Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

ALK-阳性非小细胞肺癌; 潜在的联合药物治疗

卷 21, 期 9, 2021

发表于: 28 July, 2021

页: [737 - 748] 页: 12

弟呕挨: 10.2174/1568009621666210729100647

价格: $65

摘要

仅在过去几年中,染色体重排的 ALK 阳性非小细胞肺癌的进展非常显着。 由于引入了更有效的 ALK 抑制剂,存活时间显着提高。 这些改进主要是由于血脑屏障渗透的改进和药物有效对抗的配体结合口袋突变的广度。 然而,由于具有复合耐药突变的癌症的频率出现,进展可能缓慢,这表明需要开发多种 ALK 抑制剂来靶向不同的复合突变。另一个有望提供进一步收益的研究领域是使用药物组合,与 一种 ALK 抑制剂与一种针对“第二个驱动因素”的药物相结合,以克服耐药性。 在这篇综述中,对 ALK+ 肺癌的次要靶点范围及其临床成功的潜力进行了综述。

关键词: ALK 阳性 NSCLC、联合治疗、ALK 抑制剂、次要靶点、化合物耐药性、药物组合。

[1]
Ettinger, D.S.; Akerley, W.; Borghaei, H.; Chang, A.C.; Cheney, R.T.; Chirieac, L.R.; D’Amico, T.A.; Demmy, T.L.; Govindan, R.; Grannis, F.W., Jr; Grant, S.C.; Horn, L.; Jahan, T.M.; Komaki, R.; Kong, F.M.; Kris, M.G.; Krug, L.M.; Lackner, R.P.; Lennes, I.T.; Loo, B.W., Jr; Martins, R.; Otterson, G.A.; Patel, J.D.; Pinder-Schenck, M.C.; Pisters, K.M.; Reckamp, K.; Riely, G.J.; Rohren, E.; Shapiro, T.A.; Swanson, S.J.; Tauer, K.; Wood, D.E.; Yang, S.C.; Gregory, K.; Hughes, M. Non-small cell lung cancer, version 2.2013. J. Natl. Compr. Canc. Netw., 2013, 11(6), 645-653.
[http://dx.doi.org/10.6004/jnccn.2013.0084] [PMID: 23744864]
[2]
Pao, W.; Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol., 2011, 12(2), 175-180.
[http://dx.doi.org/10.1016/S1470-2045(10)70087-5] [PMID: 21277552]
[3]
Koivunen, J.P.; Mermel, C.; Zejnullahu, K.; Murphy, C.; Lifshits, E.; Holmes, A.J.; Choi, H.G.; Kim, J.; Chiang, D.; Thomas, R.; Lee, J.; Richards, W.G.; Sugarbaker, D.J.; Ducko, C.; Lindeman, N.; Marcoux, J.P.; Engelman, J.A.; Gray, N.S.; Lee, C.; Meyerson, M.; Jänne, P.A. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer Res., 2008, 14(13), 4275-4283.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0168] [PMID: 18594010]
[4]
Perner, S.; Wagner, P.L.; Demichelis, F.; Mehra, R.; Lafargue, C.J.; Moss, B.J.; Arbogast, S.; Soltermann, A.; Weder, W.; Giordano, T.J.; Beer, D.G.; Rickman, D.S.; Chinnaiyan, A.M.; Moch, H.; Rubin, M.A. EML4-ALK fusion lung cancer: A rare acquired event. Neoplasia, 2008, 10(3), 298-302.
[http://dx.doi.org/10.1593/neo.07878] [PMID: 18320074]
[5]
Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566.
[http://dx.doi.org/10.1038/nature05945] [PMID: 17625570]
[6]
Wong, D.W.; Leung, E.L.; So, K.K.; Tam, I.Y.; Sihoe, A.D.; Cheng, L.C.; Ho, K.K.; Au, J.S.; Chung, L.P.; Pik Wong, M. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer, 2009, 115(8), 1723-1733.
[http://dx.doi.org/10.1002/cncr.24181] [PMID: 19170230]
[7]
Kazandjian, D.; Blumenthal, G.M.; Chen, H.Y.; He, K.; Patel, M.; Justice, R.; Keegan, P.; Pazdur, R. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist, 2014, 19(10), e5-e11.
[http://dx.doi.org/10.1634/theoncologist.2014-0241] [PMID: 25170012]
[8]
Camidge, D.R.; Bang, Y.J.; Kwak, E.L.; Iafrate, A.J.; Varella-Garcia, M.; Fox, S.B.; Riely, G.J.; Solomon, B.; Ou, S.H.; Kim, D.W.; Salgia, R.; Fidias, P.; Engelman, J.A.; Gandhi, L.; Jänne, P.A.; Costa, D.B.; Shapiro, G.I.; Lorusso, P.; Ruffner, K.; Stephenson, P.; Tang, Y.; Wilner, K.; Clark, J.W.; Shaw, A.T. Activity and safety of crizotinib in patients with ALK-positive non-small- cell lung cancer: updated results from a phase 1 study. Lancet Oncol., 2012, 13(10), 1011-1019.
[http://dx.doi.org/10.1016/S1470-2045(12)70344-3] [PMID: 22954507]
[9]
Choi, S.H.; Kim, D.H.; Choi, Y.J.; Kim, S.Y.; Lee, J.E.; Sung, K.J.; Kim, W.S.; Choi, C.M.; Rho, J.K.; Lee, J.C. Multiple receptor tyrosine kinase activation related to ALK inhibitor resistance in lung cancer cells with ALK rearrangement. Oncotarget, 2017, 8(35), 58771-58780.
[http://dx.doi.org/10.18632/oncotarget.17680] [PMID: 28938595]
[10]
Choi, Y.L.; Soda, M.; Yamashita, Y.; Ueno, T.; Takashima, J.; Nakajima, T.; Yatabe, Y.; Takeuchi, K.; Hamada, T.; Haruta, H.; Ishikawa, Y.; Kimura, H.; Mitsudomi, T.; Tanio, Y.; Mano, H.; Group, A.L.K.L.C.S. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med., 2010, 363(18), 1734-1739.
[http://dx.doi.org/10.1056/NEJMoa1007478] [PMID: 20979473]
[11]
Crystal, A.S.; Shaw, A.T.; Sequist, L.V.; Friboulet, L.; Niederst, M.J.; Lockerman, E.L.; Frias, R.L.; Gainor, J.F.; Amzallag, A.; Greninger, P.; Lee, D.; Kalsy, A.; Gomez-Caraballo, M.; Elamine, L.; Howe, E.; Hur, W.; Lifshits, E.; Robinson, H.E.; Katayama, R.; Faber, A.C.; Awad, M.M.; Ramaswamy, S.; Mino-Kenudson, M.; Iafrate, A.J.; Benes, C.H.; Engelman, J.A. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science, 2014, 346(6216), 1480-1486.
[http://dx.doi.org/10.1126/science.1254721] [PMID: 25394791]
[12]
Doebele, R.C.; Pilling, A.B.; Aisner, D.L.; Kutateladze, T.G.; Le, A.T.; Weickhardt, A.J.; Kondo, K.L.; Linderman, D.J.; Heasley, L.E.; Franklin, W.A.; Varella-Garcia, M.; Camidge, D.R. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res., 2012, 18(5), 1472-1482.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2906] [PMID: 22235099]
[13]
Heuckmann, J.M.; Hölzel, M.; Sos, M.L.; Heynck, S.; Balke-Want, H.; Koker, M.; Peifer, M.; Weiss, J.; Lovly, C.M.; Grütter, C.; Rauh, D.; Pao, W.; Thomas, R.K. ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin. Cancer Res., 2011, 17(23), 7394-7401.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1648] [PMID: 21948233]
[14]
Katayama, R.; Shaw, A.T.; Khan, T.M.; Mino-Kenudson, M.; Solomon, B.J.; Halmos, B.; Jessop, N.A.; Wain, J.C.; Yeo, A.T.; Benes, C.; Drew, L.; Saeh, J.C.; Crosby, K.; Sequist, L.V.; Iafrate, A.J.; Engelman, J.A. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci. Transl. Med., 2012, 4(120), 120ra17.
[http://dx.doi.org/10.1126/scitranslmed.3003316] [PMID: 22277784]
[15]
Miyawaki, M.; Yasuda, H.; Tani, T.; Hamamoto, J.; Arai, D.; Ishioka, K.; Ohgino, K.; Nukaga, S.; Hirano, T.; Kawada, I.; Naoki, K.; Hayashi, Y.; Betsuyaku, T.; Soejima, K. Overcoming egfr bypass signal-induced acquired resistance to alk tyrosine kinase inhibitors in alk-translocated lung cancer. Mol. Cancer Res., 2017, 15(1), 106-114.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0211] [PMID: 27707887]
[16]
Sasaki, T.; Koivunen, J.; Ogino, A.; Yanagita, M.; Nikiforow, S.; Zheng, W.; Lathan, C.; Marcoux, J.P.; Du, J.; Okuda, K.; Capelletti, M.; Shimamura, T.; Ercan, D.; Stumpfova, M.; Xiao, Y.; Weremowicz, S.; Butaney, M.; Heon, S.; Wilner, K.; Christensen, J.G.; Eck, M.J.; Wong, K.K.; Lindeman, N.; Gray, N.S.; Rodig, S.J.; Jänne, P.A. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res., 2011, 71(18), 6051-6060.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1340] [PMID: 21791641]
[17]
Tani, T.; Yasuda, H.; Hamamoto, J.; Kuroda, A.; Arai, D.; Ishioka, K.; Ohgino, K.; Miyawaki, M.; Kawada, I.; Naoki, K.; Hayashi, Y.; Betsuyaku, T.; Soejima, K. Activation of egfr bypass signaling by tgfα overexpression induces acquired resistance to alectinib in alk-translocated lung cancer cells. Mol. Cancer Ther., 2016, 15(1), 162-171.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0084] [PMID: 26682573]
[18]
Wilson, C.; Nimick, M.; Nehoff, H.; Ashton, J.C. ALK and IGF-1R as independent targets in crizotinib resistant lung cancer. Sci. Rep., 2017, 7(1), 13955.
[http://dx.doi.org/10.1038/s41598-017-14289-w] [PMID: 29066738]
[19]
Zhang, S.; Wang, F.; Keats, J.; Zhu, X.; Ning, Y.; Wardwell, S.D.; Moran, L.; Mohemmad, Q.K.; Anjum, R.; Wang, Y.; Narasimhan, N.I.; Dalgarno, D.; Shakespeare, W.C.; Miret, J.J.; Clackson, T.; Rivera, V.M. Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem. Biol. Drug Des., 2011, 78(6), 999-1005.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01239.x] [PMID: 22034911]
[20]
Tanizaki, J.; Okamoto, I.; Okabe, T.; Sakai, K.; Tanaka, K.; Hayashi, H.; Kaneda, H.; Takezawa, K.; Kuwata, K.; Yamaguchi, H.; Hatashita, E.; Nishio, K.; Nakagawa, K. Activation of HER family signaling as a mechanism of acquired resistance to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer. Clin. Cancer Res., 2012, 18(22), 6219-6226.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0392] [PMID: 22843788]
[21]
Gadgeel, S.M.; Gandhi, L.; Riely, G.J.; Chiappori, A.A.; West, H.L.; Azada, M.C.; Morcos, P.N.; Lee, R.M.; Garcia, L.; Yu, L.; Boisserie, F.; Di Laurenzio, L.; Golding, S.; Sato, J.; Yokoyama, S.; Tanaka, T.; Ou, S.H. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol., 2014, 15(10), 1119-1128.
[http://dx.doi.org/10.1016/S1470-2045(14)70362-6] [PMID: 25153538]
[22]
Kim, D.W.; Tiseo, M.; Ahn, M.J.; Reckamp, K.L.; Hansen, K.H.; Kim, S.W.; Huber, R.M.; West, H.L.; Groen, H.J.M.; Hochmair, M.J.; Leighl, N.B.; Gettinger, S.N.; Langer, C.J.; Paz-Ares Rodríguez, L.G.; Smit, E.F.; Kim, E.S.; Reichmann, W.; Haluska, F.G.; Kerstein, D.; Camidge, D.R. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: A randomized, multicenter phase ii trial. J. Clin. Oncol., 2017, 35(22), 2490-2498.
[http://dx.doi.org/10.1200/JCO.2016.71.5904] [PMID: 28475456]
[23]
Larkins, E.; Blumenthal, G.M.; Chen, H.; He, K.; Agarwal, R.; Gieser, G.; Stephens, O.; Zahalka, E.; Ringgold, K.; Helms, W.; Shord, S.; Yu, J.; Zhao, H.; Davis, G.; McKee, A.E.; Keegan, P.; Pazdur, R.; Approval, F.D.A. FDA approval: Alectinib for the treatment of metastatic, alk-positive non-small cell lung cancer following crizotinib. Clin. Cancer Res., 2016, 22(21), 5171-5176.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1293] [PMID: 27413075]
[24]
Lin, J.J.; Riely, G.J.; Shaw, A.T.; Targeting, A.L.K. Targeting ALK: Precision medicine takes on drug resistance. Cancer Discov., 2017, 7(2), 137-155.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1123] [PMID: 28122866]
[25]
Shaw, A.T.; Kim, T.M.; Crinò, L.; Gridelli, C.; Kiura, K.; Liu, G.; Novello, S.; Bearz, A.; Gautschi, O.; Mok, T.; Nishio, M.; Scagliotti, G.; Spigel, D.R.; Deudon, S.; Zheng, C.; Pantano, S.; Urban, P.; Massacesi, C.; Viraswami-Appanna, K.; Felip, E. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol., 2017, 18(7), 874-886.
[http://dx.doi.org/10.1016/S1470-2045(17)30339-X] [PMID: 28602779]
[26]
Shaw, A.T.; Solomon, B.J.; Besse, B.; Bauer, T.M.; Lin, C.C.; Soo, R.A.; Riely, G.J.; Ou, S.I.; Clancy, J.S.; Li, S.; Abbattista, A.; Thurm, H.; Satouchi, M.; Camidge, D.R.; Kao, S.; Chiari, R.; Gadgeel, S.M.; Felip, E.; Martini, J.F. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J. Clin. Oncol., 2019, 37(16), 1370-1379.
[http://dx.doi.org/10.1200/JCO.18.02236] [PMID: 30892989]
[27]
Ziogas, D.C.; Tsiara, A.; Tsironis, G.; Lykka, M.; Liontos, M.; Bamias, A.; Dimopoulos, M.A. Treating ALK-positive non-small cell lung cancer. Ann. Transl. Med., 2018, 6(8), 141.
[http://dx.doi.org/10.21037/atm.2017.11.34] [PMID: 29862230]
[28]
Pacheco, J.M.; Gao, D.; Smith, D.; Purcell, T.; Hancock, M.; Bunn, P.; Robin, T.; Liu, A.; Karam, S.; Gaspar, L.; Kavanagh, B.; Rusthoven, C.; Aisner, D.; Doebele, R.; Camidge, D.R. Natural history and factors associated with overall survival in stage iv alk-rearranged non-small cell lung cancer. J. Thorac. Oncol., 2019, 14(4), 691-700.
[http://dx.doi.org/10.1016/j.jtho.2018.12.014] [PMID: 30599201]
[29]
Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[30]
Saputra, E.C.; Huang, L.; Chen, Y.; Tucker-Kellogg, L. Combination therapy and the evolution of resistance: The theoretical merits of synergism and antagonism in cancer. Cancer Res., 2018, 78(9), 2419-2431.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1201] [PMID: 29686021]
[31]
McCoach, C.E.; Blumenthal, G.M.; Zhang, L.; Myers, A.; Tang, S.; Sridhara, R.; Keegan, P.; Pazdur, R.; Doebele, R.C.; Kazandjian, D. Exploratory analysis of the association of depth of response and survival in patients with metastatic non-small-cell lung cancer treated with a targeted therapy or immunotherapy. Ann. Oncol., 2017, 28(11), 2707-2714.
[http://dx.doi.org/10.1093/annonc/mdx414] [PMID: 29045514]
[32]
Fernandes Neto, J.M.; Nadal, E.; Bosdriesz, E.; Ooft, S.N.; Farre, L.; McLean, C.; Klarenbeek, S.; Jurgens, A.; Hagen, H.; Wang, L.; Felip, E.; Martinez-Marti, A.; Vidal, A.; Voest, E.; Wessels, L.F.A.; van Tellingen, O.; Villanueva, A.; Bernards, R. Multiple low dose therapy as an effective strategy to treat EGFR inhibitor-resistant NSCLC tumours. Nat. Commun., 2020, 11(1), 3157.
[http://dx.doi.org/10.1038/s41467-020-16952-9] [PMID: 32572029]
[33]
Bozic, I.; Reiter, J.G.; Allen, B.; Antal, T.; Chatterjee, K.; Shah, P.; Moon, Y.S.; Yaqubie, A.; Kelly, N.; Le, D.T.; Lipson, E.J.; Chapman, P.B.; Diaz, L.A., Jr; Vogelstein, B.; Nowak, M.A. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife, 2013, 2, e00747.
[http://dx.doi.org/10.7554/eLife.00747] [PMID: 23805382]
[34]
Bozic, I.; Martin, A.N. Resisting Resistance. Annual Review of Caner Biology, 2017, 1, 203-221.
[http://dx.doi.org/10.1146/annurev-cancerbio-042716-094839]
[35]
Lovly, C.M.; McDonald, N.T.; Chen, H.; Ortiz-Cuaran, S.; Heukamp, L.C.; Yan, Y.; Florin, A.; Ozretić, L.; Lim, D.; Wang, L.; Chen, Z.; Chen, X.; Lu, P.; Paik, P.K.; Shen, R.; Jin, H.; Buettner, R.; Ansén, S.; Perner, S.; Brockmann, M.; Bos, M.; Wolf, J.; Gardizi, M.; Wright, G.M.; Solomon, B.; Russell, P.A.; Rogers, T.M.; Suehara, Y.; Red-Brewer, M.; Tieu, R.; de Stanchina, E.; Wang, Q.; Zhao, Z.; Johnson, D.H.; Horn, L.; Wong, K.K.; Thomas, R.K.; Ladanyi, M.; Pao, W. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat. Med., 2014, 20(9), 1027-1034.
[http://dx.doi.org/10.1038/nm.3667] [PMID: 25173427]
[36]
Dong, X.; Fernandez-Salas, E.; Li, E.; Wang, S. Elucidation of resistance mechanisms to second-generation alk inhibitors alectinib and ceritinib in non-small cell lung cancer cells. Neoplasia, 2016, 18(3), 162-171.
[http://dx.doi.org/10.1016/j.neo.2016.02.001] [PMID: 26992917]
[37]
Isozaki, H.; Ichihara, E.; Takigawa, N.; Ohashi, K.; Ochi, N.; Yasugi, M.; Ninomiya, T.; Yamane, H.; Hotta, K.; Sakai, K.; Matsumoto, K.; Hosokawa, S.; Bessho, A.; Sendo, T.; Tanimoto, M.; Kiura, K. Non-small cell lung cancer cells acquire resistance to the alk inhibitor alectinib by activating alternative receptor tyrosine kinases. Cancer Res., 2016, 76(6), 1506-1516.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1010] [PMID: 26719536]
[38]
Yamaguchi, N.; Lucena-Araujo, A.R.; Nakayama, S.; de Figueiredo-Pontes, L.L.; Gonzalez, D.A.; Yasuda, H.; Kobayashi, S.; Costa, D.B. Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer, 2014, 83(1), 37-43.
[http://dx.doi.org/10.1016/j.lungcan.2013.09.019] [PMID: 24199682]
[39]
Kang, J.; Chen, H.J.; Zhang, X.C.; Su, J.; Zhou, Q.; Tu, H.Y.; Wang, Z.; Wang, B.C.; Zhong, W.Z.; Yang, X.N.; Chen, Z.H.; Ding, Y.; Wu, X.; Wang, M.; Fu, J.G.; Yang, Z.; Zhang, X.; Shao, Y.W.; Wu, Y.L.; Yang, J.J. Heterogeneous responses and resistant mechanisms to crizotinib in ALK-positive advanced non-small cell lung cancer. Thorac. Cancer, 2018, 9(9), 1093-1103.
[http://dx.doi.org/10.1111/1759-7714.12791] [PMID: 29978950]
[40]
Rossing, H.H.; Grauslund, M.; Urbanska, E.M.; Melchior, L.C.; Rask, C.K.; Costa, J.C.; Skov, B.G.; Sørensen, J.B.; Santoni-Rugiu, E. Concomitant occurrence of EGFR (epidermal growth factor receptor) and KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) mutations in an ALK (anaplastic lymphoma kinase)-positive lung adenocarcinoma patient with acquired resistance to crizotinib: A case report. BMC Res. Notes, 2013, 6, 489.
[http://dx.doi.org/10.1186/1756-0500-6-489] [PMID: 24279718]
[41]
Sahnane, N.; Frattini, M.; Bernasconi, B.; Zappa, F.; Schiavone, G.; Wannesson, L.; Antonelli, P.; Balzarini, P.; Sessa, F.; Mazzucchelli, L.; Tibiletti, M.G.; Martin, V. EGFR and KRAS mutations in alk-positive lung adenocarcinomas: biological and clinical effect. Clin. Lung Cancer, 2016, 17(1), 56-61.
[http://dx.doi.org/10.1016/j.cllc.2015.08.001] [PMID: 26381283]
[42]
Sweis, R.F.; Thomas, S.; Bank, B.; Fishkin, P.; Mooney, C.; Salgia, R. Concurrent EGFR mutation and alk translocation in non-small cell lung cancer. Cureus, 2016, 8(2), e513.
[http://dx.doi.org/10.7759/cureus.513] [PMID: 27026837]
[43]
Yang, J.J.; Zhang, X.C.; Su, J.; Xu, C.R.; Zhou, Q.; Tian, H.X.; Xie, Z.; Chen, H.J.; Huang, Y.S.; Jiang, B.Y.; Wang, Z.; Wang, B.C.; Yang, X.N.; Zhong, W.Z.; Nie, Q.; Liao, R.Q.; Mok, T.S.; Wu, Y.L. Lung cancers with concomitant EGFR mutations and ALK rearrangements: Diverse responses to EGFR-TKI and crizotinib in relation to diverse receptors phosphorylation. Clin. Cancer Res., 2014, 20(5), 1383-1392.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0699] [PMID: 24443522]
[44]
Hrustanovic, G.; Olivas, V.; Pazarentzos, E.; Tulpule, A.; Asthana, S.; Blakely, C.M.; Okimoto, R.A.; Lin, L.; Neel, D.S.; Sabnis, A.; Flanagan, J.; Chan, E.; Varella-Garcia, M.; Aisner, D.L.; Vaishnavi, A.; Ou, S.H.; Collisson, E.A.; Ichihara, E.; Mack, P.C.; Lovly, C.M.; Karachaliou, N.; Rosell, R.; Riess, J.W.; Doebele, R.C.; Bivona, T.G. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat. Med., 2015, 21(9), 1038-1047.
[http://dx.doi.org/10.1038/nm.3930] [PMID: 26301689]
[45]
Zhou, B.; Cox, A.D. Up-front polytherapy for ALK-positive lung cancer. Nat. Med., 2015, 21(9), 974-975.
[http://dx.doi.org/10.1038/nm.3942] [PMID: 26340116]
[46]
Shrestha, N.; Bland, A.R.; Bower, R.L.; Rosengren, R.J.; Ashton, J.C. Inhibition of mitogen-activated protein kinase kinase alone and in combination with anaplastic lymphoma kinase (alk) inhibition suppresses tumor growth in a mouse model of alk-positive lung cancer. J. Pharmacol. Exp. Ther., 2020, 374(1), 134-140.
[http://dx.doi.org/10.1124/jpet.120.266049] [PMID: 32284325]
[47]
Shrestha, N.; Nimick, M.; Dass, P.; Rosengren, R.J.; Ashton, J.C. Mechanisms of suppression of cell growth by dual inhibition of ALK and MEK in ALK-positive non-small cell lung cancer. Sci. Rep., 2019, 9(1), 18842.
[http://dx.doi.org/10.1038/s41598-019-55376-4] [PMID: 31827192]
[48]
Tanizaki, J.; Okamoto, I.; Takezawa, K.; Sakai, K.; Azuma, K.; Kuwata, K.; Yamaguchi, H.; Hatashita, E.; Nishio, K.; Janne, P.A.; Nakagawa, K. Combined effect of ALK and MEK inhibitors in EML4-ALK-positive non-small-cell lung cancer cells. Br. J. Cancer, 2012, 106(4), 763-767.
[http://dx.doi.org/10.1038/bjc.2011.586] [PMID: 22240786]
[49]
NCT03087448 ceritinib + trametinib in patients with advanced alk-positive non-small cell lung cancer (NSCLC). Available from: https://clinicaltrials.gov/ct2/show/NCT03087448 [Accessed October 6]
[50]
NCT03202940 A Phase IB/II Study of Alectinib Combined With Cobimetinib in Advanced ALK-Rearranged (ALK+) NSCLC. Available from: https://clinicaltrials.gov/ct2/show/NCT03202940 [Accessed October 6]
[51]
NCT04292119 Lorlatinib Combinations in Lung Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT04292119 [Accessed 28 Jan]
[52]
Yoshida, R.; Sasaki, T.; Minami, Y.; Hibino, Y.; Okumura, S.; Sado, M.; Miyokawa, N.; Hayashi, S.; Kitada, M.; Ohsaki, Y. Activation of Src signaling mediates acquired resistance to ALK inhibition in lung cancer. Int. J. Oncol., 2017, 51(5), 1533-1540.
[http://dx.doi.org/10.3892/ijo.2017.4140] [PMID: 29048652]
[53]
Tsuji, T.; Ozasa, H.; Aoki, W.; Aburaya, S.; Funazo, T.; Furugaki, K.; Yoshimura, Y.; Ajimizu, H.; Okutani, R.; Yasuda, Y.; Nomizo, T.; Uemasu, K.; Hasegawa, K.; Yoshida, H.; Yagi, Y.; Nagai, H.; Sakamori, Y.; Ueda, M.; Hirai, T.; Kim, Y.H. Alectinib resistance in alk-rearranged lung cancer by dual salvage signaling in a clinically paired resistance model. Mol. Cancer Res., 2019, 17(1), 212-224.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0325] [PMID: 30171175]
[54]
Zhao, Y.; Yang, Y.; Xu, Y.; Lu, S.; Jian, H. AZD0530 sensitizes drug-resistant ALK-positive lung cancer cells by inhibiting SRC signaling. FEBS Open Bio, 2017, 7(4), 472-476.
[http://dx.doi.org/10.1002/2211-5463.12162] [PMID: 28396832]
[55]
Recondo, G.; Mezquita, L.; Facchinetti, F.; Planchard, D.; Gazzah, A.; Bigot, L.; Rizvi, A.Z.; Frias, R.L.; Thiery, J.P.; Scoazec, J.Y.; Sourisseau, T.; Howarth, K.; Deas, O.; Samofalova, D.; Galissant, J.; Tesson, P.; Braye, F.; Naltet, C.; Lavaud, P.; Mahjoubi, L.; Abou Lovergne, A.; Vassal, G.; Bahleda, R.; Hollebecque, A.; Nicotra, C.; Ngo-Camus, M.; Michiels, S.; Lacroix, L.; Richon, C.; Auger, N.; De Baere, T.; Tselikas, L.; Solary, E.; Angevin, E.; Eggermont, A.M.; Andre, F.; Massard, C.; Olaussen, K.A.; Soria, J.C.; Besse, B.; Friboulet, L. Diverse resistance mechanisms to the third-generation alk inhibitor lorlatinib in alk-rearranged lung cancer. Clin. Cancer Res., 2020, 26(1), 242-255.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1104] [PMID: 31585938]
[56]
An, R.; Wang, Y.; Voeller, D.; Gower, A.; Kim, I.K.; Zhang, Y.W.; Giaccone, G. CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma. Oncotarget, 2016, 7(20), 29199-29210.
[http://dx.doi.org/10.18632/oncotarget.8638] [PMID: 27078848]
[57]
Dagogo-Jack, I.; Yoda, S.; Lennerz, J.K.; Langenbucher, A.; Lin, J.J.; Rooney, M.M.; Prutisto-Chang, K.; Oh, A.; Adams, N.A.; Yeap, B.Y.; Chin, E.; Do, A.; Marble, H.D.; Stevens, S.E.; Digumarthy, S.R.; Saxena, A.; Nagy, R.J.; Benes, C.H.; Azzoli, C.G.; Lawrence, M.S.; Gainor, J.F.; Shaw, A.T.; Hata, A.N. MET alterations are a recurring and actionable resistance mechanism in alk- positive lung cancer. Clin. Cancer Res., 2020, 26(11), 2535-2545.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3906] [PMID: 32086345]
[58]
Plenker, D.; Bertrand, M.; de Langen, A.J.; Riedel, R.; Lorenz, C.; Scheel, A.H.; Müller, J.; Brägelmann, J.; Daßler-Plenker, J.; Kobe, C.; Persigehl, T.; Kluge, A.; Wurdinger, T.; Schellen, P.; Hartmann, G.; Zacherle, T.; Menon, R.; Thunnissen, E.; Büttner, R.; Griesinger, F.; Wolf, J.; Heukamp, L.; Sos, M.L.; Heuckmann, J.M. Structural alterations of met trigger response to met kinase inhibition in lung adenocarcinoma patients. Clin. Cancer Res., 2018, 24(6), 1337-1343.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3001] [PMID: 29284707]
[59]
Sakakibara-Konishi, J.; Kitai, H.; Ikezawa, Y.; Hatanaka, Y.; Sasaki, T.; Yoshida, R.; Chiba, S.; Matsumoto, S.; Goto, K.; Mizugaki, H.; Shinagawa, N. Response to crizotinib re-administration after progression on lorlatinib in a patient with alk-rearranged non-small-cell lung cancer. Clin. Lung Cancer, 2019, 20(5), e555-e559.
[http://dx.doi.org/10.1016/j.cllc.2019.06.021] [PMID: 31307938]
[60]
Tang, Z.; Zhang, J.; Lu, X.; Wang, W.; Chen, H.; Robinson, M.K.; Cheng, J.; Tang, G.; Medeiros, L.J. Coexistent genetic alterations involving ALK, RET, ROS1 or MET in 15 cases of lung adenocarcinoma. Mod. Pathol., 2018, 31(2), 307-312.
[http://dx.doi.org/10.1038/modpathol.2017.109] [PMID: 28914263]
[61]
Dardaei, L.; Wang, H.Q.; Singh, M.; Fordjour, P.; Shaw, K.X.; Yoda, S.; Kerr, G.; Yu, K.; Liang, J.; Cao, Y.; Chen, Y.; Lawrence, M.S.; Langenbucher, A.; Gainor, J.F.; Friboulet, L.; Dagogo-Jack, I.; Myers, D.T.; Labrot, E.; Ruddy, D.; Parks, M.; Lee, D.; DiCecca, R.H.; Moody, S.; Hao, H.; Mohseni, M.; LaMarche, M.; Williams, J.; Hoffmaster, K.; Caponigro, G.; Shaw, A.T.; Hata, A.N.; Benes, C.H.; Li, F.; Engelman, J.A. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nat. Med., 2018, 24(4), 512-517.
[http://dx.doi.org/10.1038/nm.4497] [PMID: 29505033]
[62]
Bennett, A.M.; Tang, T.L.; Sugimoto, S.; Walsh, C.T.; Neel, B.G. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc. Natl. Acad. Sci. USA, 1994, 91(15), 7335-7339.
[http://dx.doi.org/10.1073/pnas.91.15.7335] [PMID: 8041791]
[63]
Feng, G.S.; Hui, C.C.; Pawson, T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science, 1993, 259(5101), 1607-1611.
[http://dx.doi.org/10.1126/science.8096088] [PMID: 8096088]
[64]
Kouhara, H.; Hadari, Y.R.; Spivak-Kroizman, T.; Schilling, J.; Bar-Sagi, D.; Lax, I.; Schlessinger, J. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell, 1997, 89(5), 693-702.
[http://dx.doi.org/10.1016/S0092-8674(00)80252-4] [PMID: 9182757]
[65]
Shi, Z.Q.; Yu, D.H.; Park, M.; Marshall, M.; Feng, G.S. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol. Cell. Biol., 2000, 20(5), 1526-1536.
[http://dx.doi.org/10.1128/MCB.20.5.1526-1536.2000] [PMID: 10669730]
[66]
Zhang, S.Q.; Yang, W.; Kontaridis, M.I.; Bivona, T.G.; Wen, G.; Araki, T.; Luo, J.; Thompson, J.A.; Schraven, B.L.; Philips, M.R.; Neel, B.G. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell, 2004, 13(3), 341-355.
[http://dx.doi.org/10.1016/S1097-2765(04)00050-4] [PMID: 14967142]
[67]
Fumarola, C.; Bonelli, M.A.; Petronini, P.G.; Alfieri, R.R. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem. Pharmacol., 2014, 90(3), 197-207.
[http://dx.doi.org/10.1016/j.bcp.2014.05.011] [PMID: 24863259]
[68]
Hallberg, B.; Palmer, R.H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer, 2013, 13(10), 685-700.
[http://dx.doi.org/10.1038/nrc3580] [PMID: 24060861]
[69]
Cuyàs, E.; Pérez-Sánchez, A.; Micol, V.; Menendez, J.A.; Bosch-Barrera, J. STAT3-targeted treatment with silibinin overcomes the acquired resistance to crizotinib in ALK-rearranged lung cancer. Cell Cycle, 2016, 15(24), 3413-3418.
[http://dx.doi.org/10.1080/15384101.2016.1245249] [PMID: 27753543]
[70]
Stockhammer, P.; Ho, C.S.L.; Hegedus, L.; Lotz, G.; Molnár, E.; Bankfalvi, A.; Herold, T.; Kalbourtzis, S.; Ploenes, T.; Eberhardt, W.E.E.; Schuler, M.; Aigner, C.; Schramm, A.; Hegedus, B. HDAC inhibition synergizes with ALK inhibitors to overcome resistance in a novel ALK mutated lung adenocarcinoma model. Lung Cancer, 2020, 144, 20-29.
[http://dx.doi.org/10.1016/j.lungcan.2020.04.002] [PMID: 32353632]
[71]
Fukuda, K.; Takeuchi, S.; Arai, S.; Katayama, R.; Nanjo, S.; Tanimoto, A.; Nishiyama, A.; Nakagawa, T.; Taniguchi, H.; Suzuki, T.; Yamada, T.; Nishihara, H.; Ninomiya, H.; Ishikawa, Y.; Baba, S.; Takeuchi, K.; Horiike, A.; Yanagitani, N.; Nishio, M.; Yano, S. Epithelial-to-mesenchymal transition is a mechanism of alk inhibitor resistance in lung cancer independent of alk mutation status. Cancer Res., 2019, 79(7), 1658-1670.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2052] [PMID: 30737231]
[72]
Chen, Z.; Sasaki, T.; Tan, X.; Carretero, J.; Shimamura, T.; Li, D.; Xu, C.; Wang, Y.; Adelmant, G.O.; Capelletti, M.; Lee, H.J.; Rodig, S.J.; Borgman, C.; Park, S.I.; Kim, H.R.; Padera, R.; Marto, J.A.; Gray, N.S.; Kung, A.L.; Shapiro, G.I.; Jänne, P.A.; Wong, K.K. Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res., 2010, 70(23), 9827-9836.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1671] [PMID: 20952506]
[73]
Sang, J.; Acquaviva, J.; Friedland, J.C.; Smith, D.L.; Sequeira, M.; Zhang, C.; Jiang, Q.; Xue, L.; Lovly, C.M.; Jimenez, J.P.; Shaw, A.T.; Doebele, R.C.; He, S.; Bates, R.C.; Camidge, D.R.; Morris, S.W.; El-Hariry, I.; Proia, D.A. Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov., 2013, 3(4), 430-443.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0440] [PMID: 23533265]
[74]
Courtin, A.; Smyth, T.; Hearn, K.; Saini, H.K.; Thompson, N.T.; Lyons, J.F.; Wallis, N.G. Emergence of resistance to tyrosine kinase inhibitors in non-small-cell lung cancer can be delayed by an upfront combination with the HSP90 inhibitor onalespib. Br. J. Cancer, 2016, 115(9), 1069-1077.
[http://dx.doi.org/10.1038/bjc.2016.294] [PMID: 27673365]
[75]
Tanimoto, A.; Matsumoto, S.; Takeuchi, S.; Arai, S.; Fukuda, K.; Nishiyama, A.; Yoh, K.; Ikeda, T.; Furuya, N.; Nishino, K.; Ohe, Y.; Goto, K.; Yano, S. Proteasome inhibition overcomes alk-tki resistance in alk-rearranged/tp53-mutant nsclc via noxa expression. Clin. Cancer Res., 2021, 27(5), 1410-1420.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2853] [PMID: 33310890]
[76]
Hong, S.; Chen, N.; Fang, W.; Zhan, J.; Liu, Q.; Kang, S.; He, X.; Liu, L.; Zhou, T.; Huang, J.; Chen, Y.; Qin, T.; Zhang, Y.; Ma, Y.; Yang, Y.; Zhao, Y.; Huang, Y.; Zhang, L. Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: Implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients. OncoImmunology, 2015, 5(3), e1094598.
[http://dx.doi.org/10.1080/2162402X.2015.1094598] [PMID: 27141355]
[77]
Ota, K.; Azuma, K.; Kawahara, A.; Hattori, S.; Iwama, E.; Tanizaki, J.; Harada, T.; Matsumoto, K.; Takayama, K.; Takamori, S.; Kage, M.; Hoshino, T.; Nakanishi, Y.; Okamoto, I. Induction of pd-l1 expression by the eml4-alk oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin. Cancer Res., 2015, 21(17), 4014-4021.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0016] [PMID: 26019170]
[78]
Du, P.; Hu, T.; An, Z.; Li, P.; Liu, L. In vitro and in vivo synergistic efficacy of ceritinib combined with programmed cell death ligand-1 inhibitor in anaplastic lymphoma kinase-rearranged non-small-cell lung cancer. Cancer Sci., 2020, 111(6), 1887-1898.
[http://dx.doi.org/10.1111/cas.14397] [PMID: 32227409]
[79]
Spigel, D.R.; Reynolds, C.; Waterhouse, D.; Garon, E.B.; Chandler, J.; Babu, S.; Thurmes, P.; Spira, A.; Jotte, R.; Zhu, J.; Lin, W.H.; Blumenschein, G., Jr Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation - positive advanced non-small cell lung cancer (checkmate 370). J. Thorac. Oncol., 2018, 13(5), 682-688.
[http://dx.doi.org/10.1016/j.jtho.2018.02.022] [PMID: 29518553]
[80]
Felip, E.; de Braud, F.G.; Maur, M.; Loong, H.H.; Shaw, A.T.; Vansteenkiste, J.F.; John, T.; Liu, G.; Lolkema, M.P.; Selvaggi, G.; Giannone, V.; Cazorla, P.; Baum, J.; Balbin, O.A.; Wang, L.V.; Lau, Y.Y.; Scott, J.W.; Tan, D.S. Ceritinib plus nivolumab in patients with advanced alk-rearranged non-small cell lung cancer: Results of an open-label, multicenter, phase 1b study. J. Thorac. Oncol., 2020, 15(3), 392-403.
[http://dx.doi.org/10.1016/j.jtho.2019.10.006] [PMID: 31634667]
[81]
Shaw, A. T.; Lee, S.-H.; Ramalingam, S. S.; Bauer, T. M.; Boyer, M. J.; Costa, E. C.; Felip, E.; Han, J.-Y.; Hida, T.; Hughes, B. G. M.; Kim, S.-W.; Nishio, M.; Seto, T.; Ezeh, P.; Chakrabarti, D.; Wang, J.; Chang, A.; Fumagalli, L.; Solomon, B. J. Avelumab (anti–PD-L1) in combination with crizotinib or lorlatinib in patients with previously treated advanced NSCLC: Phase 1b results from JAVELIN Lung 101. Journal of Clinical Oncology, 2018, 36(15_suppl), 9008-9008.
[82]
Kim, D.-W.; Gadgeel, S. M.; Gettinger, S. N.; Riely, G. J.; Oxnard, G. R.; Mekhail, T.; Schmid, P.; Dowlati, A.; Heist, R. S.; Wozniak, A. J.; Hernandez, G.; Sarkar, I.; Mitry, E.; Foster, P.; O'Hear, C.; Spahn, J.; Ou, S.-H. I. Safety and clinical activity results from a phase Ib study of alectinib plus atezolizumab in ALK+ advanced NSCLC (aNSCLC). Journal of Clinical Oncology, 2018, 36(15_suppl), 9009-9009.
[83]
Chen, Y.; Ma, G.; Su, C.; Wu, P.; Wang, H.; Song, X.; Yu, Q.; Zeng, A.; Zhou, S. Apatinib reverses alectinib resistance by targeting vascular endothelial growth factor receptor 2 and attenuating the oncogenic signaling pathway in echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene-positive lung cancer cell lines. Anticancer Drugs, 2018, 29(10), 935-943.
[http://dx.doi.org/10.1097/CAD.0000000000000667] [PMID: 30074936]
[84]
Yang, B.; Cui, Z.; Meng, X.; Huang, Z.; Hu, Y. Crizotinib with bevacizumab as first-line therapy in patients with advanced non-small-cell lung cancer harboring EML4-ALK fusion variant mutation: A prospective exploratory study. Journal of Clinical Oncology, 2018, 36(15_suppl), e21186-e21186.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.e21186]
[85]
NCT03779191 Alectinib in Combination With Bevacizumab in ALK Positive NSCLC. Available from: https://clinicaltrials.gov/ct2/show/NCT03779191 [Accessed 28 Jan]
[86]
NCT02521051 Phase I/II Trial of Alectinib and Bevacizumab in Patients With Advanced, Anaplastic Lymphoma Kinase (ALK)- Positive, Non-Small Cell Lung Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT02521051 [Accessed 28 January]
[87]
Choudhury, N.J.; Young, R.J.; Sellitti, M.; Miller, A.; Drilon, A. Lorlatinib and bevacizumab activity in alk-rearranged lung cancers after lorlatinib progression. JCO Precis Oncol, 2020, 4.
[88]
Zhou, W.J.; Zhang, X.; Cheng, C.; Wang, F.; Wang, X.K.; Liang, Y.J.; To, K.K.; Zhou, W.; Huang, H.B.; Fu, L.W. Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein. Br. J. Pharmacol., 2012, 166(5), 1669-1683.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01849.x] [PMID: 22233293]
[89]
Hu, J.; Zhang, X.; Wang, F.; Wang, X.; Yang, K.; Xu, M.; To, K.K.; Li, Q.; Fu, L. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Oncotarget, 2015, 6(42), 44643-44659.
[http://dx.doi.org/10.18632/oncotarget.5989] [PMID: 26556876]
[90]
Bland, A.R.; Bower, R.L.; Nimick, M.; Hawkins, B.C.; Rosengren, R.J.; Ashton, J.C. Cytotoxicity of curcumin derivatives in ALK positive non-small cell lung cancer. Eur. J. Pharmacol., 2019, 865, 172749.
[http://dx.doi.org/10.1016/j.ejphar.2019.172749] [PMID: 31654622]
[91]
Gandhi, L.; Drappatz, J.; Ramaiya, N.H.; Otterson, G.A. High- dose pemetrexed in combination with high-dose crizotinib for the treatment of refractory CNS metastases in ALK-rearranged non-small-cell lung cancer. J. Thorac. Oncol., 2013, 8(1), e3-e5.
[http://dx.doi.org/10.1097/JTO.0b013e3182762d20] [PMID: 23242445]
[92]
Lin, J.J.; Schoenfeld, A.J.; Zhu, V.W.; Yeap, B.Y.; Chin, E.; Rooney, M.; Plodkowski, A.J.; Digumarthy, S.R.; Dagogo-Jack, I.; Gainor, J.F.; Ou, S.I.; Riely, G.J.; Shaw, A.T. Efficacy of platinum/pemetrexed combination chemotherapy in alk-positive nsclc refractory to second-generation alk inhibitors. J. Thorac. Oncol., 2020, 15(2), 258-265.
[http://dx.doi.org/10.1016/j.jtho.2019.10.014] [PMID: 31669591]
[93]
Li, L.; Wang, Y.; Peng, T.; Zhang, K.; Lin, C.; Han, R.; Lu, C.; He, Y. Metformin restores crizotinib sensitivity in crizotinib-resistant human lung cancer cells through inhibition of IGF1-R signaling pathway. Oncotarget, 2016, 7(23), 34442-34452.
[http://dx.doi.org/10.18632/oncotarget.9120] [PMID: 27144340]
[94]
Bland, A.R.; Shrestha, N.; Bower, R.L.; Rosengren, R.J.; Ashton, J.C. The effect of metformin in EML4-ALK+ lung cancer alone and in combination with crizotinib in cell and rodent models. Biochem. Pharmacol., 2021, 183, 114345.
[http://dx.doi.org/10.1016/j.bcp.2020.114345] [PMID: 33227290]
[95]
Dai, Y.; Wei, Q.; Schwager, C.; Hanne, J.; Zhou, C.; Herfarth, K.; Rieken, S.; Lipson, K.E.; Debus, J.; Abdollahi, A. Oncogene addiction and radiation oncology: effect of radiotherapy with photons and carbon ions in ALK-EML4 translocated NSCLC. Radiat. Oncol., 2018, 13(1), 1.
[http://dx.doi.org/10.1186/s13014-017-0947-0] [PMID: 29304828]
[96]
Dai, Y.; Wei, Q.; Schwager, C.; Moustafa, M.; Zhou, C.; Lipson, K.E.; Weichert, W.; Debus, J.; Abdollahi, A. Synergistic effects of crizotinib and radiotherapy in experimental EML4-ALK fusion positive lung cancer. Radiother. Oncol., 2015, 114(2), 173-181.
[http://dx.doi.org/10.1016/j.radonc.2014.12.009] [PMID: 25592111]
[97]
Sun, Y.; Nowak, K.A.; Zaorsky, N.G.; Winchester, C.L.; Dalal, K.; Giacalone, N.J.; Liu, N.; Werner-Wasik, M.; Wasik, M.A.; Dicker, A.P.; Lu, B. ALK inhibitor PF02341066 (crizotinib) increases sensitivity to radiation in non-small cell lung cancer expressing EML4-ALK. Mol. Cancer Ther., 2013, 12(5), 696-704.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0868] [PMID: 23443800]
[98]
Okawa, S.; Shibayama, T.; Shimonishi, A.; Nishimura, J.; Ozeki, T.; Takada, K.; Kayatani, H.; Minami, D.; Sato, K.; Fujiwara, K.; Yonei, T.; Sato, T.; Suno, M. Success of crizotinib combined with whole-brain radiotherapy for brain metastases in a patient with anaplastic lymphoma kinase rearrangement-positive non-small- cell lung cancer. Case Rep. Oncol., 2018, 11(3), 777-783.
[http://dx.doi.org/10.1159/000492150] [PMID: 30627092]
[99]
Khan, S. A.; Gerber, D. E.; Zhu, H.; Hughes, R. S.; Mannala, S.; Rashdan, S.; Dowell, J.; Westover, K. D.; Saltarski, J.; Harrah, K.; Priddy, L.; Choy, H.; Timmerman, R. D.; Brekken, R. A.; Sorrelle, N.; Iyengar, P. Phase II trial of clinical activity and safety of ceritinib combined with stereotactic ablative radiotherapy (SABR) in lung adenocarcinoma patients. Journal of Clinical Oncology, 2020, 38(15_suppl), e21571-e21571.
[100]
Nakashima, T.; Nonoshita, T.; Hirata, H.; Inoue, K.; Nagashima, A.; Yoshitake, T.; Asai, K.; Shioyama, Y. Adverse events of concurrent radiotherapy and alk inhibitors for brain metastases of alk-rearranged lung adenocarcinoma. In vivo, 2020, 34(1), 247-253.
[http://dx.doi.org/10.21873/invivo.11767] [PMID: 31882485]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy