Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Systematic Optimisation of Microtiter Plate Lectin Assay to Improve Sialic Acid Linkage Detection

Author(s): Nur Hanina Izzati Khairol Mokhtar, Ainulkhir Hussin, Aidil Abdul Hamid, Shahrul Hisham Zainal Ariffin and Muhammad Ashraf Shahidan*

Volume 25, Issue 9, 2022

Published on: 02 August, 2021

Page: [1507 - 1517] Pages: 11

DOI: 10.2174/1386207324666210802122538

Price: $65

Abstract

Aims: We aimed to develop a high-throughput lectin assay with minimized background signals to investigate the interactions of lectins and sialic acid glycans, focusing on Prostate- Specific Antigen (PSA).

Background: High background signals resulting from nonspecific binding are a significant concern for microtiter plate-based Enzyme-Linked Lectin Sorbent Assays (ELISAs), as they can mask specific binding signals and cause false-positive results.

Methods: In this study, we constructed an ELISA based on different washing step parameters, including the number of washing cycles, NaCl and Tween-20 concentrations, and the type of blocking agent and evaluated the effects on both specific and nonspecific binding signals. Furthermore, we performed a PSA binding assay using the optimized ELISA.

Results: The optimal washing parameters based on the highest specific binding signal proposed four cycles of washing steps using a washing buffer containing a high salt concentration (0.5 M NaCl) and mild detergent (0.05% Tween-20). The utilization of the optimized washing parameters in this assay was shown to be sufficient to obtain the optimal binding signals without the use of any blocking agent. Binding assays performed using the optimized ELISA revealed that the glycan of the PSA sample used in this study mainly consists of terminal α2,6-linked sialic acid, as strongly recognized by Sambucus nigra agglutinin (SNA) with a KD value of 12.38 nM.

Conclusion: The ELISA reported in this study provides a simple yet sensitive assay for sialic acid linkage recognition.

Keywords: Sialic acid, glycans, lectins, prostate-specific antigen, enzyme-linked lectin sorbent assay, high-throughput.

Graphical Abstract
[1]
Apweiler, R.; Hermjakob, H.; Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta, 1999, 1473(1), 4-8.
[http://dx.doi.org/10.1016/S0304-4165(99)00165-8] [PMID: 10580125]
[2]
Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol., 2019, 15(6), 346-366.
[http://dx.doi.org/10.1038/s41581-019-0129-4] [PMID: 30858582]
[3]
Brockhausen, I.; Stanley, P. O-GalNAc Glycans. Essentials of Glycobiology; Varki, A.; Cummings, R.D; Esko, J.D., Ed.; Cold spring harbor laboratory press: Cold Spring Harbor, NY, 2017, pp. 1-19.
[4]
Zhang, Z.; Wuhrer, M.; Holst, S. Serum sialylation changes in cancer. Glycoconj. J., 2018, 35(2), 139-160.
[http://dx.doi.org/10.1007/s10719-018-9820-0] [PMID: 29680984]
[5]
Pihikova, D.; Kasak, P.; Kubanikova, P.; Sokol, R.; Tkac, J. Aberrant sialylation of a prostate-specific antigen: Electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal. Chim. Acta, 2016, 934, 72-79.
[http://dx.doi.org/10.1016/j.aca.2016.06.043] [PMID: 27506346]
[6]
Yoneyama, T.; Ohyama, C.; Hatakeyama, S.; Narita, S.; Habuchi, T.; Koie, T.; Mori, K.; Hidari, K.I.P.J.; Yamaguchi, M.; Suzuki, T.; Tobisawa, Y. Measurement of aberrant glycosylation of prostate specific antigen can improve specificity in early detection of prostate cancer. Biochem. Biophys. Res. Commun., 2014, 448(4), 390-396.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.107] [PMID: 24814705]
[7]
Dědová, T.; Braicu, E.I.; Sehouli, J.; Blanchard, V. Sialic acid linkage analysis refines the diagnosis of ovarian cancer. Front. Oncol., 2019, 9, 261.
[http://dx.doi.org/10.3389/fonc.2019.00261] [PMID: 31110965]
[8]
Kamerling, J.P.; Vliegenthart, J.F.G. Gas-liquid chromatography and mass spectrometry of sialic acids. Sialic Acids; Springer: Vienna, 1982, pp. 95-125.
[http://dx.doi.org/10.1007/978-3-7091-8680-0_6]
[9]
Schauer, R.; Corfield, A.P. Colorimetry and thin-layer chromatography of sialic acids. Sialic Acids; Springer: Vienna, 1982, pp. 77-94.
[http://dx.doi.org/10.1007/978-3-7091-8680-0_5]
[10]
Shukla, A.K.; Scholz, N.; Reimerdes, E.H.; Schauer, R. High-performance liquid chromatography of N,O-acylated sialic acids. Anal. Biochem., 1982, 123(1), 78-82.
[http://dx.doi.org/10.1016/0003-2697(82)90625-X] [PMID: 7114478]
[11]
Rohrer, J.S.; Basumallick, L.; Hurum, D. High-performance anion-exchange chromatography with pulsed amperometric detection for carbohydrate analysis of glycoproteins. Biochemistry (Mosc.), 2013, 78(7), 697-709.
[http://dx.doi.org/10.1134/S000629791307002X] [PMID: 24010833]
[12]
Bladergroen, M.R.; Reiding, K.R.; Hipgrave Ederveen, A.L.; Vreeker, G.C.M.; Clerc, F.; Holst, S.; Bondt, A.; Wuhrer, M.; van der Burgt, Y.E. Automation of high-throughput mass spectrometry-based plasma N-glycome analysis with linkage-specific sialic acid esterification. J. Proteome Res., 2015, 14(9), 4080-4086.
[http://dx.doi.org/10.1021/acs.jproteome.5b00538] [PMID: 26179816]
[13]
Inoue, S.; Lin, S.L.; Chang, T.; Wu, S.H.; Yao, C.W.; Chu, T.Y.; Troy, F.A., II; Inoue, Y. Identification of free deaminated sialic acid (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) in human red blood cells and its elevated expression in fetal cord red blood cells and ovarian cancer cells. J. Biol. Chem., 1998, 273(42), 27199-27204.
[http://dx.doi.org/10.1074/jbc.273.42.27199] [PMID: 9765240]
[14]
Wang, F.; Xie, B.; Wang, B.; Troy, F.A. II LC-MS/MS glycomic analyses of free and conjugated forms of the sialic acids, Neu5Ac, Neu5Gc and KDN in human throat cancers. Glycobiology, 2015, 25(12), 1362-1374.
[http://dx.doi.org/10.1093/glycob/cwv051] [PMID: 26206501]
[15]
Priego-Capote, F.; Orozco-Solano, M.I.; Calderón-Santiago, M.; Luque de Castro, M.D. Quantitative determination and confirmatory analysis of N-acetylneuraminic and N-glycolylneuraminic acids in serum and urine by solid-phase extraction on-line coupled to liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2014, 1346, 88-96.
[http://dx.doi.org/10.1016/j.chroma.2014.04.051] [PMID: 24800968]
[16]
Shi, Y.; Xu, X.; Fang, M.; Zhang, M.; Li, Y.; Gillespie, B.; Yorke, S.; Yang, N.; McKew, J.C.; Gahl, W.A.; Huizing, M.; Carrillo-Carrasco, N.; Wang, A.Q. Quantitative hydrophilic interaction chromatography-mass spectrometry analysis of N-acetylneuraminic acid and N-acetylmannosamine in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1000, 105-111.
[http://dx.doi.org/10.1016/j.jchromb.2015.07.018] [PMID: 26218770]
[17]
Zeleny, R.; Kolarich, D.; Strasser, R.; Altmann, F. Sialic acid concentrations in plants are in the range of inadvertent contamination. Planta, 2006, 224(1), 222-227.
[http://dx.doi.org/10.1007/s00425-005-0206-8] [PMID: 16395581]
[18]
Hirabayashi, J.; Yamada, M.; Kuno, A.; Tateno, H. Lectin microarrays: concept, principle and applications. Chem. Soc. Rev., 2013, 42(10), 4443-4458.
[http://dx.doi.org/10.1039/c3cs35419a] [PMID: 23443201]
[19]
Leviatan Ben-Arye, S.; Schneider, C.; Yu, H.; Bashir, S.; Chen, X.; von Gunten, S.; Padler-Karavani, V. Differential recognition of diet-derived Neu5Gc-Neoantigens on glycan microarrays by carbohydrate-specific pooled human IgG and IgA antibodies. Bioconjug. Chem., 2019, 30(5), 1565-1574.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00273] [PMID: 30994337]
[20]
Sterner, E.; Flanagan, N.; Gildersleeve, J.C. Perspectives on anti-glycan antibodies gleaned from development of a community resource database. ACS Chem. Biol., 2016, 11(7), 1773-1783.
[http://dx.doi.org/10.1021/acschembio.6b00244] [PMID: 27220698]
[21]
Wu, A.M.; Liu, J.H. Lectins and ELISA as powerful tools for glycoconjugate recognition analyses. Glycoconj. J., 2019, 36(2), 175-183.
[http://dx.doi.org/10.1007/s10719-019-09865-3] [PMID: 30993518]
[22]
Zhang, L.; Luo, S.; Zhang, B. The use of lectin microarray for assessing glycosylation of therapeutic proteins. MAbs, 2016, 8(3), 524-535.
[http://dx.doi.org/10.1080/19420862.2016.1149662] [PMID: 26918373]
[23]
Sharon, N. Lectins. Encyclopedia of Life Sciences; John Wiley & Sons, Ltd: Chichester, 2009.
[24]
Sharon, N.; Lis, H. Lectins. Encyclopedia of biological chemistry, 2nd; Elsevier Inc., 2013, pp. 701-705.
[http://dx.doi.org/10.1016/B978-0-12-378630-2.00217-6]
[25]
Kosanović, M.M.; Janković, M.M. Sialylation and fucosylation of cancer-associated prostate specific antigen. J. BUON, 2005, 10(2), 247-250.
[PMID: 17343337]
[26]
Gemeiner, P.; Mislovicová, D.; Tkác, J.; Švitel, J.; Pätoprstý, V.; Hrabárová, E.; Kogan, G.; Kozár, T. Lectinomics II. A highway to biomedical/clinical diagnostics. Biotechnol. Adv., 2009, 27(1), 1-15.
[http://dx.doi.org/10.1016/j.biotechadv.2008.07.003] [PMID: 18703130]
[27]
Iizuka, D.; Izumi, S.; Suzuki, F.; Kamiya, K. Analysis of a lectin microarray identifies altered sialylation of mouse serum glycoproteins induced by whole-body radiation exposure. J. Radiat. Res. (Tokyo), 2019, 60(2), 189-196.
[http://dx.doi.org/10.1093/jrr/rry100] [PMID: 30521038]
[28]
Zou, X.; Yoshida, M.; Nagai-Okatani, C.; Iwaki, J.; Matsuda, A.; Tan, B.; Hagiwara, K.; Sato, T.; Itakura, Y.; Noro, E.; Kaji, H.; Toyoda, M.; Zhang, Y.; Narimatsu, H.; Kuno, A. A standardized method for lectin microarray-based tissue glycome mapping. Sci. Rep., 2017, 7, 43560.
[http://dx.doi.org/10.1038/srep43560] [PMID: 28262709]
[29]
O’Connor, B.; Monaghan, D.; Cawley, J. Lectin affinity chromatography (LAC). Protein chromatography: Methods and protocols; Walls, D; Loughran, S.T., Ed.; Humana Press Inc.: New York, 2017, pp. 411-420.
[http://dx.doi.org/10.1007/978-1-4939-6412-3_23]
[30]
Pohleven, J.; Štrukelj, B.; Kos, J. Affinity chromatography of lectins; Magdeldin, S., Ed.; InTech, 2012.
[http://dx.doi.org/10.5772/36578]
[31]
Marangon, M.; Vegro, M.; Vincenzi, S.; Lomolino, G.; De Iseppi, A.; Curioni, A. A novel method for the quantification of white wine mannoproteins by a competitive indirect enzyme-linked lectin sorbent assay (CI-ELISA). Molecules, 2018, 23(12), 1-13.
[http://dx.doi.org/10.3390/molecules23123070] [PMID: 30477183]
[32]
Wi, G.R.; Moon, B.I.; Kim, H.J.; Lim, W.; Lee, A.; Lee, J.W.; Kim, H.J. A lectin-based approach to detecting carcinogenesis in breast tissue. Oncol. Lett., 2016, 11(6), 3889-3895.
[http://dx.doi.org/10.3892/ol.2016.4456] [PMID: 27313712]
[33]
Bertok, T.; Sediva, A.; Katrlik, J.; Gemeiner, P.; Mikula, M.; Nosko, M.; Tkac, J. Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles. Talanta, 2013, 108, 11-18.
[http://dx.doi.org/10.1016/j.talanta.2013.02.052] [PMID: 23601864]
[34]
Acikara, B.O. Çitoğlu, S.G.; Ozbilgin, S.; Ergene, B. Affinity chromatography and importance in drug discovery; Column Chromatography, 2013, pp. 59-97.
[35]
Khraltsova, L.S.; Sablina, M.A.; Melikhova, T.D.; Joziasse, D.H.; Kaltner, H.; Gabius, H.J.; Bovin, N.V. An enzyme-linked lectin assay for α1,3-galactosyltransferase. Anal. Biochem., 2000, 280(2), 250-257.
[http://dx.doi.org/10.1006/abio.2000.4504] [PMID: 10790307]
[36]
Maierhofer, C.; Rohmer, K.; Wittmann, V. Probing multivalent carbohydrate-lectin interactions by an enzyme-linked lectin assay employing covalently immobilized carbohydrates. Bioorg. Med. Chem., 2007, 15(24), 7661-7676.
[http://dx.doi.org/10.1016/j.bmc.2007.08.063] [PMID: 17892939]
[37]
Afrough, B.; Dwek, M.V.; Greenwell, P. Identification and elimination of false-positives in an ELISA-based system for qualitative assessment of glycoconjugate binding using a selection of plant lectins. Biotechniques, 2007, 43(4), 458-464. 460, 462 passim.
[http://dx.doi.org/10.2144/000112554] [PMID: 18019336]
[38]
Thompson, R.; Creavin, A.; O’Connell, M.; O’Connor, B.; Clarke, P. Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis. Anal. Biochem., 2011, 413(2), 114-122.
[http://dx.doi.org/10.1016/j.ab.2011.02.013] [PMID: 21320462]
[39]
Copeland, R.; Wiley, J. A practical introduction to structure, mechanism, and data analysis; John Wiley & Sons, Inc, 2000.
[40]
Yadid, I.; Tawfik, D.S. Functional β-propeller lectins by tandem duplications of repetitive units. Protein Eng. Des. Sel., 2011, 24(1-2), 185-195.
[http://dx.doi.org/10.1093/protein/gzq053] [PMID: 20713410]
[41]
Jolly, P.; Damborský, P.; Madaboosi, N.; Soares, R.R.G.; Chu, V.; Conde, J.P.; Katrlik, J.; Estrela, P. DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosens. Bioelectron., 2016, 79, 313-319.
[http://dx.doi.org/10.1016/j.bios.2015.12.058] [PMID: 26720920]
[42]
Tabarés, G.; Radcliffe, C.M.; Barrabés, S.; Ramírez, M.; Aleixandre, R.N.; Hoesel, W.; Dwek, R.A.; Rudd, P.M.; Peracaula, R.; de Llorens, R. Different glycan structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiology, 2006, 16(2), 132-145.
[http://dx.doi.org/10.1093/glycob/cwj042] [PMID: 16177264]
[43]
Damborský, P.; Zámorová, M.; Katrlík, J. Determining the binding affinities of prostate-specific antigen to lectins: SPR and microarray approaches. Proteomics, 2016, 16(24), 3096-3104.
[http://dx.doi.org/10.1002/pmic.201500466] [PMID: 27883257]
[44]
Peracaula, R.; Tabarés, G.; Royle, L.; Harvey, D.J.; Dwek, R.A.; Rudd, P.M.; de Llorens, R. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology, 2003, 13(6), 457-470.
[http://dx.doi.org/10.1093/glycob/cwg041] [PMID: 12626390]
[45]
Bhanushali, P.B.; Badgujar, S.B.; Tripathi, M.M.; Gupta, S.; Murthy, V.; Krishnasastry, M.V.; Puri, C.P. Development of glycan specific lectin based immunoassay for detection of prostate specific antigen. Int. J. Biol. Macromol., 2016, 86, 468-480.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.110] [PMID: 26840176]
[46]
Dwek, M.V.; Jenks, A.; Leathem, A.J.C. A sensitive assay to measure biomarker glycosylation demonstrates increased fucosylation of prostate specific antigen (PSA) in patients with prostate cancer compared with benign prostatic hyperplasia. Clin. Chim. Acta, 2010, 411(23-24), 1935-1939.
[http://dx.doi.org/10.1016/j.cca.2010.08.009] [PMID: 20708609]
[47]
Meany, D.L.; Zhang, Z.; Sokoll, L.J.; Zhang, H.; Chan, D.W. Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J. Proteome Res., 2009, 8(2), 613-619.
[http://dx.doi.org/10.1021/pr8007539] [PMID: 19035787]
[48]
Fujita, K.; Hayashi, T.; Matsuzaki, K.; Nakata, W.; Masuda, M.; Kawashima, A.; Ujike, T.; Nagahara, A.; Tsuchiya, M.; Kobayashi, Y.; Nojima, S.; Uemura, M.; Morii, E.; Miyoshi, E.; Nonomura, N. Decreased fucosylated PSA as a urinary marker for high Gleason score prostate cancer. Oncotarget, 2016, 7(35), 56643-56649.
[http://dx.doi.org/10.18632/oncotarget.10987] [PMID: 27494861]
[49]
Barrabés, S.; Llop, E.; Ferrer-Batallé, M.; Ramírez, M.; Aleixandre, R.N.; Perry, A.S.; de Llorens, R.; Peracaula, R. Analysis of urinary PSA glycosylation is not indicative of high-risk prostate cancer. Clin. Chim. Acta, 2017, 470, 97-102.
[http://dx.doi.org/10.1016/j.cca.2017.05.009] [PMID: 28495148]
[50]
Gornik, O.; Lauc, G. Enzyme linked lectin assay (ELLA) for direct analysis of transferrin sialylation in serum samples. Clin. Biochem., 2007, 40(9-10), 718-723.
[http://dx.doi.org/10.1016/j.clinbiochem.2007.01.010] [PMID: 17320850]
[51]
Llop, E.; Ferrer-Batallé, M.; Barrabés, S.; Guerrero, P.E.; Ramírez, M.; Saldova, R.; Rudd, P.M.; Aleixandre, R.N.; Comet, J.; de Llorens, R.; Peracaula, R. Improvement of prostate cancer diagnosis by detecting PSA glycosylation-specific changes. Theranostics, 2016, 6(8), 1190-1204.
[http://dx.doi.org/10.7150/thno.15226] [PMID: 27279911]
[52]
Drijvers, J.M.; Awan, I.M.; Perugino, C.A.; Rosenberg, I.M.; Pillai, S. The enzyme-linked immunosorbent assay: The application of ELISA in clinical research. Basic Science Methods for Clinical Researchers; Elsevier Inc., 2017, pp. 119-133.
[http://dx.doi.org/10.1016/B978-0-12-803077-6.00007-2]
[53]
Singh, J.S.; Doyle, R.J. Salt-enhanced enzyme-linked lectinosorbent assay (SELLA). J. Microbiol. Methods, 1993, 17(1), 61-65.
[http://dx.doi.org/10.1016/0167-7012(93)90079-W]
[54]
Peumans, W.J.; Van Damme, E.J.M. Plant lectins: Versatile proteins with important perspectives in biotechnology. Biotechnol. Genet. Eng. Rev., 1998, 15(1), 199-228.
[http://dx.doi.org/10.1080/02648725.1998.10647956]
[55]
Le Basle, Y.; Chennell, P.; Tokhadze, N.; Astier, A.; Sautou, V. Physicochemical stability of monoclonal antibodies: A review. J. Pharm. Sci., 2020, 109(1), 169-190.
[http://dx.doi.org/10.1016/j.xphs.2019.08.009] [PMID: 31465737]
[56]
Yu, H.; Jiang, B.; Chaput, J.C. Aptamers can discriminate alkaline proteins with high specificity. ChemBioChem, 2011, 12(17), 2659-2666.
[http://dx.doi.org/10.1002/cbic.201100252] [PMID: 22021204]
[57]
Chen, S. W.; Tan, D.; Yang, Y. S.; Zhang, W. Investigation of the effect of salt additives in Protein L affinity chromatography for the purification of tandem single-chain variable fragment bispecific antibodies. MAbs, 2020, 12(1), e1718440. (1-10).
[http://dx.doi.org/10.1080/19420862.2020.1718440]
[58]
Rao, D.H.; Vishweshwaraiah, Y.L.; Gowda, L.R. The enzymatic lectin of field bean (Dolichos lablab): salt assisted lectin-sugar interaction. Phytochemistry, 2012, 83, 7-14.
[http://dx.doi.org/10.1016/j.phytochem.2012.07.027] [PMID: 22959225]
[59]
Cakir, N.; Hizal, G.; Becer, C.R. Supramolecular glycopolymers with thermo-responsive selfassembly and lectin binding. Polym. Chem., 2015, 6(37), 6623-6631.
[http://dx.doi.org/10.1039/C5PY00939A]
[60]
Neves, M.A.D.; Slavkovic, S.; Churcher, Z.R.; Johnson, P.E. Salt-mediated two-site ligand binding by the cocaine-binding aptamer. Nucleic Acids Res., 2017, 45(3), 1041-1048.
[http://dx.doi.org/10.1093/nar/gkw1294] [PMID: 28025391]
[61]
Kaya, T.; Kaneko, T.; Kojima, S.; Nakamura, Y.; Ide, Y.; Ishida, K.; Suda, Y.; Yamashita, K. High-sensitivity immunoassay with surface plasmon field-enhanced fluorescence spectroscopy using a plastic sensor chip: Application to quantitative analysis of total prostate-specific antigen and GalNAcβ1-4GlcNAc-linked prostate-specific antigen for prostate cancer diagnosis. Anal. Chem., 2015, 87(3), 1797-1803.
[http://dx.doi.org/10.1021/ac503735e] [PMID: 25546230]
[62]
Steinitz, M. Quantitation of the blocking effect of tween 20 and bovine serum albumin in ELISA microwells. Anal. Biochem., 2000, 282(2), 232-238.
[http://dx.doi.org/10.1006/abio.2000.4602] [PMID: 10873278]
[63]
Ćirin, D.M.; Poša, M.M.; Krstonošić, V.S. Interactions between sodium cholate or sodium deoxycholate and nonionic surfactant (Tween 20 or Tween 60) in aqueous solution. Ind. Eng. Chem. Res., 2012, 51(9), 3670-3676.
[http://dx.doi.org/10.1021/ie202373z]
[64]
Zhang, W.; Ang, W.T.; Xue, C.Y.; Yang, K.L. Minimizing nonspecific protein adsorption in liquid crystal immunoassays by using surfactants. ACS Appl. Mater. Interfaces, 2011, 3(9), 3496-3500.
[http://dx.doi.org/10.1021/am200716x] [PMID: 21815616]
[65]
Liu, D.; Li, X.; Zhou, J.; Liu, S.; Tian, T.; Song, Y.; Zhu, Z.; Zhou, L.; Ji, T.; Yang, C. A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. Biosens. Bioelectron., 2017, 96, 332-338.
[http://dx.doi.org/10.1016/j.bios.2017.04.044] [PMID: 28525851]
[66]
Székács, A.; Le, H.T.M.; Szurdoki, F.; Hammock, B.D. Optimization and validation of an enzyme immunoassay for the insect growth regulator fenoxycarb. Anal. Chim. Acta, 2003, 487(1), 15-29.
[http://dx.doi.org/10.1016/S0003-2670(03)00299-X]
[67]
Pratt, R.P.; Roser, B. Comparison of blocking agents for an ELISA for LPS; Thermo Scientific Nunc Bulletin, 2015, pp. 1-3.
[68]
Ahirwar, R.; Bariar, S.; Balakrishnan, A.; Nahar, P. BSA blocking in enzyme-linked immunosorbent assays is a non- mandatory step: A perspective study on mechanism of BSA blocking in common ELISA protocols. RSC Advances, 2015, 5(121), 100077-100083.
[http://dx.doi.org/10.1039/C5RA20750A]
[69]
Shang, Y.; Zeng, Y.; Zeng, Y. Integrated microfluidic lectin barcode platform for high-performance focused glycomic profiling. Sci. Rep., 2016, 6, 20297.
[http://dx.doi.org/10.1038/srep20297] [PMID: 26831207]
[70]
Terato, K.; Do, C.; Chang, J.; Waritani, T. Preventing further misuse of the ELISA technique and misinterpretation of serological antibody assay data. Vaccine, 2016, 34(39), 4643-4644.
[http://dx.doi.org/10.1016/j.vaccine.2016.08.007] [PMID: 27506498]
[71]
Duk, M.; Lisowska, E.; Wu, J.H.; Wu, A.M. The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal. Biochem., 1994, 221(2), 266-272.
[http://dx.doi.org/10.1006/abio.1994.1410] [PMID: 7810865]
[72]
Jin, Y.; Kim, S.C.; Kim, H.J.; Ju, W.; Kim, Y.H.; Kim, H.J. Increased sialylation and reduced fucosylation of exfoliated cervical cells are potential markers of carcinogenesis in the cervix. Clin. Chem. Lab. Med., 2016, 54(11), 1811-1819.
[http://dx.doi.org/10.1515/cclm-2015-1014] [PMID: 27092648]
[73]
Klukova, L.; Bertok, T.; Petrikova, M.; Sediva, A.; Mislovicova, D.; Katrlik, J.; Vikartovska, A.; Filip, J.; Kasak, P.; Andicsová-Eckstein, A. Mosnáček, J.; Lukáč, J.; Rovenský, J.; Imrich, R.; Tkac, J. Glycoprofiling as a novel tool in serological assays of systemic sclerosis: A comparative study with three bioanalytical methods. Anal. Chim. Acta, 2015, 853(1), 555-562.
[http://dx.doi.org/10.1016/j.aca.2014.10.029] [PMID: 25467503]
[74]
Belicky, S. Černocká, H.; Bertok, T.; Holazova, A.; Réblová, K.; Paleček, E.; Tkac, J.; Ostatná, V. Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins. Bioelectrochemistry, 2017, 117, 89-94.
[http://dx.doi.org/10.1016/j.bioelechem.2017.06.005] [PMID: 28651174]
[75]
Shibuya, N.; Goldstein, I.J.; Broekaert, W.F.; Nsimba-Lubaki, M.; Peeters, B.; Peumans, W.J. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J. Biol. Chem., 1987, 262(4), 1596-1601.
[http://dx.doi.org/10.1016/S0021-9258(19)75677-4] [PMID: 3805045]
[76]
Cummings, R.D.; Etzler, M.E. Antibodies and lectins in glycan analysis.Essentials of Glycobiology; Varki, A.; Cummings, R.D; Esko, J.D., Ed.; Cold Spring Harbor Laboratory Press: New York, 2009, pp. 1-25.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy