Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Advances in the Development of Type 2 Sodium-Glucose Cotransporter Inhibitors for the Treatment of Type 2 Diabetes Mellitus

Author(s): Ana Karen Estrada, Timoteo Delgado-Maldonado, Edgar E. Lara-Ramírez, Ana Verónica Martínez-Vázquez, Eyra Ortiz-Pérez, Alma D. Paz-González, Debasish Bandyopadhyay and Gildardo Rivera*

Volume 22, Issue 4, 2022

Published on: 05 August, 2021

Page: [586 - 599] Pages: 14

DOI: 10.2174/1389557521666210805112416

Price: $65

Abstract

Background: Type 2 diabetes mellitus (T2DM) is one of the most serious and prevalent diseases worldwide. In the last decade, type 2 sodium-glucose cotransporter inhibitors (iSGLT2) were approved as alternative drugs for the pharmacological treatment of T2DM. The anti-hyperglycemic mechanism of action of these drugs involves glycosuria. In addition, SGLT2 inhibitors cause beneficial effects such as weight loss, a decrease in blood pressure, and others.

Objective: This review aimed to describe the origin of SGLT2 inhibitors and analyze their recent development in preclinical and clinical trials.

Results: In 2013, the FDA approved SGLT2 inhibitors as a new alternative for the treatment of T2DM. These drugs have shown good tolerance with few adverse effects in clinical trials. Additionally, new potential anti-T2DM agents based on iSGLT2 (O-, C-, and N-glucosides) have exhibited a favorable profile in preclinical evaluations, making them candidates for advanced clinical trials.

Conclusion: The clinical results of SGLT2 inhibitors show the importance of this drug class as new anti-T2DM agents with a potential dual effect. Additionally, the preclinical results of SGLT2 inhibitors favor the design and development of more selective new agents. However, several adverse effects could be a potential risk for patients.

Keywords: Type 2 diabetes mellitus, SGLT2 inhibitors, C-glycosides, glucosuria, FDA, anti-T2DM.

Graphical Abstract
[1]
Karalliedde, J.; Gnudi, L. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease. Nephrol. Dial. Transplant., 2016, 31(2), 206-213.
[PMID: 25550448]
[2]
de Nazareth, A.M. Type 2 diabetes mellitus in the pathophysiology of Alzheimer’s disease. Dement. Neuropsychol., 2017, 11(2), 105-113.
[http://dx.doi.org/10.1590/1980-57642016dn11-020002] [PMID: 29213501]
[3]
Ozougwu, J.C.; Obimba, K.C.; Belonwu, C.D.; Unakalamba, C.B. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol., 2013, 4(4), 46-57.
[http://dx.doi.org/10.5897/JPAP2013.0001]
[4]
World Health Organization (WHO). Diabetes. Available from:. https://www.who.int/health-topics/diabetes#tab=tab_1
[5]
DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; Simonson, D.C.; Testa, M.A.; Weiss, R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers, 2015, 1, 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[6]
Strain, W.D.; Paldánius, P.M. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc. Diabetol., 2018, 17(1), 57.
[http://dx.doi.org/10.1186/s12933-018-0703-2] [PMID: 29669543]
[7]
Nicholson, G.; Hall, G.M. Diabetes mellitus: New drugs for a new epidemic. Br. J. Anaesth., 2011, 107(1), 65-73.
[http://dx.doi.org/10.1093/bja/aer120] [PMID: 21610015]
[8]
Cersosimo, E.; Lee, P.G.; Pandya, N. Challenges of Diabetes Care in Older People With Type 2 Diabetes and the Role of Basal Insulin. Clin. Diabetes, 2019, 37(4), 357-367.
[http://dx.doi.org/10.2337/cd18-0074] [PMID: 31660009]
[9]
Goedeke, L.; Perry, R.J.; Shulman, G.I. Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes. Annu. Rev. Pharmacol. Toxicol., 2019, 59, 65-87.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104727] [PMID: 30625285]
[10]
Chakraborty, C.; Hsu, M.J.; Agoramoorthy, G. Understanding the molecular dynamics of type-2 diabetes drug target DPP-4 and its interaction with Sitagliptin and inhibitor Diprotin-A. Cell Biochem. Biophys., 2014, 70(2), 907-922.
[http://dx.doi.org/10.1007/s12013-014-9998-0] [PMID: 24809328]
[11]
Chellappan, D.K.; Yap, W.S.; Bt Ahmad Suhaimi, N.A.; Gupta, G.; Dua, K. Current therapies and targets for type 2 diabetes mellitus. Panminerva Med., 2018, 60(3), 117-131.
[PMID: 29696964]
[12]
Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health, 2020, 10(1), 107-111.
[http://dx.doi.org/10.2991/jegh.k.191028.001] [PMID: 32175717]
[13]
International Federation Diabetes (IDF). Available from:. https://idf.org/
[14]
Pan, S.W.; Yen, Y.F.; Kou, Y.R.; Chuang, P.H.; Su, V.Y.; Feng, J.Y.; Chan, Y.J.; Su, W.J. The Risk of TB in Patients With Type 2 Diabetes Initiating Metformin vs Sulfonylurea Treatment. Chest, 2018, 153(6), 1347-1357.
[http://dx.doi.org/10.1016/j.chest.2017.11.040] [PMID: 29253553]
[15]
Hanefeld, M.; Brunetti, P.; Schernthaner, G.H.; Matthews, D.R.; Charbonnel, B.H. One-year glycemic control with a sulfonylurea plus pioglitazone versus a sulfonylurea plus metformin in patients with type 2 diabetes. Diabetes Care, 2004, 27(1), 141-147.
[http://dx.doi.org/10.2337/diacare.27.1.141] [PMID: 14693980]
[16]
Hotta, N. A new perspective on the biguanide, metformin therapy in type 2 diabetes and lactic acidosis. J. Diabetes Investig., 2019, 10(4), 906-908.
[http://dx.doi.org/10.1111/jdi.13090] [PMID: 31152685]
[17]
Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules, 2020, 25(8), 1987.
[http://dx.doi.org/10.3390/molecules25081987] [PMID: 32340373]
[18]
Szabó, K.; Maccari, R.; Ottanà, R.; Gyémánt, G. Extending the investigation of 4-thiazolidinone derivatives as potential multi-target ligands of enzymes involved in diabetes mellitus and its long-term complications: A study with pancreatic α-amylase. Carbohydr. Res., 2021, 499108220
[http://dx.doi.org/10.1016/j.carres.2020.108220] [PMID: 33341220]
[19]
Bosi, E. Metformin--the gold standard in type 2 diabetes: What does the evidence tell us? Diabetes Obes. Metab., 2009, 11(Suppl. 2), 3-8.
[http://dx.doi.org/10.1111/j.1463-1326.2008.01031.x] [PMID: 19385978]
[20]
Hong, J.; Zhang, Y.; Lai, S.; Lv, A.; Su, Q.; Dong, Y.; Zhou, Z.; Tang, W.; Zhao, J.; Cui, L.; Zou, D.; Wang, D.; Li, H.; Liu, C.; Wu, G.; Shen, J.; Zhu, D.; Wang, W.; Shen, W.; Ning, G. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care, 2013, 36(5), 1304-1311.
[http://dx.doi.org/10.2337/dc12-0719] [PMID: 23230096]
[21]
Zárate, A.; Islas, S.; Saucedo, R. Eficacia y effectos adversos de los antidiabéticos orales. Gac. Med. Mex., 2014, 150(1), 5-7.
[PMID: 24481425]
[22]
DeFronzo, R.; Fleming, G.A.; Chen, K.; Bicsak, T.A. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism, 2016, 65(2), 20-29.
[http://dx.doi.org/10.1016/j.metabol.2015.10.014] [PMID: 26773926]
[23]
The U.S. Food and Drug Administration (FDA). FDA revises warnings regarding use of the diabetes medicine metformin in certain patients with reduced kidney function,
[24]
van de Laar, F.A.; Lucassen, P.L.; Akkermans, R.P.; van de Lisdonk, E.H.; Rutten, G.E.; van Weel, C. Alpha-glucosidase inhibitors for patients with type 2 diabetes: Results from a Cochrane systematic review and meta-analysis. Diabetes Care, 2005, 28(1), 154-163.
[http://dx.doi.org/10.2337/diacare.28.1.154] [PMID: 15616251]
[25]
Mahmood, N. A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. Comp. Clin. Pathol., 2014, 25(6), 1253-1264.
[http://dx.doi.org/10.1007/s00580-014-1967-x]
[26]
Gao, X.; Cai, X.; Yang, W.; Chen, Y.; Han, X.; Ji, L. Meta-analysis and critical review on the efficacy and safety of alpha-glucosidase inhibitors in Asian and non-Asian populations. J. Diabetes Investig., 2018, 9(2), 321-331.
[http://dx.doi.org/10.1111/jdi.12711] [PMID: 28685995]
[27]
Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Silveira, D.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci., 2012, 15(1), 141-183.
[http://dx.doi.org/10.18433/J35S3K] [PMID: 22365095]
[28]
Kumar, S.R.S.; Rao, K.V.B. Efficacy of Alpha Glucosidase Inhibitor from Marine Actinobacterium in the Control of Postprandial Hyperglycaemia in Streptozotocin (STZ) Induced Diabetic Male Albino Wister Rats. Iran. J. Pharm. Res., 2018, 17(1), 202-214.
[PMID: 29755552]
[29]
Zhang, L.; Chen, Q.; Li, L.; Kwong, J.S.; Jia, P.; Zhao, P.; Wang, W.; Zhou, X.; Zhang, M.; Sun, X. Alpha-glucosidase inhibitors and hepatotoxicity in type 2 diabetes: A systematic review and meta-analysis. Sci. Rep., 2016, 6, 32649.
[http://dx.doi.org/10.1038/srep32649] [PMID: 27596383]
[30]
Kreitman, A.; Schneider, S.H.; Hao, L.; Schlussel, Y.; Bello, N.T.; Shapses, S.A. Reduced postprandial bone resorption and greater rise in GLP-1 in overweight and obese individuals after an α-glucosidase inhibitor: A double-blinded randomized crossover trial. Osteoporos. Int., 2021, 32(7), 1379-1386.
[http://dx.doi.org/10.1007/s00198-020-05791-5] [PMID: 33432459]
[31]
Aoki, K.; Sato, H.; Terauchi, Y. Usefulness of antidiabetic alpha-glucosidase inhibitors: A review on the timing of administration and effects on gut hormones. Endocr. J., 2019, 66(5), 395-401.
[http://dx.doi.org/10.1507/endocrj.EJ19-0041] [PMID: 31019154]
[32]
Perseghin, G. Exploring the vitro mechanisms of action of glucokinase activators in type 2 diabetes. J. Clin. Endocrinol. Metab., 2010, 95(11), 4871-4873.
[http://dx.doi.org/10.1210/jc.2010-2049] [PMID: 21051584]
[33]
Toulis, K.A.; Nirantharakumar, K.; Pourzitaki, C.; Barnett, A.H.; Tahrani, A.A. Glucokinase Activators for Type 2 Diabetes: Challenges and Future Developments. Drugs, 2020, 80(5), 467-475.
[http://dx.doi.org/10.1007/s40265-020-01278-z] [PMID: 32162273]
[34]
Agius, L. Lessons from glucokinase activators: The problem of declining efficacy. Expert Opin. Ther. Pat., 2014, 24(11), 1155-1159.
[http://dx.doi.org/10.1517/13543776.2014.965680] [PMID: 25266490]
[35]
DeFronzo, R.A.; Davidson, J.A.; Del Prato, S. The role of the kidneys in glucose homeostasis: A new path towards normalizing glycaemia. Diabetes Obes. Metab., 2012, 14(1), 5-14.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01511.x] [PMID: 21955459]
[36]
Pérez-López, G.; González-Albarrán, O.; Cano-Megías, M. Sodium- glucose cotransporter type 2 inhibitors (SGLT2): From familial renal glucosuria to the treatment of type 2 diabetes mellitusRevista Nefrología, 2010, 6, 618-625.
[37]
Andrianesis, V.; Doupis, J. The role of kidney in glucose homeostasis--SGLT2 inhibitors, a new approach in diabetes treatment. Expert Rev. Clin. Pharmacol., 2013, 6(5), 519-539.
[http://dx.doi.org/10.1586/17512433.2013.827399] [PMID: 23978089]
[38]
Poulsen, S.B.; Fenton, R.A.; Rieg, T. Sodium-glucose cotransport. Curr. Opin. Nephrol. Hypertens., 2015, 24(5), 463-469.
[http://dx.doi.org/10.1097/MNH.0000000000000152] [PMID: 26125647]
[39]
Ghezzi, C.; Loo, D.D.F.; Wright, E.M. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia, 2018, 61(10), 2087-2097.
[http://dx.doi.org/10.1007/s00125-018-4656-5] [PMID: 30132032]
[40]
Thomas, M.C.; Cherney, D.Z.I. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia, 2018, 61(10), 2098-2107.
[http://dx.doi.org/10.1007/s00125-018-4669-0] [PMID: 30132034]
[41]
Liu, J.J.; Lee, T.; DeFronzo, R.A. Why Do SGLT2 inhibitors inhibit only 30-50% of renal glucose reabsorption in humans? Diabetes, 2012, 61(9), 2199-2204.
[http://dx.doi.org/10.2337/db12-0052] [PMID: 22923645]
[42]
Dalama, B.; Mesa, J. New Oral Hypoglycemic Agents and Cardiovascular Risk. Crossing the Metabolic Border. Rev. Esp. Cardiol., 2016, 69(11), 1088-1097.
[http://dx.doi.org/10.1016/j.recesp.2016.07.029] [PMID: 27687335]
[43]
van Bommel, E.J.; Muskiet, M.H.; Tonneijck, L.; Kramer, M.H.; Nieuwdorp, M.; van Raalte, D.H. SGLT2 Inhibition in the Diabetic Kidney-From Mechanisms to Clinical Outcome. Clin. J. Am. Soc. Nephrol., 2017, 12(4), 700-710.
[http://dx.doi.org/10.2215/CJN.06080616] [PMID: 28254770]
[44]
Rieg, T.; Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia, 2018, 61(10), 2079-2086.
[http://dx.doi.org/10.1007/s00125-018-4654-7] [PMID: 30132033]
[45]
Vallon, V.; Platt, K.A.; Cunard, R.; Schroth, J.; Whaley, J.; Thomson, S.C.; Koepsell, H.; Rieg, T. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol., 2011, 22(1), 104-112.
[http://dx.doi.org/10.1681/ASN.2010030246] [PMID: 20616166]
[46]
Rendell, M.S. The journey from gene knockout to clinical medicine: Telotristat and sotagliflozin. Drug Des. Devel. Ther., 2019, 13(13), 817-824.
[http://dx.doi.org/10.2147/DDDT.S144556] [PMID: 30880915]
[48]
Verma, S.; McMurray, J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia, 2018, 61(10), 2108-2117.
[http://dx.doi.org/10.1007/s00125-018-4670-7] [PMID: 30132036]
[49]
Zelniker, T.A.; Wiviott, S.D.; Raz, I. Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Sabatine, M.S. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet, 2019, 393(10166), 31-39.
[http://dx.doi.org/10.1016/S0140-6736(18)32590-X] [PMID: 30424892]
[50]
Bonora, B.M.; Avogaro, A.; Fadini, G.P. Extraglycemic Effects of SGLT2 Inhibitors: A Review of the Evidence. Diabetes Metab. Syndr. Obes., 2020, 13, 161-174.
[http://dx.doi.org/10.2147/DMSO.S233538] [PMID: 32021362]
[51]
Ehrenkranz, J.R.; Lewis, N.G.; Kahn, C.R.; Roth, J. Phlorizin: A review. Diabetes Metab. Res. Rev., 2005, 21(1), 31-38.
[http://dx.doi.org/10.1002/dmrr.532] [PMID: 15624123]
[52]
Aylwin, H.C.G. New Drugs For Treatment Of Diabetes Mellitus. Rev. Med. Clin. Las Condes, 2016, 27(2), 235-256.
[53]
Washburn, W.N. Development of the renal glucose reabsorption inhibitors: A new mechanism for the pharmacotherapy of diabetes mellitus type 2. J. Med. Chem., 2009, 52(7), 1785-1794.
[http://dx.doi.org/10.1021/jm8013019] [PMID: 19243175]
[54]
Isaji, M. SGLT2 inhibitors: Molecular design and potential differences in effect. Kidney Int. Suppl., 2011, (120), S14-S19.
[http://dx.doi.org/10.1038/ki.2010.511] [PMID: 21358697]
[55]
Paisley, A.N.; Yadav, R.; Younis, N.; Rao-Balakrishna, P.; Soran, H. Dapagliflozin: A review on efficacy, clinical effectiveness and safety. Expert Opin. Investig. Drugs, 2013, 22(1), 131-140.
[http://dx.doi.org/10.1517/13543784.2013.740009] [PMID: 23127205]
[56]
Ferrannini, E.; Solini, A. SGLT2 inhibition in diabetes mellitus: Rationale and clinical prospects. Nat. Rev. Endocrinol., 2012, 8(8), 495-502.
[http://dx.doi.org/10.1038/nrendo.2011.243] [PMID: 22310849]
[57]
Oku, A.; Ueta, K.; Nawano, M.; Arakawa, K.; Kano-Ishihara, T.; Matsumoto, M.; Saito, A.; Tsujihara, K.; Anai, M.; Asano, T. Antidiabetic effect of T-1095, an inhibitor of Na(+)-glucose cotransporter, in neonatally streptozotocin-treated rats. Eur. J. Pharmacol., 2000, 391(1-2), 183-192.
[http://dx.doi.org/10.1016/S0014-2999(00)00016-9] [PMID: 10720650]
[58]
Nunoi, K.; Yasuda, K.; Adachi, T.; Okamoto, Y.; Shihara, N.; Uno, M.; Tamon, A.; Suzuki, N.; Oku, A.; Tsuda, K. Beneficial effect of T-1095, a selective inhibitor of renal Na+-glucose cotransporters, on metabolic index and insulin secretion in spontaneously diabetic GK rats. Clin. Exp. Pharmacol. Physiol., 2002, 29(5-6), 386-390.
[http://dx.doi.org/10.1046/j.1440-1681.2002.03671.x] [PMID: 12010180]
[59]
Bebernitz, G. Sodium–Glucose Cotransporters.In:Comprehensive Medicinal Chemistry III; Chackalamannil, S., Ed.; Elsevier Ltd.: Amsterdam, 2017, Vol. 1, pp. 491-511.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12430-8]
[60]
Fujimori, Y.; Katsuno, K.; Nakashima, I.; Ishikawa-Takemura, Y.; Fujikura, H.; Isaji, M. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther., 2008, 327(1), 268-276.
[http://dx.doi.org/10.1124/jpet.108.140210] [PMID: 18583547]
[61]
Mohan, V.; Mithal, A.; Joshi, S.R.; Aravind, S.R.; Chowdhury, S. Remogliflozin Etabonate in the Treatment of Type 2 Diabetes: Design, Development, and Place in Therapy. Drug Des. Devel. Ther., 2020, 14, 2487-2501.
[http://dx.doi.org/10.2147/DDDT.S221093] [PMID: 32612352]
[62]
Markham, A. Remogliflozin Etabonate: First Global Approval. Drugs, 2019, 79(10), 1157-1161.
[http://dx.doi.org/10.1007/s40265-019-01150-9] [PMID: 31201711]
[63]
Jakher, H.; Chang, T.I.; Tan, M.; Mahaffey, K.W. Canagliflozin review - safety and efficacy profile in patients with T2DM. Diabetes Metab Syndr Obes: Targets and therapy, 2019, 12, 209-215.
[64]
Drugbank. Canaglifozin. Available from: https://go.drugbank.com/drugs/DB08907
[65]
Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; Cannon, C.P.; Capuano, G.; Chu, P.L.; de Zeeuw, D.; Greene, T.; Levin, A.; Pollock, C.; Wheeler, D.C.; Yavin, Y.; Zhang, H.; Zinman, B.; Meininger, G.; Brenner, B.M.; Mahaffey, K.W. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med., 2019, 380(24), 2295-2306.
[http://dx.doi.org/10.1056/NEJMoa1811744] [PMID: 30990260]
[66]
Jojima, T.; Wakamatsu, S.; Kase, M.; Iijima, T.; Maejima, Y.; Shimomura, K.; Kogai, T.; Tomaru, T.; Usui, I.; Aso, Y. The SGLT2 Inhibitor Canagliflozin Prevents Carcinogenesis in a Mouse Model of Diabetes and Non-Alcoholic Steatohepatitis-Related Hepatocarcinogenesis: Association with SGLT2 Expression in Hepatocellular Carcinoma. Int. J. Mol. Sci., 2019, 20(20), 5237.
[http://dx.doi.org/10.3390/ijms20205237] [PMID: 31652578]
[67]
Vivian, E.M. Dapagliflozin: A new sodium-glucose cotransporter 2 inhibitor for treatment of type 2 diabetes. Am. J. Health Syst. Pharm., 2015, 72(5), 361-372.
[http://dx.doi.org/10.2146/ajhp140168] [PMID: 25694411]
[68]
Dhillon, S. Dapagliflozin: A Review in Type 2 Diabetes. Drugs, 2019, 79(10), 1135-1146.
[http://dx.doi.org/10.1007/s40265-019-01148-3] [PMID: 31236801]
[69]
Sertbas, M.; Sertbas, Y.; Okuroglu, N.; Akyildiz, A.B.; Sancak, S.; Ozdemir, A. Effıcacy and safety of dapagliflozin on diabetic patients receiving high-doses of insulin. Pak. J. Med. Sci., 2019, 35(2), 399-403.
[http://dx.doi.org/10.12669/pjms.35.2.21] [PMID: 31086522]
[70]
Arab, H.H.; Al-Shorbagy, M.Y.; Saad, M.A. Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways. Chem. Biol. Interact., 2021, 335109368
[http://dx.doi.org/10.1016/j.cbi.2021.109368] [PMID: 33412153]
[71]
Lee, J.; Lee, S.H.; Seo, H.J.; Son, E.J.; Lee, S.H.; Jung, M.E.; Lee, M.; Han, H.K.; Kim, J.; Kang, J.; Lee, J. Novel C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents: 1,3,4-Thiadiazolylmethylphenyl glucoside congeners. Bioorg. Med. Chem., 2010, 18(6), 2178-2194.
[http://dx.doi.org/10.1016/j.bmc.2010.01.073] [PMID: 20181486]
[72]
Gómez-Huelgas, R.; Martínez-Castelao, A.; Artola, S.; Górriz, J.L.; Menéndez, E. Consensus document on treatment of type 2 diabetes in patients with chronic kidney disease. Nefrologia, 2014, 34(1), 34-45.
[PMID: 24611186]
[73]
Fioretto, P.; Del Prato, S.; Buse, J.B.; Goldenberg, R.; Giorgino, F.; Reyner, D.; Langkilde, A.M.; Sjöström, C.D.; Sartipy, P. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study. Diabetes Obes. Metab., 2018, 20(11), 2532-2540.
[http://dx.doi.org/10.1111/dom.13413] [PMID: 29888547]
[74]
McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; Böhm, M.; Chiang, C.E.; Chopra, V.K.; de Boer, R.A.; Desai, A.S.; Diez, M.; Drozdz, J.; Dukát, A.; Ge, J.; Howlett, J.G.; Katova, T.; Kitakaze, M.; Ljungman, C.E.A.; Merkely, B.; Nicolau, J.C.; O’Meara, E.; Petrie, M.C.; Vinh, P.N.; Schou, M.; Tereshchenko, S.; Verma, S.; Held, C.; DeMets, D.L.; Docherty, K.F.; Jhund, P.S.; Bengtsson, O.; Sjöstrand, M.; Langkilde, A.M. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med., 2019, 381(21), 1995-2008.
[http://dx.doi.org/10.1056/NEJMoa1911303] [PMID: 31535829]
[75]
Grempler, R.; Thomas, L.; Eckhardt, M.; Himmelsbach, F.; Sauer, A.; Sharp, D.E.; Bakker, R.A.; Mark, M.; Klein, T.; Eickelmann, P. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: Characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes. Metab., 2012, 14(1), 83-90.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01517.x] [PMID: 21985634]
[76]
Jahagirdar, V.; Barnett, A.H. Empagliflozin for the treatment of type 2 diabetes. Expert Opin. Pharmacother., 2014, 15(16), 2429-2441.
[http://dx.doi.org/10.1517/14656566.2014.966078] [PMID: 25301180]
[77]
Saad, M.; Mahmoud, A.N.; Elgendy, I.Y.; Abuzaid, A.; Barakat, A.F.; Elgendy, A.Y.; Al-Ani, M.; Mentias, A.; Nairooz, R.; Bavry, A.A.; Mukherjee, D. Cardiovascular outcomes with sodium-glucose cotransporter-2 inhibitors in patients with type II diabetes mellitus: A meta-analysis of placebo-controlled randomized trials. Int. J. Cardiol., 2017, 228, 352-358.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.181] [PMID: 27866027]
[78]
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med., 2015, 373(22), 2117-2128.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[79]
Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med., 2016, 375(4), 323-334.
[http://dx.doi.org/10.1056/NEJMoa1515920] [PMID: 27299675]
[80]
Mascitti, V.; Préville, C. Stereoselective synthesis of a dioxa-bicyclo[3.2.1]octane SGLT2 inhibitor. Org. Lett., 2010, 12(13), 2940-2943.
[http://dx.doi.org/10.1021/ol100940w] [PMID: 20527898]
[81]
Mascitti, V.; Maurer, T.S.; Robinson, R.P.; Bian, J.; Boustany-Kari, C.M.; Brandt, T.; Collman, B.M.; Kalgutkar, A.S.; Klenotic, M.K.; Leininger, M.T.; Lowe, A.; Maguire, R.J.; Masterson, V.M.; Miao, Z.; Mukaiyama, E.; Patel, J.D.; Pettersen, J.C.; Préville, C.; Samas, B.; She, L.; Sobol, Z.; Steppan, C.M.; Stevens, B.D.; Thuma, B.A.; Tugnait, M.; Zeng, D.; Zhu, T. Discovery of a clinical candidate from the structurally unique dioxa-bicyclo[3.2.1]octane class of sodium-dependent glucose cotransporter 2 inhibitors. J. Med. Chem., 2011, 54(8), 2952-2960.
[http://dx.doi.org/10.1021/jm200049r] [PMID: 21449606]
[83]
Fediuk, D.J.; Nucci, G.; Dawra, V.K.; Cutler, D.L.; Amin, N.B.; Terra, S.G.; Boyd, R.A.; Krishna, R.; Sahasrabudhe, V. Overview of the Clinical Pharmacology of Ertugliflozin, a Novel Sodium-Glucose Cotransporter 2 (SGLT2). Inhibitor. Clin. Pharmacokinet., 2020, 59(8), 949-965.
[http://dx.doi.org/10.1007/s40262-020-00875-1] [PMID: 32337660]
[84]
Miao, Z.; Nucci, G.; Amin, N.; Sharma, R.; Mascitti, V.; Tugnait, M.; Vaz, A.D.; Callegari, E.; Kalgutkar, A.S. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metab. Dispos., 2013, 41(2), 445-456.
[http://dx.doi.org/10.1124/dmd.112.049551] [PMID: 23169609]
[85]
Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; Shih, W.J.; Gantz, I.; Terra, S.G.; Cherney, D.Z.I.; McGuire, D.K. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med., 2020, 383(15), 1425-1435.
[http://dx.doi.org/10.1056/NEJMoa2004967] [PMID: 32966714]
[86]
Poole, R.M.; Dungo, R.T. Ipragliflozin: First global approval. Drugs, 2014, 74(5), 611-617.
[http://dx.doi.org/10.1007/s40265-014-0204-x] [PMID: 24668021]
[87]
Kashiwagi, A.; Kazuta, K.; Goto, K.; Yoshida, S.; Ueyama, E.; Utsuno, A. Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabetes Obes. Metab., 2015, 17(3), 304-308.
[http://dx.doi.org/10.1111/dom.12331] [PMID: 24919820]
[88]
Kashiwagi, A.; Shestakova, M.V.; Ito, Y.; Noguchi, M.; Wilpshaar, W.; Yoshida, S.; Wilding, J.P.H. Safety of Ipragliflozin in Patients with Type 2 Diabetes Mellitus: Pooled Analysis of Phase II/III/IV Clinical Trials. Diabetes Ther., 2019, 10(6), 2201-2217.
[http://dx.doi.org/10.1007/s13300-019-00699-8] [PMID: 31606880]
[89]
Suzuki, M.; Honda, K.; Fukazawa, M.; Ozawa, K.; Hagita, H.; Kawai, T.; Takeda, M.; Yata, T.; Kawai, M.; Fukuzawa, T.; Kobayashi, T.; Sato, T.; Kawabe, Y.; Ikeda, S. Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice. J. Pharmacol. Exp. Ther., 2012, 341(3), 692-701.
[http://dx.doi.org/10.1124/jpet.112.191593] [PMID: 22410641]
[90]
Kamei, S.; Iwamoto, M.; Kameyama, M.; Shimoda, M.; Kinoshita, T.; Obata, A.; Kimura, T.; Hirukawa, H.; Tatsumi, F.; Kohara, K.; Nakanishi, S.; Mune, T.; Kaku, K.; Kaneto, H. Effect of Tofogliflozin on Body Composition and Glycemic Control in Japanese Subjects with Type 2 Diabetes Mellitus. J. Diabetes Res., 2018, 20186470137
[http://dx.doi.org/10.1155/2018/6470137] [PMID: 29507863]
[91]
Tochiya, M.; Makino, H.; Tamanaha, T.; Matsuo, M.; Hishida, A.; Koezuka, R.; Ohata, Y.; Tomita, T.; Son, C.; Miyamoto, Y.; Yasuda, S.; Hosoda, K. Effect of tofogliflozin on cardiac and vascular endothelial function in patients with type 2 diabetes and heart diseases: A pilot study. J. Diabetes Investig., 2020, 11(2), 400-404.
[http://dx.doi.org/10.1111/jdi.13122] [PMID: 31361403]
[92]
Hussey, E.K.; Dobbins, R.L.; Stoltz, R.R.; Stockman, N.L.; O’Connor-Semmes, R.L.; Kapur, A.; Murray, S.C.; Layko, D.; Nunez, D.J. Multiple-dose pharmacokinetics and pharmacodynamics of sergliflozin etabonate, a novel inhibitor of glucose reabsorption, in healthy overweight and obese subjects: A randomized double-blind study. J. Clin. Pharmacol., 2010, 50(6), 636-646.
[http://dx.doi.org/10.1177/0091270009352185] [PMID: 20200268]
[93]
Adeghate, E.; Mohsin, S.; Adi, F.; Ahmed, F.; Yahya, A.; Kalász, H.; Tekes, K.; Adeghate, E.A. An update of SGLT1 and SGLT2 inhibitors in early phase diabetes-type 2 clinical trials. Expert Opin. Investig. Drugs, 2019, 28(9), 811-820.
[http://dx.doi.org/10.1080/13543784.2019.1655539] [PMID: 31402716]
[94]
Dicembrini, I.; Nreu, B.; Mannucci, E.; Monami, M. Sodium-glucose co-transporter-2 (SGLT-2) inhibitors and cancer: A meta-analysis of randomized controlled trials. Diabetes Obes. Metab., 2019, 21(8), 1871-1877.
[http://dx.doi.org/10.1111/dom.13745] [PMID: 30972917]
[95]
Cao, X.; Zhang, W.; Yan, X.; Huang, Z.; Zhang, Z.; Wang, P.; Shen, J. Modification on the O-glucoside of Sergliflozin-A: A new strategy for SGLT2 inhibitor design. Bioorg. Med. Chem. Lett., 2016, 26(9), 2170-2173.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.065] [PMID: 27025345]
[96]
Kakinuma, H.; Oi, T.; Hashimoto-Tsuchiya, Y.; Arai, M.; Kawakita, Y.; Fukasawa, Y.; Iida, I.; Hagima, N.; Takeuchi, H.; Chino, Y.; Asami, J.; Okumura-Kitajima, L.; Io, F.; Yamamoto, D.; Miyata, N.; Takahashi, T.; Uchida, S.; Yamamoto, K. (1S)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol (TS-071) is a potent, selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for type 2 diabetes treatment. J. Med. Chem., 2010, 53(8), 3247-3261.
[http://dx.doi.org/10.1021/jm901893x] [PMID: 20302302]
[97]
Seino, Y.; Sasaki, T.; Fukatsu, A.; Sakai, S.; Samukawa, Y. Efficacy and safety of luseogliflozin monotherapy in Japanese patients with type 2 diabetes mellitus: A 12-week, randomized, placebo-controlled, phase II study. Curr. Med. Res. Opin., 2014, 30(7), 1219-1230.
[http://dx.doi.org/10.1185/03007995.2014.901943] [PMID: 24597840]
[98]
Yabe, D.; Hamamoto, Y.; Seino, Y.; Kuwata, H.; Kurose, T.; Seino, Y. Sodium glucose co-transporter 2 inhibitor luseogliflozin in the management of type 2 diabetes: A drug safety evaluation. Expert Opin. Drug Saf., 2017, 16(10), 1211-1218.
[http://dx.doi.org/10.1080/14740338.2017.1359252] [PMID: 28741382]
[99]
Zhao, X.; Sun, B.; Zheng, H.; Liu, J.; Qian, L.; Wang, X.; Lou, H. Synthesis and biological evaluation of 6-hydroxyl C-aryl glucoside derivatives as novel sodium glucose co-transporter 2 (SGLT2) inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(12), 2201-2205.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.070] [PMID: 29764742]
[100]
Xu, G.; Gaul, M.D.; Kuo, G.H.; Du, F.; Xu, J.Z.; Wallace, N.; Hinke, S.; Kirchner, T.; Silva, J.; Huebert, N.D.; Lee, S.; Murray, W.; Liang, Y.; Demarest, K. Design, synthesis and biological evaluation of (2S,3R,4R,5S,6R)-5-fluoro-6-(hydroxymethyl)-2-aryltetrahydro-2H-pyran-3,4-diols as potent and orally active SGLT dual inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(21), 3446-3453.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.025] [PMID: 30268701]
[101]
Li, Z.; Xu, X.; Deng, L.; Liao, R.; Liang, R.; Zhang, B.; Zhang, L. Design, synthesis and biological evaluation of nitric oxide releasing derivatives of dapagliflozin as potential anti-diabetic and anti-thrombotic agents. Bioorg. Med. Chem., 2018, 26(14), 3947-3952.
[http://dx.doi.org/10.1016/j.bmc.2018.06.017] [PMID: 29954682]
[102]
Wang, Y.; Lou, Y.; Wang, J.; Li, D.; Chen, H.; Zheng, T.; Xia, C.; Song, X.; Dong, T.; Li, J.; Li, J.; Liu, H. Design, synthesis and biological evaluation of 6-deoxy O-spiroketal C-arylglucosides as novel renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Eur. J. Med. Chem., 2019, 180, 398-416.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.032] [PMID: 31325786]
[103]
Chu, K.F.; Song, J.S.; Chen, C.T.; Yeh, T.K.; Hsieh, T.C.; Huang, C.Y.; Wang, M.H.; Wu, S.H.; Yao, C.H.; Chao, Y.S.; Lee, J.C. Synthesis and biological evaluation of N-glucosyl indole derivatives as sodium-dependent glucose co-transporter 2 inhibitors. Bioorg. Chem., 2019, 83, 520-525.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.006] [PMID: 30469144]
[104]
Marques Vidas, M.; Dura Gurpide, B.; Rubio, E.; Huerta, A.; Portolés Pérez, J. Hipercalcemia inducida por dapagliflozina. Nefrologia (Engl Ed), 2018, 38(3), 336-337.
[http://dx.doi.org/10.1016/j.nefroe.2018.03.007] [PMID: 28778537]
[105]
Heerspink, H.J.; Perkins, B.A.; Fitchett, D.H.; Husain, M.; Cherney, D.Z. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. Circulation, 2016, 134(10), 752-772.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021887] [PMID: 27470878]
[106]
Imga, N.N.; Çatak, M.; Berker, D. Dapagliflozin-induced vulvovaginitis in an atopic patient with type 2 diabetes mellitus. Turkish Journal of Endocrinology and Metabolism, 2018, 22(3), 213-216.
[http://dx.doi.org/10.25179/tjem.2017-56553]
[107]
Fox, L.; Nelson, A.C.; Ghanem, G. Candida krusei Emphysematous Pyelonephritis Possibly Due to Dapagliflozin Therapy. Infect. Dis. Clin. Pract., 2018, 26(6), 363-365.
[http://dx.doi.org/10.1097/IPC.0000000000000588]
[108]
Bartolo, C.; Hall, V.; Friedman, N.D.; Lanyon, C.; Fuller, A.; Morrissey, C.O.; Athan, E. Bittersweet: Infective complications of drug-induced glycosuria in patients with diabetes mellitus on SGLT2-inhibitors: Two case reports. BMC Infect. Dis., 2021, 21(1), 284.
[http://dx.doi.org/10.1186/s12879-021-05982-3] [PMID: 33743624]
[109]
Maideen, N.M.P. Pharmacologically relevant drug interactions of α-glucosidase inhibitors. J. Diabetes Metab. Disord. Cont., 2019, 6(2), 28-30.
[110]
Garnock-Jones, K.P. Saxagliptin/Dapagliflozin: A Review in Type 2 Diabetes Mellitus. Drugs, 2017, 77(3), 319-330.
[http://dx.doi.org/10.1007/s40265-017-0697-1] [PMID: 28176222]
[111]
Blau, J.E.; Bauman, V.; Conway, E.M.; Piaggi, P.; Walter, M.F.; Wright, E.C.; Bernstein, S.; Courville, A.B.; Collins, M.T.; Rother, K.I.; Taylor, S.I. Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight, 2018, 3(8)e99123
[http://dx.doi.org/10.1172/jci.insight.99123] [PMID: 29669938]
[112]
Blau, J.E.; Taylor, S.I. Adverse effects of SGLT2 inhibitors on bone health. Nat. Rev. Nephrol., 2018, 14(8), 473-474.
[http://dx.doi.org/10.1038/s41581-018-0028-0] [PMID: 29875481]
[113]
The U.S. Food and Drug Administration (FDA). FDA warns about rare occurrences of a serious infection of the genital area with SGLT2 inhibitors for diabetes; Safety Announcement, 2018.
[114]
Kaneko, M.; Narukawa, M. Effects of Sodium-glucose Cotransporter 2 Inhibitors on Amputation, Bone Fracture, and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus Using an Alternative Measure to the Hazard Ratio. Clin. Drug Investig., 2019, 39(2), 179-186.
[http://dx.doi.org/10.1007/s40261-018-0731-4] [PMID: 30506378]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy