Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Topomer CoMFA and HQSAR Study on Benzimidazole Derivative as NS5B Polymerase Inhibitor

Author(s): Tong Jian-Bo*, Zhang Xing , Bian Shuai , Luo Ding and Wang Tian-Hao

Volume 19, Issue 1, 2022

Published on: 04 August, 2021

Page: [54 - 68] Pages: 15

DOI: 10.2174/1570180818666210804125607

Price: $65

Abstract

Background: In recent years, the number of people infected with the hepatitis C virus (HCV) is increasing rapidly. This has become a major threat to global health, therefore, new anti- HCV drugs are urgently needed. HCV NS5B polymerase is an RNA-dependent RNA polymerase (RdRp), which plays an important role in virus replication, and can effectively prevent the replication of HCV sub-genomic RNA in daughter cells. It is considered a very promising HCV therapeutic target for the design of anti-HCV drugs.

Methods: In order to explore the relationship between the structure of benzimidazole derivative and its inhibitory activity on NS5B polymerase, holographic quantitative structure-activity relationship (HQSAR) and Topomer comparative molecular field analysis (CoMFA) were used to establish benzimidazole QSAR model of derivative inhibitors.

Results: The results show that for the Topomer CoMFA model, the cross-validation coefficient q2 value is 0.883, and the non-cross-validation coefficient r2 value is 0.975. The model is reasonable, reliable, and has a good predictive ability. For the HQSAR model, the cross-validated q2 value is 0.922, and the uncross-validated r2 value is 0.971, indicating that the model data fit well and has a high predictive ability. Through the analysis of the contour map and color code diagram, 40 new benzimidazole inhibitor molecules were designed, and all of them have higher activity than template molecules, and the new molecules have significant interaction sites with protein 3SKE.

Conclusion: The 3D-QSAR model established by Topomer CoMFA and HQSAR has good prediction results and the statistical verification is valid. The newly designed molecules and docking results provide theoretical guidance for the synthesis of new NS5B polymerase inhibitors and for the identification of key residues that the inhibitors bind to NS5B, which helps to better understand their inhibitory mechanism. These findings are helpful for the development of new anti-HCV drugs.

Keywords: Benzimidazole derivative, NS5B, Topomer CoMFA, HQSAR, molecular docking, NS5B polymerase inhibitor.

Graphical Abstract
[1]
Wang, W.; Huang, X.; Fan, X.; Yan, J.; Luan, J. Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells. (Review). Mol. Med. Rep., 2020, 22(5), 4116-4124.
[http://dx.doi.org/ 10.3892/mmr.2020.11516] [PMID: 33000255]
[2]
Ford, N.; Kirby, C.; Singh, K.; Mills, E.J.; Cooke, G.; Kamarulzaman, A.; duCros, P. Chronic hepatitis C treatment outcomes in low- and middle-income countries: a systematic review and meta-analysis. Bull. World Health Organ., 2012, 90(7), 540-550.
[http://dx.doi.org/10.2471/BLT.11.097147] [PMID: 22807600]
[3]
Ghorbian, S.; Ghorbian, S. Nucleic acidvaccines for hepatitis B and C viruses. Infect. Genet. Evol., 2019, 75, 103968.
[http://dx.doi.org/10.1016/j.meegid.2019.103968]]
[4]
Kashif, M.; Majeed, M.I.; Hanif, M.A.; Rehman, A.U. Surface Enhanced Raman Spectroscopy of the serum samples for the diagnosis of Hepatitis C and prediction of the viral loads. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 242, 118729.
[http://dx.doi.org/10.1016/j.saa.2020.118729] [PMID: 32712574]
[5]
Patil, V.M.; Gupta, S.P.; Samanta, S.; Masand, N. Virtual screening of imidazoleanalogs as potential hepatitis C virus NS5B polymerase inhibitors. Chem. Pap., 2013, 67(2), 236-244.
[http://dx.doi.org/10.2478/s11696-012-0241-4]
[6]
Patil, V.M. R, G.K.; Chudayeu, M.; Gupta, S.P.; Samanta, S.; Masand, N.; Kaushik-Basu, N. Synthesis, in vitro and in silico NS5B polymerase inhibitory activity of benzimidazole derivatives. Med. Chem., 2012, 8(4), 629-635.
[http://dx.doi.org/10.2174/157340612801216120] [PMID: 22530910]
[7]
Polamreddy, P.; Vishwakarma, V.; Arumugam, P.; Bheemanati, R.; Esram, P.; Mahto, M.K.; Kacker, P. Discovery of hit molecules targeting allosteric site of hepatitis C virus NS5B polymerase. J. Biomol. Struct. Dyn., 2020, 38(5), 1448-1466.
[http://dx.doi.org/10.1080/07391102.2019.1608864] [PMID: 31007134]
[8]
Uengwetwanit, T.; Robaa, D.; Sippl, W. Analysis of the resistance of hepatitis C virus NS5B polymerase inhibitors via docking and molecular dynamics simulation. Mol. Inform., 2015, 34(2-3), 78-83.
[http://dx.doi.org/10.1002/minf.201400048] [PMID: 27490030]
[9]
Wang, Z.; Chen, Z.; Li, J.; Huang, J.; Zheng, C.; Liu, J-P. Combined 3D-QSAR, molecular docking and molecular dynamics study on the benzimidazole inhibitors targeting HCV NS5B polymerase. J. Biomol. Struct. Dyn., 2020, 38(4), 1071-1082.
[http://dx.doi.org/10.1080/07391102.2019.1593244] [PMID: 30915896]
[10]
Zhao, F.; Liu, N.; Zhan, P.; Jiang, X.; Liu, X. Discovery of HCV NS5B thumb site I inhibitors: core-refining from benzimidazole to indole scaffold. Eur. J. Med. Chem., 2015, 94, 218-228.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.012] [PMID: 25768704]
[11]
Entezari Heravi, Y.; Sereshti, H.; Saboury, A.A.; Ghasemi, J.; Amirmostofian, M.; Supuran, C.T. 3D QSAR studies, pharmacophore modeling, and virtual screening of diarylpyrazole-benzenesulfonamide derivatives as a template to obtain new inhibitors, using human carbonic anhydrase II as a model protein. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 688-700.
[http://dx.doi.org/10.1080/14756366.2016.1241781] [PMID: 28317396]
[12]
Wang, Y.; Wang, F.; Shi, X.; Jia, C.; Wu, F.; Hao, G.; Yang, G. Cloud 3D-QSAR: a web tool for the development of quantitative structure-activity relationship models in drug discovery. Briefings in Bioinformatics, 2020. Brief. Bioinform., 2020, 22(4), 1-8.
[13]
Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.; Oprea, T.I.; Baskin, I.I.; Varnek, A.; Roitberg, A.; Isayev, O.; Curtarolo, S.; Fourches, D.; Cohen, Y.; Aspuru-Guzik, A.; Winkler, D.A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A. QSAR without borders. Chem. Soc. Rev., 2020, 49(11), 3525-3564.
[http://dx.doi.org/10.1039/D0CS00098A] [PMID: 32356548]
[14]
Zheng, X.; He, M.; Tan, X.; Zheng, J.; Wang, F.; Liu, S. 3D-quantitative structure-activity relationship and docking studies of coumarin derivatives as tissue kallikrein 7 inhibitors. J. Pharm. Pharmacol., 2017, 69(9), 1136-1144.
[http://dx.doi.org/10.1111/jphp.12751] [PMID: 28543088]
[15]
Yang, G.F.; Huang, X. Development of quantitative structure-activity relationships and its application in rational drug design. Curr. Pharm. Des., 2006, 12(35), 4601-4611.
[http://dx.doi.org/10.2174/138161206779010431] [PMID: 17168765]
[16]
Fu, L.; Chen, Y.; Xu, C-m.; Wu, T.; Guo, H-m.; Lin, Z-h.; Wang, R.; Shu, M. 3D-QSAR, HQSAR, molecular docking, and new compound design study of 1,3,6-trisubstituted 1,4-diazepan-7-ones as human KLK7 inhibitors. Med. Chem. Res., 2020, 29(6), 1012-1029.
[http://dx.doi.org/10.1007/s00044-020-02542-3]
[17]
Niu, B.; Lu, Y.; Wang, J.; Hu, Y.; Chen, J.; Chen, Q.; He, G.; Zheng, L. 2D-SAR, Topomer CoMFA and molecular docking studies on avian influenza neuraminidase inhibitors. Comput. Struct. Biotechnol. J., 2018, 17, 39-48.
[http://dx.doi.org/10.1016/j.csbj.2018.11.007] [PMID: 30595814]
[18]
Abdizadeh, R.; Hadizadeh, F.; Abdizadeh, T. QSAR analysis of coumarin-based benzamides as histone deacetylase inhibitors using CoMFA, CoMSIA and HQSAR methods. J. Mol. Struct., 2020, •••, 1199.
[http://dx.doi.org/10.1016/j.molstruc.2019.126961]
[19]
Hirashima, S.; Suzuki, T.; Ishida, T.; Noji, S.; Yata, S.; Ando, I.; Komatsu, M.; Ikeda, S.; Hashimoto, H. Benzimidazole derivatives bearing substituted biphenyls as hepatitis C virus NS5B RNA-dependent RNA polymerase inhibitors: structure-activity relationship studies and identification of a potent and highly selective inhibitor JTK-109. J. Med. Chem., 2006, 49(15), 4721-4736.
[http://dx.doi.org/10.1021/jm060269e] [PMID: 16854079]
[20]
Ishida, T.; Suzuki, T.; Hirashima, S.; Mizutani, K.; Yoshida, A.; Ando, I.; Ikeda, S.; Adachi, T.; Hashimoto, H. Benzimidazole inhibitors of hepatitis C virus NS5B polymerase: identification of 2-[(4-diarylmethoxy)phenyl]-benzimidazole. Bioorg. Med. Chem. Lett., 2006, 16(7), 1859-1863.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.032] [PMID: 16455252]
[21]
Zhong, H.; Bowen, J. GALAHAD Tripos, Inc. 1699 South Hanley Road, St. Louis, MO 63144-2319. www.tripos.com Contact company for pricing information. J Am Chem Soc, 2007, 129(17), 5780-5780.
[22]
Clark, M.; Cramer, R.; Opdenbosch, N.; Iii, R. Validation of the general purpose TRIPOS 5.2 force field. J. Comput. Chem., 1989, 10, 982-1012.
[http://dx.doi.org/10.1002/jcc.540100804]
[23]
Caballero, J.; Saavedra, M.; Fernández, M.; González-Nilo, F.D. Quantitative structure-activity relationship of rubiscolin analogues as delta opioid peptides using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). J. Agric. Food Chem., 2007, 55(20), 8101-8104.
[http://dx.doi.org/10.1021/jf071031h] [PMID: 17803260]
[24]
Zhao, T.; Zhao, Z.; Lu, F.; Chang, S.; Zhang, J.; Pang, J.; Tian, Y. Two- and three-dimensional QSAR studies on hURAT1 inhibitors with flexible linkers: topomer CoMFA and HQSAR. Mol. Divers., 2020, 24(1), 141-154.
[http://dx.doi.org/10.1007/s11030-019-09936-5] [PMID: 30868332]
[25]
Zhao, X.; Wang, X.; Li, Y. Combined HQSAR method and molecular docking study on genotoxicity mechanism of quinolones with higher genotoxicity. Environ. Sci. Pollut. Res. Int., 2019, 26(34), 34830-34853.
[http://dx.doi.org/10.1007/s11356-019-06482-3] [PMID: 31655981]
[26]
Winkler, D.; Burden, F. Holographic QSAR of Benzodiazepines. Quant Struct-Act Rel., 1998, 17, 224-231.
[http://dx.doi.org/10.1002/(SICI)1521-3838(199806)17:03<224:AID-QSAR224>3.0.CO;2-6]
[27]
Shiri, F.; Salahinejad, M.; Dijoor, R.; Nejati-Yazdinejad, M. An explorative study on potent Gram-negative specific LpxC inhibitors: CoMFA, CoMSIA, HQSAR and molecular docking. J. Recept. Signal Transduct. Res., 2018, 38(2), 151-165.
[http://dx.doi.org/10.1080/10799893.2018.1457052] [PMID: 29623756]
[28]
Li, Q.; Gu, W.; Li, Y. 3D-QSAR/HQSAR-based analysis of bioconcentration and molecularmodification of monophenyl aromatic compounds. Turk. J. Chem., 2019, 43, 286-306.
[http://dx.doi.org/10.3906/kim-1807-47]
[29]
Tong, J.; Zhan, P.; Bai, M.; Yao, T. Molecular modeling studies of human immunodeficiency virus type 1 protease inhibitors using three-dimensional quantitative structure-activity relationship, virtual screening, and docking simulations. J. Chemometr., 2016, 30(9), 523-536.
[http://dx.doi.org/10.1002/cem.2809]
[30]
Huang, D.; Liu, Y.; Shi, B.; Li, Y.; Wang, G.; Liang, G. Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking. J. Mol. Graph. Model., 2013, 45, 65-83.
[http://dx.doi.org/10.1016/j.jmgm.2013.08.003] [PMID: 24004830]
[31]
Liu, Y-Y.; Ding, T-T.; Feng, X-Y.; Xu, W-R.; Cheng, X-C. Virtual identification of novel peroxisome proliferator-activated receptor (PPAR) α/δ dual antagonist by 3D-QSAR, molecule docking, and molecule dynamics simulation. J. Biomol. Struct. Dyn., 2020, 38(14), 4143-4161.
[http://dx.doi.org/10.1080/07391102.2019.1673211] [PMID: 31556349]
[32]
Uddin, R.; Saeed, M.; Ul-Haq, Z. Molecular docking- and genetic algorithm-based approaches to produce robust 3D-QSAR models. Med. Chem. Res., 2014, 23(5), 2198-2206.
[http://dx.doi.org/10.1007/s00044-013-0812-0]
[33]
Khamouli, S.; Belaidi, S.; Ouassaf, M.; Lanez, T.; Belaaouad, S.; Chtita, S. Multi-combined 3D-QSAR, docking molecular and ADMET prediction of 5-azaindazole derivatives as LRRK2 tyrosine kinase inhibitors. J. Biomol. Struct. Dyn., 2020, 1-14.
[http://dx.doi.org/10.1080/07391102.2020.1824815] [PMID: 32964807]
[34]
Tong, J.; Lei, S.; Qin, S.; Wang, Y. QSAR studies of TIBO derivatives as HIV-1 reverse transcriptase inhibitors using HQSAR, CoMFA and CoMSIA. J. Mol. Struct., 2018, 1168, 56-64.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.005]
[35]
Wang, F.; Zhou, B. Insight into structural requirements of ACE inhibitory dipeptides: QSAR and molecular docking studies. Mol. Divers., 2020, 24(4), 957-969.
[http://dx.doi.org/10.1007/s11030-019-10005-0] [PMID: 31655961]
[36]
Leal, F.D.; da Silva Lima, C.H.; de Alencastro, R.B.; Castro, H.C.; Rodrigues, C.R.; Albuquerque, M.G. Hologram QSAR models of a series of 6-arylquinazolin-4-amine inhibitors of a new Alzheimer’s disease target: dual specificity tyrosine-phosphorylation-regulated kinase-1A enzyme. Int. J. Mol. Sci., 2015, 16(3), 5235-5253.
[http://dx.doi.org/10.3390/ijms16035235] [PMID: 25756379]
[37]
Patel, P.; Rajak, H. Development of hydroxamic acid derivatives as anticancer agent with the application of 3D-QSAR, docking and molecular dynamics simulations studies. Med. Chem. Res., 2018, 27(9), 2100-2115.
[http://dx.doi.org/10.1007/s00044-018-2219-4]
[38]
Cramer, R.D.; Cruz, P.; Stahl, G.; Curtiss, W.C.; Campbell, B.; Masek, B.B.; Soltanshahi, F. Virtual screening for R-groups, including predicted pIC50 contributions, within large structural databases, using Topomer CoMFA. J. Chem. Inf. Model., 2008, 48(11), 2180-2195.
[http://dx.doi.org/10.1021/ci8001556] [PMID: 18956863]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy