Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Promising Enzymes for Inhibitors Development Against COVID-19

Author(s): Zhi-Gang Sun*, Feng-Ling Yu, Xiang-Ting Qiu, Shuang Li, Xue-Tang Li and Hai-Liang Zhu

Volume 22, Issue 3, 2022

Published on: 05 August, 2021

Page: [449 - 456] Pages: 8

DOI: 10.2174/1389557521666210805104250

Price: $65

Abstract

After the emergence of COVID-19 in 2019, it has now become a pandemic. COVID-19 has brought painful disasters to people all over the world. It not only threatens lives and health but also induces economic crises. At present, promising methods to eradicate COVID-19 mainly include drugs and vaccines. Enzyme inhibitors have always been a reliable strategy for the treatment of related diseases. Scientists worldwide have worked together to study COVID-19, obtained the structure of key SARS-CoV-2 associated enzymes, and reported the research of inhibitors of these enzymes. This article summarizes COVID-19-related enzyme inhibitors' recent development, mainly including 3CLpro, PLpro, TMPRSS2, and RdRp inhibitors, hoping to provide valuable weapons in the ensuing battle against COVID-19.

Keywords: COVID-19, DPP-4, SARS-CoV-2, inhibitors, 3CLpro, PLpro, TMPRSS2, RdRp.

Graphical Abstract
[1]
Weekly epidemiological update-8 December 2020. Available from:, https://www.who.int/publications/m/item/weekly-epidemiological-update-8-december-2020
[2]
Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 risks to global food security. Science, 2020, 369(6503), 500-502.
[http://dx.doi.org/10.1126/science.abc4765] [PMID: 32732407]
[3]
Abdool Karim, Q.; Abdool Karim, S.S. COVID-19 affects HIV and tuberculosis care. Science, 2020, 369(6502), 366-368.
[PMID: 32703860]
[4]
Sharpless, N.E. COVID-19 and cancer. Science, 2020, 368(6497), 1290.
[http://dx.doi.org/10.1126/science.abd3377] [PMID: 32554570]
[5]
Iadecola, C.; Anrather, J.; Kamel, H. Effects of COVID-19 on the nervous system. Cell, 2020, 183(1), 16-27.e1.
[http://dx.doi.org/10.1016/j.cell.2020.08.028] [PMID: 32882182]
[6]
Kang, Z.; Luo, S.; Gui, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Zhou, Q.; Wang, Q.; Hu, Y.; Fan, H.; Hu, D. Obesity is a potential risk factor contributing to clinical manifestations of COVID-19. Int. J. Obes., 2020, 44(12), 2479-2485.
[http://dx.doi.org/10.1038/s41366-020-00677-2] [PMID: 32921796]
[7]
Volpato, S.; Landi, F.; Incalzi, R.A. A frail health care system for an old population: Lesson form the COVID-19 Outbreak in Italy. J. Gerontol. Ser. A, 2020, 75(9), e126-e127.
[http://dx.doi.org/10.1093/gerona/glaa087]
[8]
Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; Peng, C.; Yuan, M.; Huang, J.; Wang, Z.; Yu, J.; Gao, X.; Wang, D.; Yu, X.; Li, L.; Zhang, J.; Wu, X.; Li, B.; Xu, Y.; Chen, W.; Peng, Y.; Hu, Y.; Lin, L.; Liu, X.; Huang, S.; Zhou, Z.; Zhang, L.; Wang, Y.; Zhang, Z.; Deng, K.; Xia, Z.; Gong, Q.; Zhang, W.; Zheng, X.; Liu, Y.; Yang, H.; Zhou, D.; Yu, D.; Hou, J.; Shi, Z.; Chen, S.; Chen, Z.; Zhang, X.; Yang, X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9490-9496.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[9]
Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[10]
Ren, J-L.; Zhang, A-H.; Wang, X-J. Traditional Chinese medicine for COVID-19 treatment. Pharmacol. Res., 2020, 155, 104743-104743.
[http://dx.doi.org/10.1016/j.phrs.2020.104743] [PMID: 32145402]
[11]
Ho, L.T.F.; Chan, K.K.H.; Chung, V.C.H.; Leung, T.H. Highlights of traditional Chinese medicine frontline expert advice in the China national guideline for COVID-19. Eur. J. Integr. Med., 2020, 36101116
[http://dx.doi.org/10.1016/j.eujim.2020.101116] [PMID: 32292529]
[12]
Wang, W-Y.; Xie, Y.; Zhou, H.; Liu, L. Contribution of traditional Chinese medicine to the treatment of COVID-19. Phytomedicine, 2021, 85153279
[http://dx.doi.org/10.1016/j.phymed.2020.153279] [PMID: 32675044]
[13]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[14]
Colson, P.; Rolain, J-M.; Lagier, J-C.; Brouqui, P.; Raoult, D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents, 2020, 55(4)105932
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932]
[15]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[16]
Zheng, Y-Y.; Ma, Y-T.; Zhang, J-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol., 2020, 17(5), 259-260.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[17]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[18]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17)127377
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[19]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[20]
Dai, W.; Zhang, B.; Jiang, X-M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L.K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497), 1331-1335.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[21]
Jin, Z.; Zhao, Y.; Sun, Y.; Zhang, B.; Wang, H.; Wu, Y.; Zhu, Y.; Zhu, C.; Hu, T.; Du, X.; Duan, Y.; Yu, J.; Yang, X.; Yang, X.; Yang, K.; Liu, X.; Guddat, L.W.; Xiao, G.; Zhang, L.; Yang, H.; Rao, Z. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol., 2020, 27(6), 529-532.
[http://dx.doi.org/10.1038/s41594-020-0440-6] [PMID: 32382072]
[22]
Abian, O.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Vega, S.; Reyburn, H.T.; Rizzuti, B.; Velazquez-Campoy, A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int. J. Biol. Macromol., 2020, 164, 1693-1703.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.235] [PMID: 32745548]
[23]
Rathnayake, A.D.; Zheng, J.; Kim, Y.; Perera, K.D.; Mackin, S.; Meyerholz, D.K.; Kashipathy, M.M.; Battaile, K.P.; Lovell, S.; Perlman, S.; Groutas, W.C.; Chang, K-O. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice. Sci. Transl. Med., 2020, 12(557)eabc5332
[http://dx.doi.org/10.1126/scitranslmed.abc5332] [PMID: 32747425]
[24]
Shamsi, A.; Mohammad, T.; Anwar, S.; AlAjmi, M.F.; Hussain, A.; Rehman, M.T.; Islam, A.; Hassan, M.I. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Biosci. Rep., 2020, 40(6)BSR20201256
[http://dx.doi.org/10.1042/BSR20201256] [PMID: 32441299]
[25]
Mohammad, T.; Shamsi, A.; Anwar, S.; Umair, M.; Hussain, A.; Rehman, M.T.; AlAjmi, M.F.; Islam, A.; Hassan, M.I. Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Res., 2020, 288198102
[http://dx.doi.org/10.1016/j.virusres.2020.198102] [PMID: 32717346]
[26]
Gul, S.; Ozcan, O.; Asar, S.; Okyar, A.; Barıs, I.; Kavakli, I.H. In silico identification of widely used and well-tolerated drugs as potential SARS-CoV-2 3C-like protease and viral RNA-dependent RNA polymerase inhibitors for direct use in clinical trials. J. Biomol. Struct. Dyn., 2020, 39(17), 1-20.
[http://dx.doi.org/10.1080/07391102.2020.1802346] [PMID: 32752938]
[27]
Chen, Y.W.; Yiu, C-P.; Wong, K-Y. Prediction of the 2019-nCoV 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 129.
[http://dx.doi.org/10.12688/f1000research.22457.1]
[28]
Kumar, V.; Roy, K. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases. SAR QSAR Environ. Res., 2020, 31(7), 511-526.
[http://dx.doi.org/10.1080/1062936X.2020.1776388] [PMID: 32543892]
[29]
Gyebi, G.A.; Ogunro, O.B.; Adegunloye, A.P.; Ogunyemi, O.M.; Afolabi, S.O. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): An in silico screening of alkaloids and terpenoids from African medicinal plants. J. Biomol. Struct. Dyn., 2021, 39(9), 3396-3408.
[http://dx.doi.org/10.1080/07391102.2020.1764868]
[30]
Isa, M.A.; Mustapha, A.; Qazi, S.; Raza, K.; Allamin, I.A.; Ibrahim, M.M.; Mohammed, M.M. In silico molecular docking and molecular dynamic simulation of potential inhibitors of 3C-like main proteinase (3CLpro) from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) using selected african medicinal plants. Adv. Trad. Med.,, 2020.
[http://dx.doi.org/10.1007/s13596-020-00523-w]
[31]
Chen, Y.W.; Yiu, C.P.; Wong, K-Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 129.
[http://dx.doi.org/10.12688/f1000research.22457.2] [PMID: 32194944]
[32]
Chatterjee, S.; Maity, A.; Chowdhury, S.; Islam, M.A.; Muttinini, R.K.; Sen, D. In silico analysis and identification of promising hits against 2019 novel coronavirus 3C-like main protease enzyme. J. Biomol. Struct. Dyn., 2021, 39(14), 5290-5303.
[http://dx.doi.org/10.1080/07391102.2020.1787228]]
[33]
Parvez, A. Yadav, S.; Pandey, V.; Qi, X. In Silico high-throughput virtual screening and molecular dynamics simulation study to identify 3CLpro inhibitor of COVID-19; Res. Sq, 2020.
[http://dx.doi.org/10.21203/rs.3.rs-29546/v1]
[34]
Macchiagodena, M.; Pagliai, M.; Procacci, P. Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling. Chem. Phys. Lett., 2020, 750137489
[http://dx.doi.org/10.1016/j.cplett.2020.137489] [PMID: 32313296]
[35]
Maiti, B.K. Can Papain-like Protease Inhibitors Halt SARS-CoV-2 Replication? ACS Pharmacol. Transl. Sci., 2020, 3(5), 1017-1019.
[http://dx.doi.org/10.1021/acsptsci.0c00093]
[36]
Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.; Mehdipour, A.R.; Tascher, G.; Geurink, P.P.; Wilhelm, A.; van der Heden van Noort, G.J.; Ovaa, H.; Müller, S.; Knobeloch, K-P.; Rajalingam, K.; Schulman, B.A.; Cinatl, J.; Hummer, G.; Ciesek, S.; Dikic, I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020, 587(7835), 657-662.
[http://dx.doi.org/10.1038/s41586-020-2601-5] [PMID: 32726803]
[37]
Osipiuk, J.; Azizi, S-A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; Maki, S.L.; Nicolaescu, V.; Taylor, C.A.; Tesar, C.; Zhang, Y-A.; Zhou, Z.; Randall, G.; Michalska, K.; Snyder, S.A.; Dickinson, B.C.; Joachimiak, A. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Comm., 2021, 12(1), 743.
[http://dx.doi.org/10.1038/s41467-021-21060-3]]
[38]
Fu, Z.; Huang, B.; Tang, J.; Liu, S.; Liu, M.; Ye, Y.; Liu, Z.; Xiong, Y.; Cao, D.; Li, J.; Niu, X.; Zhou, H.; Zhao, Y.J.; Zhang, G.; Huang, H. Structural basis for the inhibition of the papain-like protease of SARS-CoV-2 by small molecules. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.07.17.208959]]
[39]
Swaim, C.D.; Perng, Y-C.; Zhao, X.; Canadeo, L.A.; Harastani, H.H.; Darling, T.L.; Boon, A.C.M.; Lenschow, D.J.; Huibregtse, J.M. 6-Thioguanine blocks SARS-CoV-2 replication by inhibition of PLpro protease activities. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.07.01.183020]]
[40]
Weglarz-Tomczak, E.; Tomczak, J.M.; Talma, M.; Brul, S. Ebselen as a highly active inhibitor of PLProCoV2. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.17.100768]]
[41]
Alamri, M.A. Tahir ul Qamar, M.; Mirza, M.U.; Alqahtani, S. M.; Froeyen, M.; Chen, L.-L., Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches. J. Pharm. Anal., 2020, 10(6), 546-559.
[http://dx.doi.org/10.1016/j.jpha.2020.08.012]]
[42]
Chien, M.; Anderson, T.K.; Jockusch, S.; Tao, C.; Li, X.; Kumar, S.; Russo, J.J.; Kirchdoerfer, R.N.; Ju, J. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase, a Key Drug Target for COVID-19. J. Proteome Res., 2020, 19(11), 4690-4697.
[http://dx.doi.org/10.1021/acs.jproteome.0c00392] [PMID: 32692185]
[43]
Yin, W.; Mao, C.; Luan, X.; Shen, D-D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; Chang, S.; Xie, Y-C.; Tian, G.; Jiang, H-W.; Tao, S-C.; Shen, J.; Jiang, Y.; Jiang, H.; Xu, Y.; Zhang, S.; Zhang, Y.; Xu, H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498), 1499-1504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[44]
Singh, S.; Sk, M.F.; Sonawane, A.; Kar, P.; Sadhukhan, S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J. Biomol. Struct. Dyn., 2021, 39(16), 6249-6264.
[PMID: 32720577]
[45]
Elfiky, A.A. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. J. Biomol. Struct. Dyn., 2021, 39(9), 3204-3212.
[http://dx.doi.org/10.1080/07391102.2020.1761882] [PMID: 32338164]
[46]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253117592
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[47]
Lung, J.; Lin, Y.S.; Yang, Y.H.; Chou, Y.L.; Shu, L.H.; Cheng, Y.C.; Liu, H.T.; Wu, C.Y. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J. Med. Virol., 2020, 92(6), 693-697.
[http://dx.doi.org/10.1002/jmv.25761] [PMID: 32167173]
[48]
Pandeya, K.B.; Ganeshpurkar, A.; Mishra, M.K. Natural RNA dependent RNA polymerase inhibitors: Molecular docking studies of some biologically active alkaloids of Argemone mexicana. Med. Hypotheses, 2020, 144109905
[http://dx.doi.org/10.1016/j.mehy.2020.109905] [PMID: 32535456]
[49]
Ahmad, M.; Dwivedy, A.; Mariadasse, R.; Tiwari, S.; Kar, D.; Jeyakanthan, J.; Biswal, B.K. Prediction of small molecule inhibitors targeting the severe acute respiratory syndrome coronavirus-2 RNA-dependent RNA polymerase. ACS Omega, 2020, 5(29), 18356-18366.
[http://dx.doi.org/10.1021/acsomega.0c02096] [PMID: 32743211]
[50]
Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; Sakata, M.; Tahara, M.; Kutsuna, S.; Ohmagari, N.; Kuroda, M.; Suzuki, T.; Kageyama, T.; Takeda, M. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA, 2020, 117(13), 7001-7003.
[http://dx.doi.org/10.1073/pnas.2002589117] [PMID: 32165541]
[51]
Zang, R.; Gomez Castro, M.F.; McCune, B.T.; Zeng, Q.; Rothlauf, P.W.; Sonnek, N.M.; Liu, Z.; Brulois, K.F.; Wang, X.; Greenberg, H.B.; Diamond, M.S.; Ciorba, M.A.; Whelan, S.P.J.; Ding, S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol., 2020, 5(47)eabc3582
[http://dx.doi.org/10.1126/sciimmunol.abc3582] [PMID: 32404436]
[52]
Baughn, L.B.; Sharma, N.; Elhaik, E.; Sekulic, A.; Bryce, A.H.; Fonseca, R. Targeting TMPRSS2 in SARS-CoV-2 Infection. Mayo Clin. Proc., 2020, 95(9), 1989-1999.
[http://dx.doi.org/10.1016/j.mayocp.2020.06.018] [PMID: 32861340]
[53]
Kumar, V.; Dhanjal, J.K.; Bhargava, P.; Kaul, A.; Wang, J.; Zhang, H.; Kaul, S.C.; Wadhwa, R.; Sundar, D. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J. Biomol. Struct. Dyn., 2020, 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1775704]]
[54]
Azouz, N.P.; Klingler, A.M.; Callahan, V.; Akhrymuk, I.V.; Elez, K.; Raich, L.; Henry, B.M.; Benoit, J.L.; Benoit, S.W.; Noé, F.; Kehn-Hall, K.; Rothenberg, M.E. Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2–Priming Protease TMPRSS2. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.04.077826]]
[55]
Sun, Z-G.; Li, Z-N.; Zhu, H-L. The research progress of DPP-4 inhibitors. Mini Rev. Med. Chem., 2020, 20(17), 1709-1718.
[http://dx.doi.org/10.2174/1389557520666200628032507] [PMID: 32600230]
[56]
Strollo, R.; Pozzilli, P. DPP4 inhibition: Preventing SARS-CoV-2 infection and/or progression of COVID-19? Diabetes Metab. Res. Rev., 2020, 36(8)e3330
[http://dx.doi.org/10.1002/dmrr.3330] [PMID: 32336007]
[57]
Solerte, S.B.; Di Sabatino, A.; Galli, M.; Fiorina, P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol., 2020, 57(7), 779-783.
[http://dx.doi.org/10.1007/s00592-020-01539-z] [PMID: 32506195]
[58]
Danta, C.C. Dipeptidyl Peptidase-4: A potential therapeutic target in diabetic kidney disease with SARS-CoV-2 Infection. ACS Pharmacol. Transl. Sci., 2020, 3(5), 1020-1022.
[http://dx.doi.org/10.1021/acsptsci.0c00097]]
[59]
Li, Y.; Zhang, Z.; Yang, L.; Lian, X.; Xie, Y.; Li, S.; Xin, S.; Cao, P.; Lu, J. The MERS-CoV Receptor DPP4 as a candidate binding target of the SARS-CoV-2 Spike. iScience., 2020, 23(6), 101160.,
[http://dx.doi.org/10.1016/j.isci.2020.101160]
[60]
Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; Botikov, A.G.; Izhaeva, F.M.; Popova, O.; Ozharovskaya, T.A.; Esmagambetov, I.B.; Favorskaya, I.A.; Zrelkin, D.I.; Voronina, D.V.; Shcherbinin, D.N.; Semikhin, A.S.; Simakova, Y.V.; Tokarskaya, E.A.; Egorova, D.A.; Shmarov, M.M.; Nikitenko, N.A.; Gushchin, V.A.; Smolyarchuk, E.A.; Zyryanov, S.K.; Borisevich, S.V.; Naroditsky, B.S.; Gintsburg, A.L. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet, 2021, 397(10275), 671-681.
[http://dx.doi.org/10.1016/S0140-6736(21)00234-8] [PMID: 33545094]
[61]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[62]
Mahase, E. Covid-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows. BMJ, 2020, 371.
[63]
Knoll, M.D.; Wonodi, C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet, 2021, 397(10269), 72-74.
[http://dx.doi.org/10.1016/S0140-6736(20)32623-4] [PMID: 33306990]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy