, C.; Wild, H.; Hinzen, B. Improving the hit-to-lead process: data-driven assessment of drug-like and lead-like screening hits. Drug Discov. Today, 2006, 11(3-4), 175-180.
[http://dx.doi.org/10.1016/S1359-6446(05)03700-1] [PMID: 16533716]
[195]
Teague, S.J.; Davis, A.M.; Leeson, P.D.; Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. Engl., 1999, 38(24), 3743-3748.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3743:AID-ANIE3743>3.0.CO;2-U] [PMID: 10649345]
[196]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[197]
Oprea, T.I. Current trends in lead discovery: Are we looking for the appropriate properties? Mol. Divers., 2002, 5(4), 199-208.
[http://dx.doi.org/10.1023/A:1021368007777] [PMID: 12549672]
[198]
Schneider, G. Trends in virtual combinatorial library design. Curr. Med. Chem., 2002, 9(23), 2095-2101.
[http://dx.doi.org/10.2174/0929867023368755] [PMID: 12470249]
[199]
Ntie-Kang, F.; Lifongo, L.L.; Judson, P.N.; Sippl, W.; Efange, S.M. How “drug-like” are naturally occurring anti-cancer compounds? J. Mol. Model., 2014, 20(1), 2069.
[http://dx.doi.org/10.1007/s00894-014-2069-z] [PMID: 24452907]
[200]
Doveston, R.G.; Tosatti, P.; Dow, M.; Foley, D.J.; Li, H.Y.; Campbell, A.J.; House, D.; Churcher, I.; Marsden, S.P.; Nelson, A. A unified lead-oriented synthesis of over fifty molecular scaffolds. Org. Biomol. Chem., 2015, 13(3), 859-865.
[http://dx.doi.org/10.1039/C4OB02287D] [PMID: 25408068]
[201]
Lüthy, M.; Wheldon, M.C.; Haji-Cheteh, C.; Atobe, M.; Bond, P.S.; O’Brien, P.; Hubbard, R.E.; Fairlamb, I.J. Lead-oriented synthesis: Investigation of organolithium-mediated routes to 3-D scaffolds and 3-D shape analysis of a virtual lead-like library. Bioorg. Med. Chem., 2015, 23(11), 2680-2694.
[http://dx.doi.org/10.1016/j.bmc.2015.04.005] [PMID: 25936257]
[202]
Shah, A. Novel coronavirus-induced nlrp3 inflammasome activation: A potential drug target in the treatment of COVID-19. Front. Immunol., 2020, 11, 1021.
[http://dx.doi.org/10.3389/fimmu.2020.01021] [PMID: 32574259]
[203]
Fu, Y.; Cheng, Y.; Wu, Y. Understanding SARS-CoV-2-mediated inflammatory responses: From mechanisms to potential therapeutic tools. Virol. Sin., 2020, 35(3), 266-271.
[http://dx.doi.org/10.1007/s12250-020-00207-4] [PMID: 32125642]
[204]
Ratajczak, M.Z.; Kucia, M. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia, 2020, 34(7), 1726-1729.
[http://dx.doi.org/10.1038/s41375-020-0887-9] [PMID: 32483300]
[205]
Alschuler, L.; Weil, A.; Horwitz, R.; Stamets, P.; Chiasson, A.M.; Crocker, R.; Maizes, V. Integrative considerations during the COVID-19 pandemic. Explore (NY), 2020, 16(6), 354-356.
[http://dx.doi.org/10.1016/j.explore.2020.03.007] [PMID: 32229082]
[206]
Lu, N.T.; Crespi, C.M.; Liu, N.M.; Vu, J.Q.; Ahmadieh, Y.; Wu, S.; Lin, S.; McClune, A.; Durazo, F.; Saab, S.; Han, S.; Neiman, D.C.; Beaven, S.; French, S.W. A phase I dose escalation study demonstrates quercetin safety and explores potential for bioflavonoid antivirals in patients with chronic hepatitis C. Phytother. Res., 2016, 30(1), 160-168.
[http://dx.doi.org/10.1002/ptr.5518] [PMID: 26621580]
[207]
van Rossum, T.G.; Vulto, A.G.; Hop, W.C.; Schalm, S.W. Pharmacokinetics of intravenous glycyrrhizin after single and multiple doses in patients with chronic hepatitis C infection. Clin. Ther., 1999, 21(12), 2080-2090.
[http://dx.doi.org/10.1016/S0149-2918(00)87239-2] [PMID: 10645755]
[208]
Ning, Y. Observation of the therapeutic effect of compound glycyrrhizin injection on chronic hepatitis B. China Pharm., 2004, 15(6), 355-356.
[209]
Yanagawa, Y.; Ogura, M.; Fujimoto, E.; Shono, S.; Okuda, E. Effects and cost of glycyrrhizin in the treatment of upper respiratory tract infections in members of the Japanese maritime self-defense force: Preliminary report of a prospective, randomized, double-blind, controlled, parallel-group, alternate-day treatment assignment clinical trial. Curr. Ther. Res. Clin. Exp., 2004, 65(1), 26-33.
[http://dx.doi.org/10.1016/S0011-393X(04)90002-1] [PMID: 24936101]
[210]
Tsubota, A.; Kumada, H.; Arase, Y.; Chayama, K.; Saitoh, S.; Ikeda, K.; Kobayashi, M.; Suzuki, Y.; Murashima, N. Combined ursodeoxycholic acid and glycyrrhizin therapy for chronic hepatitis C virus infection: A randomized controlled trial in 170 patients. Eur. J. Gastroenterol. Hepatol., 1999, 11(10), 1077-1083.
[http://dx.doi.org/10.1097/00042737-199910000-00002] [PMID: 10524635]
[211]
Hung, C-H.; Kee, K-M.; Chen, C-H.; Tseng, P.L.; Tsai, M-C.; Chen, C-H.; Wang, J-H.; Chang, K-C.; Kuo, Y-H.; Yen, Y-H.; Hu, T.H.; Lu, S.N. A randomized controlled trial of glycyrrhizin plus tenofovir vs tenofovir in chronic hepatitis B with severe acute exacerbation. Clin. Transl. Gastroenterol., 2017, 8(6)e104
[http://dx.doi.org/10.1038/ctg.2017.29] [PMID: 28662023]
[212]
Sun, W.; Li, D.; Qiu, J. Compound glycyrrhizin for hepatic cirrhosis caused by hepatitis B: Observation of curative efficacy; China Pharm, 2007, p. 26.
[213]
Meng, Y.; Xiao-lin, G. Clinical study of PHGF combined with compound Glycyrrhizin on patients with severe hepatitis.Med. J. Chin. People's Health, 2009, 19(9)
[214]
Shang, J. Clinical therapeutic observation of man’gan decoction plus compound glycyrrhizin in the treatment of chronic type b hepatitis; China Pharm, 2005, p. 15.
[215]
Firpi, R.J.; Soldevila-Pico, C.; Morelli, G.G.; Cabrera, R.; Levy, C.; Clark, V.C.; Suman, A.; Michaels, A.; Chen, C.; Nelson, D.R. The use of cyclosporine for recurrent hepatitis C after liver transplant: A randomized pilot study. Dig. Dis. Sci., 2010, 55(1), 196-203.
[http://dx.doi.org/10.1007/s10620-009-0981-3] [PMID: 19798576]
[216]
Nicolás, D.; Ambrosioni, J.; Sued, O.; Brunet, M.; López-Diéguez, M.; Manzardo, C.; Agüero, F.; Tuset, M.; Plana, M.; Guardo, A.C.; Mosquera, M.M.; Muñoz-Fernández, M.Á.; Caballero, M.; Marcos, M.Á.; Gatell, J.M.; de Lazzari, E.; Gallart, T.; Miró, J.M. Cyclosporine A in addition to standard ART during primary HIV-1 infection: Pilot randomized clinical trial. J. Antimicrob. Chemother., 2017, 72(3), 829-836.
[PMID: 27999018]
[217]
Heinz, S.A.; Henson, D.A.; Austin, M.D.; Jin, F.; Nieman, D.C. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial. Pharmacol. Res., 2010, 62(3), 237-242.
[http://dx.doi.org/10.1016/j.phrs.2010.05.001] [PMID: 20478383]
[218]
Gulick, R.M.; McAuliffe, V.; Holden-Wiltse, J.; Crumpacker, C.; Liebes, L.; Stein, D.S.; Meehan, P.; Hussey, S.; Forcht, J.; Valentine, F.T. Phase I studies of hypericin, the active compound in St. John’s Wort, as an antiretroviral agent in HIV-infected adults. AIDS Clinical Trials Group Protocols 150 and 258. Ann. Intern. Med., 1999, 130(6), 510-514.
[http://dx.doi.org/10.7326/0003-4819-130-6-199903160-00015] [PMID: 10075619]
[219]
Jacobson, J.M.; Feinman, L.; Liebes, L.; Ostrow, N.; Koslowski, V.; Tobia, A.; Cabana, B.E.; Lee, D.; Spritzler, J.; Prince, A.M. Pharmacokinetics, safety, and antiviral effects of hypericin, a derivative of St. John’s wort plant, in patients with chronic hepatitis C virus infection. Antimicrob. Agents Chemother., 2001, 45(2), 517-524.
[http://dx.doi.org/10.1128/AAC.45.2.517-524.2001] [PMID: 11158749]
[220]
Andreone, P.; Fiorino, S.; Cursaro, C.; Gramenzi, A.; Margotti, M.; Di Giammarino, L.; Biselli, M.; Miniero, R.; Gasbarrini, G.; Bernardi, M. Vitamin E as treatment for chronic hepatitis B: Results of a randomized controlled pilot trial. Antiviral Res., 2001, 49(2), 75-81.
[http://dx.doi.org/10.1016/S0166-3542(00)00141-8] [PMID: 11248360]
[221]
Gerner, P.; Posselt, H-G.; Krahl, A.; Ballauff, A.; Innerhofer, A.; Binder, C.; Wenzl, T.G.; Zense, M.; Hector, A.; Dockter, G.; Adam, R.; Neubert, J.; Classen, M.; van Gemmern, R.; Wirth, S. Vitamin E treatment for children with chronic hepatitis B: A randomized placebo controlled trial. World J. Gastroenterol., 2008, 14(47), 7208-7213.
[http://dx.doi.org/10.3748/wjg.14.7208] [PMID: 19084935]
[222]
Meydani, S.N.; Leka, L.S.; Fine, B.C.; Dallal, G.E.; Keusch, G.T.; Singh, M.F.; Hamer, D.H. Vitamin E and respiratory tract infections in elderly nursing home residents: A randomized controlled trial. JAMA, 2004, 292(7), 828-836.
[http://dx.doi.org/10.1001/jama.292.7.828] [PMID: 15315997]
[223]
von Herbay, A.; Stahl, W.; Niederau, C.; Sies, H. Vitamin E improves the aminotransferase status of patients suffering from viral hepatitis C: A randomized, double-blind, placebo-controlled study. Free Radic. Res., 1997, 27(6), 599-605.
[http://dx.doi.org/10.3109/10715769709097863] [PMID: 9455695]
[224]
Payer, B.A.; Reiberger, T.; Rutter, K.; Beinhardt, S.; Staettermayer, A.F.; Peck-Radosavljevic, M.; Ferenci, P. Successful HCV eradication and inhibition of HIV replication by intravenous silibinin in an HIV-HCV coinfected patient. J. Clin. Virol., 2010, 49(2), 131-133.
[http://dx.doi.org/10.1016/j.jcv.2010.07.006] [PMID: 20709593]
[225]
Braun, D.L.; Rauch, A.; Durisch, N.; Eberhard, N.; Anagnostopoulos, A.; Ledergerber, B.; Metzner, K.J.; Böni, J.; Weber, R.; Fehr, J. Efficacy of lead-in silibinin and subsequent triple therapy in difficult-to-treat HIV/hepatitis C virus-coinfected patients. HIV Med., 2014, 15(10), 625-630.
[http://dx.doi.org/10.1111/hiv.12166] [PMID: 24894776]
[226]
Eurich, D.; Bahra, M.; Berg, T.; Boas-Knoop, S.; Biermer, M.; Neuhaus, R.; Neuhaus, P.; Neumann, U. Treatment of hepatitis C-virus-reinfection after liver transplant with silibinin in nonresponders to pegylated interferon-based therapy. Exp. Clin. Transplant., 2011, 9(1), 1-6.
[PMID: 21605016]
[227]
Rendina, M.; D’Amato, M.; Castellaneta, A.; Castellaneta, N.M.; Brambilla, N.; Giacovelli, G.; Rovati, L.; Rizzi, S.F.; Zappimbulso, M.; Bringiotti, R.S.; Di Leo, A. Antiviral activity and safety profile of silibinin in HCV patients with advanced fibrosis after liver transplantation: A randomized clinical trial. Transpl. Int., 2014, 27(7), 696-704.
[http://dx.doi.org/10.1111/tri.12324] [PMID: 24673819]
[228]
Biermer, M.; Berg, T. Rapid suppression of hepatitis C viremia induced by intravenous silibinin plus ribavirin. Gastroenterology, 2009, 137(1), 390-391.
[http://dx.doi.org/10.1053/j.gastro.2009.02.087] [PMID: 19486953]
[229]
Allard, J.P.; Aghdassi, E.; Chau, J.; Tam, C.; Kovacs, C.M.; Salit, I.E.; Walmsley, S.L. Effects of vitamin E and C supplementation on oxidative stress and viral load in HIV-infected subjects. AIDS, 1998, 12(13), 1653-1659.
[http://dx.doi.org/10.1097/00002030-199813000-00013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy