Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Recent Advances of using Personal Glucose Meter as a Biosensor Readout for Non-glucose Targets

Author(s): Songbai Zhang*, Shuang Li, Rixin Yan, Zhiyun Zhou, Yuting Wu and Yi Lu*

Volume 18, Issue 6, 2022

Published on: 04 August, 2021

Page: [705 - 722] Pages: 18

DOI: 10.2174/1573411017666210804105750

Price: $65

conference banner
Abstract

Background: Personal Glucose Meter (PGM) has become the most successful biosensor in past decades due to its advantages of small size, convenient operation, and low cost. To take advantage of many years of research and development of PGMs, new signal transduction methods have been developed to expand the PGM from simple monitoring of blood glucose to the detection of numerous non-glucose targets.

Objectives: This review summarizes recent advances of PGM-based biosensors for non-glucose targets, including signal transduction, signal amplification, and target molecule recognition and analysis. Current challenges and future directions are also discussed.

Conclusion: PGM can be used as a biosensor readout to detect various non-glucose targets from metal ion, small molecules to protein and even living organisms such as bacteria and other pathogens by using different signal transduction elements such as invertase and amylase, and different signal amplification methods such as nanomaterials, nucleic acid reaction, liposome encapsulation, hydrogel trapping, DNAzyme amplification and biotin-streptavidin reaction.

Keywords: Personal glucose meter, non-glucose target, point of care, biosensor, signal transduction, signal amplification, target recognition.

Graphical Abstract
[1]
Leke, A.Z.; Maboh, N.M.; Maeya, S.E.; Armstrong, O.; Ndumbe, L.D.; Nyenti, B.P.; Afumbom, A.D.; Sone, N.B.; Etiendem, D.; Nkwati, E.S. Epidemiological transition of Type 2 Diabetes mellitus in rural south west cameroon. Open J. Endocr. Metab. Dis., 2020, 10, 45-58.
[http://dx.doi.org/10.4236/ojemd.2020.104006]
[2]
Vashist, S.K.; Zheng, D.; Al-Rubeaan, K.; Luong, J.H.T.; Sheu, F.S. Technology behind commercial devices for blood glucose monitoring in diabetes management: A review. Anal. Chim. Acta, 2011, 703(2), 124-136.
[http://dx.doi.org/10.1016/j.aca.2011.07.024] [PMID: 21889626]
[3]
Galant, A.L.; Kaufman, R.C.; Wilson, J.D. Glucose: Detection and analysis. Food Chem., 2015, 188, 149-160.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.071] [PMID: 26041177]
[4]
Aggidis, A.G.A.; Newman, J.D.; Aggidis, G.A. Investigating pipeline and state of the art blood glucose biosensors to formulate next steps. Biosens. Bioelectron., 2015, 74, 243-262.
[http://dx.doi.org/10.1016/j.bios.2015.05.071] [PMID: 26143465]
[5]
Zhang, L.; Gu, C.; Ma, H.; Zhu, L.; Wen, J.; Xu, H.; Liu, H.; Li, L. Portable glucose meter: trends in techniques and its potential application in analysis. Anal. Bioanal. Chem., 2019, 411(1), 21-36.
[http://dx.doi.org/10.1007/s00216-018-1361-7] [PMID: 30280228]
[6]
Newman, J.D.; Turner, A.P.F. Home blood glucose biosensors: A commercial perspective. Biosens. Bioelectron., 2005, 20(12), 2435-2453.
[http://dx.doi.org/10.1016/j.bios.2004.11.012] [PMID: 15854818]
[7]
Wang, J. Electrochemical glucose biosensors. Chem. Rev., 2008, 108(2), 814-825.
[http://dx.doi.org/10.1021/cr068123a] [PMID: 18154363]
[8]
Yoo, E.H.; Lee, S.Y. Glucose biosensors: an overview of use in clinical practice. Sensors, 2010, 10(5), 4558-4576.
[http://dx.doi.org/10.3390/s100504558] [PMID: 22399892]
[9]
Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent Advances in electrochemical glucose biosensors: A review. RSC Advances, 2013, 3(14), 4473-4491.
[http://dx.doi.org/10.1039/c2ra22351a]
[10]
Xiang, Y.; Lu, Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem., 2011, 3(9), 697-703.
[http://dx.doi.org/10.1038/nchem.1092] [PMID: 21860458]
[11]
Lan, T.; Zhang, J.; Lu, Y. Transforming the blood glucose meter into a general healthcare meter for in vitro diagnostics in mobile health. Biotechnol. Adv., 2016, 34(3), 331-341.
[http://dx.doi.org/10.1016/j.biotechadv.2016.03.002] [PMID: 26946282]
[12]
Lisi, F.; Peterson, J.R.; Gooding, J.J. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosens. Bioelectron., 2020, 148, 111835.
[http://dx.doi.org/10.1016/j.bios.2019.111835] [PMID: 31707326]
[13]
Tu, J.; Torrente-rodríguez, R.M.; Wang, M.; Gao, W. The Era of Digital Health : A review of portable and wearable affinity biosensors. Adv. Funct. Mater., 2020, 30, 1906713.
[http://dx.doi.org/10.1002/adfm.201906713]
[14]
Zhang, J.; Lan, T.; Lu, Y. Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. Trends Analyt. Chem., 2020, 124, 115782.
[http://dx.doi.org/10.1016/j.trac.2019.115782] [PMID: 32194293]
[15]
Zhang, J.; Lu, Y. Biocomputing for portable, resettable, and quantitative point-of-care diagnostics: Making the glucose meter a logic-gate responsive device for measuring many clinically relevant targets. Angew. Chem. Int. Ed. Engl., 2018, 57(31), 9702-9706.
[http://dx.doi.org/10.1002/anie.201804292] [PMID: 29893502]
[16]
Xu, J.; Qiao, X.; Zhang, J.; Cheng, N.; Sheng, Q.; Zheng, J.; Cao, W.; Yue, T.; Lu, Y. Point-of-Care monitoring of intracellular glutathione and serum triglyceride levels using a versatile personal glucose meter. Anal. Methods, 2019, 11, 1849-1856.
[http://dx.doi.org/10.1039/C8AY02709A]
[17]
Xiang, Y.; Lu, Y. Using commercially available personal glucose meters for portable quantification of DNA. Anal. Chem., 2012, 84(4), 1975-1980.
[http://dx.doi.org/10.1021/ac203014s] [PMID: 22235863]
[18]
Xiang, Y.; Lu, Y. Portable and quantitative detection of protein biomarkers and small molecular toxins using antibodies and ubiquitous personal glucose meters. Anal. Chem., 2012, 84(9), 4174-4178.
[http://dx.doi.org/10.1021/ac300517n] [PMID: 22455548]
[19]
Zhou, J.; Xu, K.; Zhou, P.; Zheng, O.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. A portable chemical sensor for histidine based on the strategy of click chemistry. Biosens. Bioelectron., 2014, 51, 386-390.
[http://dx.doi.org/10.1016/j.bios.2013.08.015] [PMID: 24007674]
[20]
Chen, S.; Gan, N.; Zhang, H.; Hu, F.; Li, T.; Cui, H.; Cao, Y.; Jiang, Q. A portable and antibody-free sandwich assay for determination of chloramphenicol in food based on a personal glucose meter. Anal. Bioanal. Chem., 2015, 407(9), 2499-2507.
[http://dx.doi.org/10.1007/s00216-015-8478-8] [PMID: 25644521]
[21]
Hun, X.; Xu, Y.; Luo, X. Peptide-based biosensor for the prostate-specific antigen using magnetic particle-bound invertase and a personal glucose meter for readout. Mikrochim. Acta, 2015, 182(9–10), 1669-1675.
[http://dx.doi.org/10.1007/s00604-015-1483-y]
[22]
Gu, C.; Lan, T.; Shi, H.; Lu, Y. Portable detection of melamine in milk using a personal glucose meter based on an in vitro selected structure-switching aptamer. Anal. Chem., 2015, 87(15), 7676-7682.
[http://dx.doi.org/10.1021/acs.analchem.5b01085] [PMID: 26200202]
[23]
Xu, X.; Liang, K.; Zeng, J. highly sensitive and portable mercury(ii) ion sensor using personal glucose meter. Anal. Methods, 2015, 7(1), 81-85.
[http://dx.doi.org/10.1039/C4AY01502A]
[24]
Yang, W.; Lu, X.; Wang, Y.; Sun, S.; Liu, C.; Li, Z. Portable and sensitive detection of protein kinase activity by using commercial personal glucose meter. Sens. Actuators B Chem., 2015, 210, 508-512.
[http://dx.doi.org/10.1016/j.snb.2015.01.027]
[25]
Hun, X.; Xu, Y.; Xie, G.; Luo, X. Aptamer biosensor for highly sensitive and selective detection of dopamine using ubiquitous personal glucose meters. Sens. Actuators B Chem., 2015, 209, 596-601.
[http://dx.doi.org/10.1016/j.snb.2014.11.135]
[26]
Xu, X.T.; Liang, K.Y.; Zeng, J.Y. Portable and sensitive quantitative detection of DNA based on personal glucose meters and isothermal circular strand-displacement polymerization reaction. Biosens. Bioelectron., 2015, 64, 671-675.
[http://dx.doi.org/10.1016/j.bios.2014.09.094] [PMID: 25441417]
[27]
Zhang, J.; Tang, Y.; Teng, L.; Lu, M.; Tang, D. Low-cost and highly efficient DNA biosensor for heavy metal ion using specific DNAzyme-modified microplate and portable glucometer-based detection mode. Biosens. Bioelectron., 2015, 68, 232-238.
[http://dx.doi.org/10.1016/j.bios.2015.01.001] [PMID: 25576929]
[28]
Zhang, J.; Shen, Z.; Xiang, Y.; Lu, Y. Integration of solution-based assays onto lateral flow device for one-step quantitative point-of-care diagnostics using personal glucose meter. ACS Sens., 2016, 1(9), 1091-1096.
[http://dx.doi.org/10.1021/acssensors.6b00270]
[29]
Xiang, Y.; Lu, Y. An invasive DNA approach toward a general method for portable quantification of metal ions using a personal glucose meter. Chem. Commun., 2013, 49(6), 585-587.
[http://dx.doi.org/10.1039/C2CC37156A] [PMID: 23208450]
[30]
Deng, H.; Png, S.Y.; Gao, Z. Highly sensitive detection of M.SssI DNA methyltransferase activity using a personal glucose meter. Anal. Bioanal. Chem., 2016, 408(21), 5867-5872.
[http://dx.doi.org/10.1007/s00216-016-9701-y] [PMID: 27311957]
[31]
Wang, W.; Huang, S.; Li, J.; Rui, K.; Zhang, J.R.; Zhu, J.J. Coupling a DNA-Based machine with glucometer readouts for amplified detection of telomerase activity in cancer cells. Sci. Rep., 2016, 6, 23504.
[http://dx.doi.org/10.1038/srep23504] [PMID: 27009555]
[32]
Wan, Y.; Qi, P.; Zeng, Y.; Sun, Y.; Zhang, D. Invertase-mediated system for simple and rapid detection of pathogen. Sens. Actuators B Chem., 2016, 233, 454-458.
[http://dx.doi.org/10.1016/j.snb.2016.04.098]
[33]
Lan, T.; Xiang, Y.; Lu, Y. Detection of protein biomarker using a blood glucose meter. Methods Mol. Biol., 2015, 1256, 99-109.
[http://dx.doi.org/10.1007/978-1-4939-2172-0_7] [PMID: 25626534]
[34]
Zhu, X.; Sarwar, M.; Yue, Q.; Chen, C.; Li, C.Z. Biosensing of DNA oxidative damage: A model of using glucose meter for non-glucose biomarker detection. Int. J. Nanomedicine, 2017, 12, 979-987.
[http://dx.doi.org/10.2147/IJN.S125437] [PMID: 28203077]
[35]
Ming, J.; Fan, W.; Jiang, T.F.; Wang, Y.H.; Lv, Z.H. Portable and sensitive detection of Copper(II) ion based on personal glucose meters and a ligation DNAzyme releasing strategy. Sens. Actuators B Chem., 2017, 240, 1091-1098.
[http://dx.doi.org/10.1016/j.snb.2016.09.091]
[36]
Huang, S.; Wang, W.; Cheng, F.; Yao, H.; Zhu, J.J. Highly sensitive detection of mercury ion based on T-Rich DNA machine using portable glucose meter. Sens. Actuators B Chem., 2017, 242, 347-354.
[http://dx.doi.org/10.1016/j.snb.2016.10.123]
[37]
Zhu, X.; Kou, F.; Xu, H.; Lin, L.; Yang, G.; Lin, Z. A highly sensitive aptamer-immunoassay for vascular endothelial growth factor coupled with portable glucose meter and hybridization chain reaction. Sens. Actuators B Chem., 2017, 253, 660-665.
[http://dx.doi.org/10.1016/j.snb.2017.06.174]
[38]
Hong, L.; Zhou, F.; Shi, D.; Zhang, X.; Wang, G. Portable aptamer biosensor of platelet-derived growth factor-BB using a personal glucose meter with triply amplified. Biosens. Bioelectron., 2017, 95, 152-159.
[http://dx.doi.org/10.1016/j.bios.2017.04.023] [PMID: 28445812]
[39]
Chen, Y.; Yi, H.; Xiang, Y.; Yuan, R. Commercial glucometer as signal transducer for simple evaluation of DNA methyltransferase activity and inhibitors screening. Anal. Chim. Acta, 2018, 1001, 18-23.
[http://dx.doi.org/10.1016/j.aca.2017.11.045] [PMID: 29291802]
[40]
Joo, J.; Kwon, D.; Shin, H.H.; Park, K-H.; Cha, H.J.; Jeon, S. A facile and sensitive method for detecting pathogenic bacteria using personal glucose meters. Sens. Actuators B Chem., 2013, 188, 1250-1254.
[http://dx.doi.org/10.1016/j.snb.2013.08.027]
[41]
Huang, F.; Zhang, H.; Wang, L.; Lai, W.; Lin, J. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen. Biosens. Bioelectron., 2018, 100, 583-590.
[http://dx.doi.org/10.1016/j.bios.2017.10.005] [PMID: 29032045]
[42]
Huang, H.; Zhao, G.; Dou, W. Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay. Biosens. Bioelectron., 2018, 107, 266-271.
[http://dx.doi.org/10.1016/j.bios.2018.02.027] [PMID: 29477883]
[43]
Fang, J.; Guo, Y.; Yang, Y.; Yu, W.; Tao, Y.; Dai, T.; Yuan, C. Portable and sensitive detection of DNA based on personal glucose meters and nanogold-functionalized PAMAM dendrimer. Sens. Actuators B Chem., 2018, 272(1), 118-126.
[http://dx.doi.org/10.1016/j.snb.2018.05.086]
[44]
Yang, X.; Shi, D.; Zhu, S.; Wang, B.; Zhang, X.; Wang, G. Portable aptasensor of aflatoxin B1 in bread based on a personal glucose meter and DNA walking machine. ACS Sens., 2018, 3(7), 1368-1375.
[http://dx.doi.org/10.1021/acssensors.8b00304] [PMID: 29943575]
[45]
Dong, Q.; Liu, Q.; Guo, L.; Li, D.; Shang, X.; Li, B.; Du, Y. A signal-flexible gene diagnostic strategy coupling loop-mediated isothermal amplification with hybridization chain reaction. Anal. Chim. Acta, 2019, 1079, 171-179.
[http://dx.doi.org/10.1016/j.aca.2019.06.048] [PMID: 31387708]
[46]
Wu, T.; Cao, Y.; Yang, Y.; Zhang, X.; Wang, S.; Xu, L.P.; Zhang, X. A three-dimensional DNA walking machine for the ultrasensitive dual-modal detection of miRNA using a fluorometer and personal glucose meter. Nanoscale, 2019, 11(23), 11279-11284.
[http://dx.doi.org/10.1039/C9NR03588E] [PMID: 31165838]
[47]
Ge, L.; Li, B.; Xu, H.; Pu, W.; Kwok, H.F. Backfilling rolling cycle amplification with enzyme-DNA conjugates on antibody for portable electrochemical immunoassay with glucometer readout. Biosens. Bioelectron., 2019, 132, 210-216.
[http://dx.doi.org/10.1016/j.bios.2019.02.051] [PMID: 30875633]
[48]
Qiu, S.; Yuan, L.; Wei, Y.; Zhang, D.; Chen, Q.; Lin, Z.; Luo, L. DNA template-mediated click chemistry-based portable signal-on sensor for ochratoxin A detection. Food Chem., 2019, 297, 124929.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.203] [PMID: 31253344]
[49]
Yang, J.; Huang, X.; Gan, C.; Yuan, R.; Xiang, Y. Highly specific and sensitive point-of-care detection of rare circulating tumor cells in whole blood via a dual recognition strategy. Biosens. Bioelectron., 2019, 143, 111604.
[http://dx.doi.org/10.1016/j.bios.2019.111604] [PMID: 31466047]
[50]
Liu, C.; Zhang, S.; Li, X.; Xue, Q.; Jiang, W. Multi-code magnetic beads based on DNAzyme-mediated double-cycling amplification for a point-of-care assay of telomerase activity. Analyst, 2019, 144(14), 4241-4249.
[http://dx.doi.org/10.1039/C9AN00589G] [PMID: 31210200]
[51]
Su, J.; Xu, J.; Chen, Y.; Xiang, Y.; Yuan, R.; Chai, Y. Sensitive detection of copper(II) by a commercial glucometer using click chemistry. Biosens. Bioelectron., 2013, 45(1), 219-222.
[http://dx.doi.org/10.1016/j.bios.2013.01.069] [PMID: 23500367]
[52]
Shan, Y.; Zhang, Y.; Kang, W.; Wang, B.; Li, J.; Wu, X.; Wang, S. Quantitative and selective DNA detection with portable personal glucose meter using loop-based DNA competitive hybridization strategy. Sens. Actuators B Chem., 2019, 282, 197-203.
[http://dx.doi.org/10.1016/j.snb.2018.11.062]
[53]
Sun, F.; Sun, X.; Jia, Y.; Hu, Z.; Xu, S.; Li, L.; Na, N.; Ouyang, J. Ultrasensitive detection of prostate specific antigen using a personal glucose meter based on DNA-mediated immunoreaction. Analyst, 2019, 144(20), 6019-6024.
[http://dx.doi.org/10.1039/C9AN01558B] [PMID: 31538152]
[54]
Zhu, X.; Sarwar, M.; Zhu, J.J.; Zhang, C.; Kaushik, A.; Li, C.Z. Using a glucose meter to quantitatively detect disease biomarkers through a universal nanozyme integrated lateral fluidic sensing platform. Biosens. Bioelectron., 2019, 126, 690-696.
[http://dx.doi.org/10.1016/j.bios.2018.11.033] [PMID: 30544082]
[55]
Zhao, L.; Teng, L.; Zhang, J.; Li, H. Point-of-care detection of microcystin-LR with a personal glucose meter in drinking water source. Chinese Chem. Lett. J., 2019, 30, 1035-1037.
[http://dx.doi.org/10.1016/j.cclet.2019.01.001]
[56]
Huang, X.; Li, J.; Lu, M.; Zhang, W.; Xu, Z.; Yu, B.Y.; Tian, J. Point-of-care testing of MicroRNA based on personal glucose meter and dual signal amplification to evaluate drug-induced kidney injury. Anal. Chim. Acta, 2020, 1112, 72-79.
[http://dx.doi.org/10.1016/j.aca.2020.03.051] [PMID: 32334684]
[57]
Huang, X.; Xu, Z.; Liu, J-H.; Yu, B-Y.; Tian, J. Dual signal amplification for MicroRNA-21 detection based on duplex-specific nuclease and invertase. RSC Advances, 2020, 10, 11257-11262.
[http://dx.doi.org/10.1039/C9RA10657J]
[58]
Ma, X.; Chen, Z.; Zhou, J.; Weng, W.; Zheng, O.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Aptamer-based portable biosensor for platelet-derived growth factor-BB (PDGF-BB) with personal glucose meter readout. Biosens. Bioelectron., 2014, 55, 412-416.
[http://dx.doi.org/10.1016/j.bios.2013.12.041] [PMID: 24434497]
[59]
Xu, X.; Liang, K.; Zeng, J. Portable and sensitive quantitative detection of DNA using personal glucose meters and exonuclease III-assisted signal amplification. Analyst, 2014, 139(19), 4982-4986.
[http://dx.doi.org/10.1039/C4AN00905C] [PMID: 25105176]
[60]
Zhu, X.; Zheng, H.; Xu, H.; Lin, R.; Han, Y.; Yang, G.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. A Reusable and portable immunosensor using personal glucose meter as transducer. Anal. Methods, 2014, 6(14), 5264-5268.
[http://dx.doi.org/10.1039/C4AY00490F]
[61]
Wang, Q.; Wang, H.; Yang, X.; Wang, K.; Liu, F.; Zhao, Q.; Liu, P.; Liu, R. Multiplex detection of nucleic acids using a low cost microfluidic chip and a personal glucose meter at the point-of-care. Chem. Commun., 2014, 50(29), 3824-3826.
[http://dx.doi.org/10.1039/C4CC00133H] [PMID: 24590123]
[62]
Wang, Q.; Liu, F.; Yang, X.; Wang, K.; Wang, H.; Deng, X. Sensitive point-of-care monitoring of cardiac biomarker myoglobin using aptamer and ubiquitous personal glucose meter. Biosens. Bioelectron., 2015, 64, 161-164.
[http://dx.doi.org/10.1016/j.bios.2014.08.079] [PMID: 25216451]
[63]
Yan, L.; Zhu, Z.; Zou, Y.; Huang, Y.; Liu, D.; Jia, S.; Xu, D.; Wu, M.; Zhou, Y.; Zhou, S.; Yang, C.J. Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J. Am. Chem. Soc., 2013, 135(10), 3748-3751.
[http://dx.doi.org/10.1021/ja3114714] [PMID: 23339662]
[64]
Fu, X.; Feng, X.; Xu, K.; Huang, R. A portable and quantitative enzyme immunoassay of neuron-specific enolase with a glucometer readout. Anal. Methods, 2014, 6(7), 2233-2238.
[http://dx.doi.org/10.1039/C3AY42075B]
[65]
Wang, Q.; Wang, H.; Yang, X.; Wang, K.; Liu, R.; Li, Q.; Ou, J. A sensitive one-step method for quantitative detection of α-amylase in serum and urine using a personal glucose meter. Analyst, 2015, 140(4), 1161-1165.
[http://dx.doi.org/10.1039/C4AN02033B] [PMID: 25516912]
[66]
Lin, B.; Liu, D.; Yan, J.; Qiao, Z.; Zhong, Y.; Yan, J.; Zhu, Z.; Ji, T.; Yang, C.J. Enzyme-encapsulated liposome-linked immunosorbent assay enabling sensitive personal glucose meter readout for portable detection of disease biomarkers. ACS Appl. Mater. Interfaces, 2016, 8(11), 6890-6897.
[http://dx.doi.org/10.1021/acsami.6b00777] [PMID: 26918445]
[67]
Xue, Q.; Kong, Y.; Wang, H.; Jiang, W. Liposome-encoded magnetic beads initiated by padlock exponential rolling circle amplification for portable and accurate quantification of microRNAs. Chem. Commun., 2017, 53(78), 10772-10775.
[http://dx.doi.org/10.1039/C7CC05686A] [PMID: 28880327]
[68]
Zhang, Y.; Xue, Q.; Liu, J.; Wang, H. Magnetic bead-liposome hybrids enable sensitive and portable detection of DNA methyltransferase activity using personal glucose meter. Biosens. Bioelectron., 2017, 87, 537-544.
[http://dx.doi.org/10.1016/j.bios.2016.08.103] [PMID: 27611472]
[69]
Si, Y.; Li, L.; Wang, N.; Zheng, J.; Yang, R.; Li, J. Oligonucleotide cross-linked hydrogel for recognition and quantitation of MicroRNAs based on a portable glucometer readout. ACS Appl. Mater. Interfaces, 2019, 11(8), 7792-7799.
[http://dx.doi.org/10.1021/acsami.8b21727] [PMID: 30714711]
[70]
Kong, Y.; Liu, X.; Liu, C.; Xue, Q.; Li, X.; Wang, H. A dandelion-like liposomes-encoded magnetic bead probe-based toehold-mediated DNA circuit for the amplification detection of MiRNA. Analyst, 2019, 144(15), 4694-4701.
[http://dx.doi.org/10.1039/C9AN00887J] [PMID: 31268436]
[71]
Gao, X.; Li, X.; Sun, X.; Zhang, J.; Zhao, Y.; Liu, X.; Li, F. DNA Tetrahedra-Cross-linked hydrogel functionalized paper for onsite analysis of DNA Methyltransferase activity Using a personal glucose meter. Anal. Chem., 2020, 92(6), 4592-4599.
[http://dx.doi.org/10.1021/acs.analchem.0c00018] [PMID: 32081006]
[72]
Xiang, Y.; Lan, T.; Lu, Y. Using the widely available blood glucose meter to monitor insulin and HbA1c. J. Diabetes Sci. Technol., 2014, 8(4), 855-858.
[http://dx.doi.org/10.1177/1932296814532875] [PMID: 25562889]
[73]
Zhang, J.; Xiang, Y.; Novak, D.E.; Hoganson, G.E.; Zhu, J.; Lu, Y. Using a personal glucose meter and alkaline phosphatase for point-of-care quantification of galactose-1-phosphate uridyltransferase in clinical galactosemia diagnosis. Chem. Asian J., 2015, 10(10), 2221-2227.
[http://dx.doi.org/10.1002/asia.201500642] [PMID: 26350570]
[74]
Abardía-Serrano, C.; Miranda-Castro, R.; de-Los-Santos-Álvarez, N.; Lobo-Castañón, M.J. New uses for the personal glucose meter: detection of nucleic acid biomarkers for prostate cancer screening. Sensors, 2020, 20(19), 5514.
[http://dx.doi.org/10.3390/s20195514] [PMID: 32993106]
[75]
Luo, Y.; Dou, W.; Zhao, G. Rapid electrochemical quantification of salmonella pullorum and salmonella gallinarum based on glucose oxidase and antibody-modified silica nanoparticles. Anal. Bioanal. Chem., 2017, 409(17), 4139-4147.
[http://dx.doi.org/10.1007/s00216-017-0361-3] [PMID: 28429065]
[76]
Chavali, R.; Kumar Gunda, N.S.; Naicker, S.; Mitra, S.K. Detection of Escherichia Coli in Potable water using personal glucose meters. Anal. Methods, 2014, 6(16), 6223.
[http://dx.doi.org/10.1039/C4AY01249F]
[77]
Fang, D.; Gao, G.; Yu, Y.; Shen, J.; Zhi, J. Adaptive use of a personal glucose meter (PGM) for acute biotoxicity assessment based on the glucose consumption of microbes. Analyst, 2016, 141(10), 3004-3011.
[http://dx.doi.org/10.1039/C5AN02478A] [PMID: 27055358]
[78]
Ahn, J.K.; Kim, H.Y.; Park, K.S.; Park, H.G. A personal glucose meter for label-free and washing-free biomolecular detection. Anal. Chem., 2018, 90(19), 11340-11343.
[http://dx.doi.org/10.1021/acs.analchem.8b02014] [PMID: 30152994]
[79]
Ahn, J.K.; Kim, H.Y.; Lee, C.Y.; Park, K.S.; Park, H.G. Label-free and washing-free alkaline phosphatase assay using a personal glucose meter. J. Biol. Eng., 2019, 13, 51.
[http://dx.doi.org/10.1186/s13036-019-0182-3] [PMID: 31178924]
[80]
Kim, H.Y.; Lee, C.Y.; Kim, H.; Park, K.S.; Park, H.G. Portable glucose meter-utilized label-free and washing-free telomerase assay. Analyst, 2020, 145(16), 5578-5583.
[http://dx.doi.org/10.1039/D0AN00655F] [PMID: 32627768]
[81]
Zhao, Y.; Du, D.; Lin, Y. Glucose encapsulating liposome for signal amplification for quantitative detection of biomarkers with glucometer readout. Biosens. Bioelectron., 2015, 72, 348-354.
[http://dx.doi.org/10.1016/j.bios.2015.05.028] [PMID: 26005847]
[82]
Zhao, Y.; Chen, X.; Lin, S.; Du, D.; Lin, Y. Integrated immunochromatographic strip with glucometer readout for rapid quantification of phosphorylated proteins. Anal. Chim. Acta, 2017, 964, 1-6.
[http://dx.doi.org/10.1016/j.aca.2017.01.011] [PMID: 28351626]
[83]
Tang, J.; Huang, Y.; Liu, H.; Zhang, C.; Tang, D. Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers. Biosens. Bioelectron., 2016, 79, 508-514.
[http://dx.doi.org/10.1016/j.bios.2015.12.097] [PMID: 26748368]
[84]
Liang, X.; Wang, L.; Wang, D.; Zeng, L.; Fang, Z. Portable and quantitative monitoring of mercury ions using DNA-gated mesoporous silica nanoparticles using a glucometer readout. Chem. Commun., 2016, 52(10), 2192-2194.
[http://dx.doi.org/10.1039/C5CC08611F] [PMID: 26725779]
[85]
Zhang, J.; Xiang, Y.; Wang, M.; Basu, A.; Lu, Y. Dose-dependent response of personal glucose meters to nicotinamide coenzymes: Applications to point-of-care diagnostics of many non-glucose targets in a single step. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 732-736.
[http://dx.doi.org/10.1002/anie.201507563] [PMID: 26593219]
[86]
Tang, W.; Yang, J.; Wang, F.; Wang, J.; Li, Z. Thiocholine-triggered reaction in personal glucose meters for portable quantitative detection of organophosphorus pesticide. Anal. Chim. Acta, 2019, 1060, 97-102.
[http://dx.doi.org/10.1016/j.aca.2019.01.051] [PMID: 30902336]
[87]
Deng, K.; Zhang, Y.; Tong, X. Sensitive electrochemical detection of microRNA-21 based on propylamine-functionalized mesoporous silica with glucometer readout. Anal. Bioanal. Chem., 2018, 410(7), 1863-1871.
[http://dx.doi.org/10.1007/s00216-018-0859-3] [PMID: 29353431]
[88]
Chen, S.; Zhang, J.; Gan, N.; Hu, F.; Li, T.; Cao, Y.; Pan, D. An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Mikrochim. Acta, 2015, 182(3–4), 815-822.
[http://dx.doi.org/10.1007/s00604-014-1392-5]
[89]
Liu, C.; An, Y.; Zhang, Y.; Li, X.; Xue, Q.; Wang, H. Digital quantitative detection of serum circulating miRNAs using dual-enhanced magnetobiosensors based on cascaded nucleic acid circuits. Chem. Commun., 2019, 55(91), 13733-13736.
[http://dx.doi.org/10.1039/C9CC07841J] [PMID: 31661100]
[90]
Jia, Y.; Sun, F.; Na, N.; Ouyang, J. Detection of p53 DNA using commercially available personal glucose meters based on rolling circle amplification coupled with nicking enzyme signal amplification. Anal. Chim. Acta, 2019, 1060, 64-70.
[http://dx.doi.org/10.1016/j.aca.2019.01.061] [PMID: 30902332]
[91]
Zeng, L.; Gong, J.; Rong, P.; Liu, C.; Chen, J. A portable and quantitative biosensor for cadmium detection using glucometer as the point-of-use device. Talanta, 2019, 198, 412-416.
[http://dx.doi.org/10.1016/j.talanta.2019.02.045] [PMID: 30876580]
[92]
Zhang, S.; Luan, Y.; Xiong, M.; Zhang, J.; Lake, R.; Lu, Y. DNAzyme amplified aptasensing platform for ochratoxin a detection using a personal glucose meter. ACS Appl. Mater. Interfaces, 2021, 13(8), 9472-9481.
[http://dx.doi.org/10.1021/acsami.0c20417] [PMID: 33550797]
[93]
Li, B.; Wei, H.; Dong, S. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. Chem. Commun., 2007, (1), 73-75.
[http://dx.doi.org/10.1039/B612080F] [PMID: 17279265]
[94]
Du, Y.; Chen, C.; Yin, J.; Li, B.; Zhou, M.; Dong, S.; Wang, E. Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Anal. Chem., 2010, 82(4), 1556-1563.
[http://dx.doi.org/10.1021/ac902566u] [PMID: 20095580]
[95]
Ahmad, R.; Jang, H.; Batule, B.S.; Park, H.G. Barcode DNA-Mediated signal amplifying strategy for ultrasensitive biomolecular detection on matrix-assisted laser desorption ionization time of flight (MALDI-TOF) Mass Spectrometry. Anal. Chem., 2017, 89(17), 8966-8973.
[http://dx.doi.org/10.1021/acs.analchem.7b01535] [PMID: 28780857]
[96]
Tang, Z.; Shangguan, D.; Wang, K.; Shi, H.; Sefah, K.; Mallikratchy, P.; Chen, H.W.; Li, Y.; Tan, W. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal. Chem., 2007, 79(13), 4900-4907.
[http://dx.doi.org/10.1021/ac070189y] [PMID: 17530817]
[97]
Ma, H.; Liu, J.; Ali, M.M.; Mahmood, M.A.I.; Labanieh, L.; Lu, M.; Iqbal, S.M.; Zhang, Q.; Zhao, W.; Wan, Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev., 2015, 44(5), 1240-1256.
[http://dx.doi.org/10.1039/C4CS00357H] [PMID: 25561050]
[98]
Kim, K.; Jo, E.J.; Lee, K.J.; Park, J.; Jung, G.Y.; Shin, Y.B.; Lee, L.P.; Kim, M.G. Gold nanocap-supported upconversion nanoparticles for fabrication of a solid-phase aptasensor to detect ochratoxin A. Biosens. Bioelectron., 2020, 150, 111885.
[http://dx.doi.org/10.1016/j.bios.2019.111885] [PMID: 31759762]
[99]
Wang, L.; Zhu, J.; Han, L.; Jin, L.; Zhu, C.; Wang, E.; Dong, S. Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano, 2012, 6(8), 6659-6666.
[http://dx.doi.org/10.1021/nn300997f] [PMID: 22823159]
[100]
Zhu, J.; Zhang, L.; Zhou, Z.; Dong, S.; Wang, E. Aptamer-based sensing platform using three-way DNA junction-driven strand displacement and its application in DNA logic circuit. Anal. Chem., 2014, 86(1), 312-316.
[http://dx.doi.org/10.1021/ac403235y] [PMID: 24308699]
[101]
Zhu, J.; Zhang, L.; Zhou, Z.; Dong, S.; Wang, E. Molecular aptamer beacon tuned DNA strand displacement to transform small molecules into DNA logic outputs. Chem. Commun., 2014, 50(25), 3321-3323.
[http://dx.doi.org/10.1039/c3cc49833f] [PMID: 24531570]
[102]
Li, F.; Zhang, H.; Wang, Z.; Newbigging, A.M.; Reid, M.S.; Li, X-F.; Le, X.C. Aptamers facilitating amplified detection of biomolecules. Anal. Chem., 2015, 87(1), 274-292.
[http://dx.doi.org/10.1021/ac5037236] [PMID: 25313902]
[103]
Li, Y.; Sun, L.; Zhao, Q. Aptamer-Structure switch coupled with horseradish peroxidase labeling on a microplate for the sensitive detection of small molecules. Anal. Chem., 2019, 91(4), 2615-2619.
[http://dx.doi.org/10.1021/acs.analchem.8b05606] [PMID: 30675773]
[104]
Zheng, F.; Ke, W.; Shi, L.; Liu, H.; Zhao, Y. Plasmonic Au-Ag janus nanoparticle engineered ratiometric surface-enhanced raman scattering aptasensor for ochratoxin a detection. Anal. Chem., 2019, 91(18), 11812-11820.
[http://dx.doi.org/10.1021/acs.analchem.9b02469] [PMID: 31424931]
[105]
Dong, L.; Tan, Q.; Ye, W.; Liu, D.; Chen, H.; Hu, H.; Wen, D.; Liu, Y.; Cao, Y.; Kang, J.; Fan, J.; Guo, W.; Wu, W. Screening and identifying a novel ssDNA aptamer against Alpha-fetoprotein using CE-SELEX. Sci. Rep., 2015, 5, 15552.
[http://dx.doi.org/10.1038/srep15552] [PMID: 26497223]
[106]
Si, Z.; Xie, B.; Chen, Z.; Tang, C.; Li, T.; Yang, M. Electrochemical aptasensor for the cancer biomarker CEA based on aptamer Induced current due to formation of molybdophosphate. Mikrochim. Acta, 2017, 184(9), 3215-3221.
[http://dx.doi.org/10.1007/s00604-017-2338-5]
[107]
Tang, Y.; Li, H.; Li, B. Homogeneous and universal transduction of various nucleic acids to an off-shelf device based on programmable toehold switch sensing. Chem. Commun., 2020, 56(16), 2483-2486.
[http://dx.doi.org/10.1039/C9CC09154H] [PMID: 32002523]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy